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Hybrid model of separable, zero-range, few-body interactions in one-dimensional harmonic traps
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This paper introduces a model for a few repulsively interacting particles trapped in a one-dimensional
harmonic well and provides exact solutions for the three-particle case. This model is a hybrid of two other
well-known systems, the Calogero model and the contact-interaction model, and coincides with them in limiting
cases. However, those models have purely two-body interactions whereas this model has intrinsically few-body
interactions. Comparing these three models provides clarifying distinctions among the properties of symmetry,
separability, and integrability. The model’s analytic solutions provide a useful basis to improve approximation
schemes, especially near the unitary limit of hard-core contact interactions.
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I. INTRODUCTION

One challenge of few-body physics is that the degrees of
freedom grow more rapidly than the constraints from symme-
try. This hard truth impedes many straightforward analytic and
numerical approaches to extracting physics even from simple
models. The restriction to one-dimensional models generally
makes calculations more tractable because the balance of
symmetry versus degrees of freedom is more favorable.
Sometimes the balance is so favorable that the one-dimensional
model is solvable, and it becomes a wellspring for physical
and mathematical insight about few-body and many-body
dynamical systems. As a result, there is a long and productive
history of one-dimensional solvable models in many branches
of physics, in particular mathematical and condensed-matter
physics. One important example is the zero-range, contact-
interaction (or delta-interaction) model in one dimension,
which includes the Tonks-Girardeau gas [1], the Lieb-Liniger
bosons model [2], and its extensions to multicomponent
bosons and fermions [3]. Another is the Calogero model (also
called the Calogero-Moser model) [4,5] with inverse-square
interactions and its numerous generalizations, for example
Refs. [6,7].

Recently, interest in one-dimensional few-body models has
further increased because of ongoing experimental advances
with ultracold atoms in effectively one-dimensional optical
traps. In these cold atom experiments, the range of inter-
action is typically much shorter than other length scales,
and the system behaves like an effective one-dimensional
contact-interaction model the interaction strength of which
is determined by an interplay between the Feshbach and
confinement-induced resonances [8]. Additionally, the optical
trap is well modeled as a harmonic potential. Experiments
with many-atom cold gases in a trap near the “unitary limit” of
hard-core contact interactions [9–11] have demonstrated the
importance of integrability for understanding thermalization
and nonequilibrium quench dynamics [12,13]. Few-atom
experiments with tunable interactions, well shapes, and spin
mixtures [14–17] offer exciting possibilities for quantum
simulation of condensed-matter systems from the “bottom up”
[16,18,19]. In the near unitary limit, these systems can be
mapped onto one-dimensional spin chains that have coupling

constants which depend on the trap shape [20–24]. The
possibility for precision control of these systems has also
inspired practical proposals for embodying and processing
quantum information in such systems [25]. These experiments
and potential applications motivate the search for solvable
models that allow qualitative analysis and aid quantitative
precision of prediction and control.

Towards this end, this paper introduces a model for
interacting particles in one-dimensional harmonic traps and
compares it to the contact-interaction model and the Calogero
model. The Hamiltonian for the model we consider in natural
units is

Hg = 1

2

N∑
i=1

(
− ∂2

∂x2
i

+ x2
i

)
+

√
2g

ρ

∑
〈i,j〉

δ(xi − xj ), (1)

where the sum is over all pairs 〈i,j 〉 and ρ is the relative
hyper-radius defined for N particles as

ρ = 1√
N

√√√√(N − 1)
N∑

i=1

x2
i − 2

∑
〈i,j〉

xixj . (2)

We shall only consider repulsive interactions (g > 0) to avoid
the problem of the wave function “falling to the center” [26].
For convenience, in this paper we will call this the “hybrid”
model because it combines properties of those two other
famous models, but is also distinct from both.

For comparison, the Hamiltonian for the contact-interaction
model in a harmonic trap is

Hg = 1

2

N∑
i=1

(
− ∂2

∂x2
i

+ x2
i

)
+ g

∑
〈i,j〉

δ(xi − xj ) (3)

and the Calogero model with a harmonic trap is

Hγ = 1

2

N∑
i=1

(
− ∂2

∂x2
i

+ x2
i

)
+ γ

∑
〈i,j〉

1

|xi − xj |2 . (4)

The Calogero model is exactly solvable and integrable for posi-
tive γ (in fact, it is maximally superintegrable [27]). In compar-
ison, for N > 2 the contact-interaction model with a harmonic
trap is only exactly solvable and integrable for no interactions
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g = 0 and in the unitary limit g → ∞ [28–33]. When
g → ∞, the hybrid model Hamiltonian coincides with the
contact-interaction Hamiltonian at the unitary limit g → ∞.
Further, when γ → 0 the Calogero model is also equivalent to
the unitary limit of the contact interaction [6].

The hybrid model shares different properties with the
Calogero and the contact-interaction model. Like the contact-
interaction model (but unlike the Calogero model), particles
in the hybrid model transmit past each other, except in the
unitary limit. On the other hand, like the Calogero model (but
unlike the contact-interaction model for N > 2), the relative
hyper-radial and hyperangular coordinates separate for this
hybrid model. As a result, interactions are diffractionless, in
the sense of Sutherland [34,35]. However, unlike both those
other models, the interaction in Eq. (2) is an intrinsically
N -body interaction and might seem peculiar from a physical
point of view. For finite interaction strength, the pair-wise
interaction is stronger when all N particles are close to each
other, and weaker when even just one of the N particles is
pulled far away. In order to have hyper-radial separability in
a harmonic trap, we must have that Vint �→ Vint/α

2 under the
transformation ρ �→ αρ for some α > 0. Only the Calogero
model has a potential with this property that is also a sum of
Galilean invariant, two-body interactions. The hybrid model
does possess Galilean invariant N -body interactions, and in
that way is similar to separable, solvable N -body interaction
models like the Wolfes model [36], the Jain-Khare model [37],
and other truncated Calogero-Sutherland type models [38].

Despite the physical peculiarity of the hybrid model, we
argue that it is worth attention for several reasons. First, it
is difficult to get accurate energies and wave functions for
the contact-interaction model at large strengths because the
contact interaction introduces cusps in the few-body wave
functions that require high-energy scales to accurately capture.
As a result, even for three particles, methods like exact
diagonalization converge slowly unless techniques to address
the cusp are used [39]. The three-body solutions for the hybrid
model could also serve as a basis for variational methods or
perturbation methods. This would be particularly useful in the
near unitary limit, where renormalization is required [40,41].
More generally, comparing these three models shows how
symmetry, separability, and integrability are distinct but related
features. This model shows how the solvability of a model
comes down to boundary conditions on surfaces and singular
points in configuration space, and this insight can be extended
to other models in higher dimensions. Finally (and explicitly
hopefully), solvable models end up being useful, often in ways
never intended. For example, the Tonks-Girardeau gas was
a purely theoretical example for more than 50 years before
becoming experimentally realized.

An outline for the rest of the paper follows. In Sec. II,
we give the exact solutions for the three-body version of
Eq. (2), which is fully separable in center-of-mass and relative
polar coordinates and integrable for any g > 0. In Sec. III,
we compare these to solutions of the Calogero and contact-
interaction three-body models in the noninteracting, weakly
interacting, near unitary, and unitary limits. In Sec. IV, we
consider extensions to more particles and discuss integrability
and symmetry for N � 3. Section V suggests directions for
extensions of the model and for future research.

II. EXACT SOLUTION FOR THREE PARTICLES

First we consider three distinguishable particles and solve
the problem through separation of variables. The interaction
part of the hybrid Hamiltonian (2) can be rewritten as

Vint = g

√
3

2

(
δ(x1 − x2)∣∣ 1

2 (x1 + x2) − x3

∣∣
+ δ(x2 − x3)∣∣ 1

2 (x2 + x3) − x1

∣∣ + δ(x3 − x1)∣∣ 1
2 (x3 + x1) − x2

∣∣
)

(5)

to explicitly demonstrate that each pairwise interaction term
depends on the distance from the center of mass of the pair to
the third “spectating” particle. We convert to relative Jacobi
coordinates x′ = J x through the orthogonal matrix

J =

⎡
⎢⎢⎣

1√
2

−1√
2

0
1√
6

1√
6

−2√
6

1√
3

1√
3

1√
3

⎤
⎥⎥⎦. (6)

The motion of the center of mass (with coordinate x ′
3) separates

from the relative motion, and from here on we shall restrict
ourselves to considering only the relative motion.

We further convert the Jacobi coordinates into hyperspher-
ical coordinates with radius

ρ =
√

x ′2
1 + x ′2

2

=
√

2
3

(
x2

1 + x2
2 + x2

3 − x1x2 − x2x3 − x3x1
)

(7)

and angle tan(φ) = x ′
2/x

′
1. In these coordinates, the relative

Hamiltonian is

H rel
g = 1

2

(
− ∂2

∂ρ2
− 1

ρ

∂

∂ρ
+ ρ2 + �g

ρ2

)
, (8)

having defined the operator

�g = − d2

dφ2
+ g

6∑
n=1

δ(φ − φn). (9)

The delta functions act along the lines φn = π
6 , 3π

6 , 5π
6 , 7π

6 ,
9π
6 , and 11π

6 for n = 1, . . . ,6, respectively. We see that due
to the factor of 1/ρ2 in the interaction potential the angular
part separates from the radial part of the problem. Note that
for finite g the contact-interaction model cannot be put in the
form of Eq. (8) and does not have hyper-radial–hyperangular
separability. However, the Calogero model can. The relative
Hamiltonian has the same form as Eq. (8), except with �g

replaced by the angular operator �γ with the form

�γ = − d2

dφ2
+ γ

9

2 cos2(3φ)
. (10)

Note this operator has the same six singular angles φn =
(2n − 1)π/6.

Using separation of variables, ψ(ρ,φ) = R(ρ)�(φ), the
Schrödinger equation splits into two eigenvalue problems.
Solving first the angular equation

�g�(φ) = λ2�(φ) (11)
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FIG. 1. Configuration space in Jacobi coordinates. In hyperspher-
ical coordinates, φ is the angle to the horizontal axis and ρ is the
distance to the origin. Each of the six regions is labeled by its number
n and separated from the others by the φn interaction lines (dashed).
The dotted lines bisect each region and indicate further reflection
symmetries due to relative parity.

then allows us to substitute its eigenvalue—the angular
quantum number λ—into the radial equation

ER(ρ) = 1

2

(
− ∂2

∂ρ2
− 1

ρ

∂

∂ρ
+ ρ2 + λ2

ρ2

)
R(ρ). (12)

The solution to the radial equation is well known:

Rλ
ν (ρ) =

√
2ν!

�(ν + λ + 1)
ρλe−ρ2/2Lλ

ν (ρ2), (13)

where the non-negative integer ν is the quantum number for the
radial excitation and Lλ

ν is an associated Laguerre polynomial.
The eigenenergy is given by

E = 1 + 2ν + λ. (14)

Notice that λ is not necessarily integral unless g = 0
or g → ∞.

A. The angular equation

Integrating Eq. (11) in an infinitesimal angle around one of
the lines φn, we see that the derivative of �(φ) must have a
discontinuity of

lim
ε→0+

(
d�

dφ

∣∣∣∣
φn+ε

− d�

dφ

∣∣∣∣
φn−ε

)
= g�(φn). (15)

In a region between any two of the φn lines, the problem
is that of a free particle on a ring. Enumerate the regions as
follows: Region 1 is for −π

6 < φ < π
6 , region 2 is for π

6 <

φ < 3π
6 , etc. (see Fig. 1). In the nth region, we write the wave

function as

�(φ) = ane
iλφ + bne

−iλφ (16)

for constant coefficients an and bn.
The operator �g has a discrete rotational symmetry under

the transformation φ �→ φ + π/3. It is also symmetric under
reflections in the interaction lines (i.e., φ = φn) as well as in the
lines halfway between two interaction lines. The full symmetry

0 π
8

π
4

3π
8

π
2

0

2

4

6
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A2
A1

E1

E1

E2

E2

B1

B2

δ

λ

FIG. 2. Lower part of the spectrum due to angular excitations.
Recall the relation between the energy E and the angular quantum
number λ [see Eq. (14)]. The colors indicate the m quantum
number: |m| = 0,6,12, . . . (blue), |m| = 1,5,7, . . . (magenta), |m| =
2,4,8, . . . (gold), |m| = 3,9,15, . . . (green). Each curve is labeled by
the Mulliken symbol of the D6 representation to which it belongs.

group of �g is that of a regular hexagon, the dihedral group
D6 [42]. It is isomorphic to the three-dimensional crystal point
group denoted C6v in Schoenflies notation [43].

We look for solutions of Eq. (11) among the eigenstates
of the operator C6 corresponding to rotations by π/3; C6� =
eim π

3 � for integer m. From this we see that

an+1 = ei(m−λ) π
3 an, bn+1 = ei(m+λ) π

3 bn. (17)

Wave-function continuity combined with Eqs. (15) and (17)
gives us the relation

b1

a1
= 2λ

g

[
sin

(
λ

π

3

)
− sin

(
m

π

3

)]
− cos

(
λ

π

3

)
, (18)

together with the quantization condition for λ:

cos

(
λ

π

3

)
+ g

2λ
sin

(
λ

π

3

)
= cos

(
m

π

3

)
. (19)

We notice that the present problem is very similar to that of
a one-dimensional particle in a Dirac-comb potential. Indeed,
the dispersion relation of the latter is identical to Eq. (19).
The Dirac-comb problem is, however, often analyzed in the
context of solid-state physics, e.g., Ref. [44], where it gives
rise to band structure, but we emphasize that this is not the
case for our model since here the “lattice” consists of only six
sites, which is not nearly enough to make a quasicontinuum.

Define the phase δ ∈ [0,π/2] such that tan(δ) = g/2. In
terms of δ, Eq. (19) is

tan(δ) sin

(
λ

π

3

)
= λ

[
cos

(
m

π

3

)
− cos

(
λ

π

3

)]
. (20)

The lower part of the spectrum is plotted in Fig. 2. We confirm
that for no interactions the spectrum reduces to that of the free
harmonic oscillator, while for δ = π/2 it is equivalent to a
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unitary gas. Examples of wave functions for δ = 0, 3π/8, and
π/2 are given in Fig. 3.

B. Symmetries and identical particles

Amongst the elements of the symmetry group D6 is the
operator σd the action of which is to perform a reflection in the
x ′

1 axis, that is, the transformation φ �→ −φ. If C6� = eim π
3 �,

then

C6(σd�) = e−im π
3 (σd�). (21)

The irreducible representations of the symmetry group D6

are one or two dimensional. Members of the one-dimensional
irreducible representations are eigenstates of all the elements
of the group, including σd . So for these states, |m| must be
divisible by 3, such that eimπ = e−imπ . Members of the two-
dimensional irreducible representations, on the other hand,
cannot be eigenstates of both C6 and σd .

According to Eq. (21), σd connects states transforming as
eim π

3 and e−im π
3 under C6. So two states with m = ±|m| (where

m is not divisible by 3) belong to one of the two-dimensional
irreducible representations of D6 and are degenerate.

At the limit of no interaction (g = 0), the angular quantum
number is λ = |m|. Only the ground state is nondegenerate
while every excited state is twofold degenerate. Upon intro-
ducing a nonzero interaction, g > 0, the U(2) symmetry of
the free harmonic oscillator in relative configuration space
is broken, and the degeneracy of two states characterized by

the same rotation number |m| = 3(j + 1), but belonging to
different one-dimensional irreducible representations, is lifted.

Choosing a1 (and thereby also b1) to be real, we have

σd (Re �) = Re �, σd (Im �) = − Im �, (22)

so the real and imaginary parts of � are eigenstates of σd .
(When |m| is divisible by 3, either the real part or the imaginary
part is identically zero.) This is confirmed by inspection of
Fig. 3.

Interchange of two particles corresponds to a reflection in
one of the three φn lines. The D6 group elements responsible
for these operations are given by

σv = σdC
3
6 , σv′ = σdC6, and σv′′ = C6σd, (23)

for the particle permutations (12), (23), and (12), (31),
respectively [42].

We see that |m| = 6,12, . . . (|m| = 3,9,15, . . .) states with
σd = −1 (+1) are antisymmetric with respect to interchange
of any two particles and, hence, must vanish at every point
of interaction; �(φn) = 0. They belong to the antisymmetric
irreducible representation of D6 denoted A2 (B1) in Mulliken
symbols. The A2 and B1 states are entirely unaffected by the
interaction. This is exemplified by the wave functions plotted
in the bottom row of Fig. 3. The antisymmetric states are also
easily identifiable as flat lines in the spectrum Fig. 2.

The states that are symmetric with respect to particle
exchange belong to A1 for |m| = 0,6,12, . . . and B2 for |m| =
3,9,15, . . . . The twofold degenerate states having m = 0 ± 1,
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FIG. 3. The normalized angular wave function �(φ) plotted against φ from − π

6 to 11π

6 for varying δ and m. The plotted states belong to the
lowest strong-interaction multiplet, i.e., they all have λ → 3 as g → ∞. The constant a1 in Eq. (16) is taken to be real and positive. The left
column is the noninteracting limit, the right column is the strongly interacting limit, and the middle column is an example with intermediate
interaction strength.
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6 ± 1,12 ± 1, . . . (m = 3 ± 1,9 ± 1,15 ± 1, . . . ) belong to
the two-dimensional representation E1 (E2) [45].

In the above, we have assumed that the three particles are
different. If, on the other hand, some particles are identical,
the number of allowed states is reduced. For example, if two
particles are identical while the third is different—a so-called
2 + 1 system—the number of states is halved such that the
spectrum is degenerate only at g → ∞, where each multiplet
is threefold degenerate. For 2 + 1 fermions, the A1 and B2

states are no longer allowed while E1 and E2 reduce to one-
dimensional representations. For 2 + 1 bosons, it is the A2 and
B1 states that are forbidden.

If all three particles are identical bosons, only the symmetric
representations A1 and B2 are allowed, while if they are
identical fermions, only the antisymmetric A2 and B1 are
allowed.

III. COMPARISON TO THE THREE-BODY
CONTACT-INTERACTION MODEL

AND CALOGERO MODEL

In this section we compare the hybrid model and the
contact-interaction model for three particles. For the contact-
interaction model, the same Jacobi angular coordinates can be
used and the interaction takes the form

Vg = g√
2ρ

6∑
n=1

δ(φ − φn). (24)

As noted before, this potential is no longer separable in Jacobi
angular coordinates and there do not exist exact solutions.
The spectrum for arbitrary g can be approximated by a
variety of schemes, including correlated Gaussians [46], exact
diagonalization [42,46], analytic approximations based on the
exact two-body solutions [47,48], and variational methods
[49]. We treat the weak- and strong-interaction limits using
perturbation theory from exact solutions in the next two
subsections.

A. Weak interactions

First we consider the weak-interaction limit of the hybrid
model. To probe the spectrum at weak but nonzero interactions,
we differentiate Eq. (19) with respect to δ and isolate the
derivative:

dλ

dδ
= sec2(δ) sin

(
λπ

3

)
cos

(
mπ

3

) + λπ
3 sin

(
λπ

3

) − [
1 + π

3 tan(δ)
]

cos
(
λπ

3

) .

(25)

We see from Eqs. (25) and (14) that for small δ the shift in
energy is

dE

dδ
≈ 3

π

sin
(
λπ

3

)
λ sin

(
λπ

3

) − δ cos
(
mπ

3

) , (26)

having used that cos(λπ
3 ) → cos(mπ

3 ). An exception is when
sin(λπ

3 ) → 0 as δ → 0, and then we conclude that

dλ

dδ

∣∣∣∣
g=0

= 3

|m|π . (27)

This shows that the noninteracting ground state of the hybrid
model is extremely sensitive to the interaction, and this result is
confirmed by inspection of Fig. 2. Otherwise if m = 3,6,9, . . .

we insert the Taylor expansion λ ≈ |m| + dλ
dδ

δ into Eq. (26) to
obtain (

|m|π
3

dλ

dδ
− 2

)
dλ

dδ
= 0, (28)

having solutions dE/dδ = 0 and 6/(π |m|). From our previous
considerations, we know that the former solution holds for the
antisymmetric representations A2 and B1. The latter solution
must apply to the A1 and B2 representations.

For comparison, the weak-interaction limit of the contact
interaction can be calculated using first-order perturbation
theory. Using the methods of Ref. [42], one calculates

dE

dg

∣∣∣∣
g=0

= A(|m|)√
2

∫ ∞

0
dρR|m|

ν (ρ)2

= A(|m|)�(ν + 1/2)�(|m| + 1/2)

ν!(|m|)!√2π

× 3F2(−ν,|m| + 1/2,1/2; −ν + 1/2,|m| + 1; 1).

(29)

The factor A(|m|) comes from the angular integral and
A(|m|) = 3/π for m = 0 and |m| > 0 except for multiples
of three |m| = 3j . For λ = 3j > 0 it is either 6/π (bosonic)
or zero (fermionic). Note that for ν = 0, the hypergeo-
metric function takes the value 3F2(0,|m| + 1/2,1/2; 1/2,

|m| + 1; 1) = 1.
Two key differences between the hybrid model and the

contact-interaction model are that, for the contact-interaction
model, (1) the slope depends on the radial quantum number
ν and (2) the ground state is no longer as sensitive to the
perturbation. Instead of a divergence, it has a finite slope
dE/dg = 2/

√
2π .

B. Unitary limit and near unitary limit

The unitary limits of the contact-interaction model (1/g=0)
and the hybrid model (1/g = 0) are equivalent. Further, they
coincide with the Calogero model when γ = 0. As discussed
in the next section, this case is maximally superintegrable
with five independent integrals of motion with three in
involution. The particles are impenetrable, the configuration
space becomes disconnected into six ordering sectors, and
for distinguishable particles their order becomes a dynamic
invariant.

The unitary limit is exactly (algebraically) solvable using
the Bose-Fermi mapping [1] and its generalization to particles
with spin [28–31]. There is a sixfold degenerate level at the
unitary limit for every totally antisymmetric solution of the
noninteracting problem (assuming distinguishable particles).
These six levels can be reduced into one totally symmetric
state, two two-dimensional eigenspaces of mixed symmetry,
and one totally antisymmetric state that is the same as the free
fermionic state. Each of these sixfold levels can be associated
with three quantum numbers: center-of-mass excitation n,
relative radial excitation ν, and relative angular momentum
λ = 3(j + 1), where n, ν, and j are non-negative integers.
The energy is (n + 2ν + λ + 3/2) and the degeneracy is six

033616-5



ANDERSEN, HARSHMAN, AND ZINNER PHYSICAL REVIEW A 96, 033616 (2017)

times the number of ways n, ν, and j can be chosen to add up
to the same energy.

For the hybrid model in the near unitary limit of strong but
finite interactions (i.e., δ close to π/2), the particles are no
longer impenetrable. To calculate the first-order energy shift,
we can differentiate the energy quantization condition

dλ

dδ
∼ − 3

π
sec(δ) tan

(
λ

π

3

)
, (30)

meaning that

π

3

dE

dδ

∣∣∣∣
1
g

=0

= λ

[
(−1)λ+1 cos

(
m

π

3

)
+ 1

]

∈
{

2λ,
3

2
λ,

1

2
λ,0

}
. (31)

Interestingly, first-order perturbation theory for the unitary
limit of the contact interaction gives the same results [20–22].
Evidently the spectra of the hybrid model and the Calogero
model are indistinguishable at first-order perturbation from
the unitary limit for three particles.

Although the contact interaction does not require renor-
malization for arbitrary interaction strengths in one dimension,
starting from the unitary limit and calculating the second-order
perturbation of the energy (or first-order perturbation of the
wave function) does require renormalization [40,41]. One way
to understand this is that the wave functions of the energy
eigenstates of the contact-interaction model have nodes on
the coincidence angles φn. Therefore, a naive attempt to
construct first-order perturbative wave functions (which do
take on nonzero values on the coincidence angles) and from
them to calculate the second-order energy shift is bound to
fail. However for the hybrid model, second-order and higher-
order energy shifts can be calculated without renormalization
through a Taylor expansion of Eq. (20), demonstrating its
possible usefulness in this regime.

As further evidence for this, note that for the hybrid model,
a first-order perturbation in energy from E∞ (at g → ∞) to E

changes the wave-function coefficients as

b1

a1
� (−1)λ+1

(
1 + π

3

sin
(
mπ

3

)
(−1)λ − cos

(
mπ

3

) (E∞ − E)

)
, (32)

where λ is the angular quantum number for the zeroth-order
solution. We notice that the interaction strength g does not
explicitly appear in the above equation. If one inserts the
first-order energy shift for the contact-interactions model
as E∞ − E in Eq. (32), a basis is obtained that may be
used to perform a diagonalization of the contact-interactions
Hamiltonian. The equivalence between the hybrid model and
the contact-interactions model in energy near the unitary limit
suggests that the obtained basis might be a good basis for
analytical approximation schemes.

IV. SYMMETRY, SEPARABILITY,
AND INTEGRABILITY FOR N > 3

We have shown that the hybrid model for three particles is
solvable by separation of variables. For general 0 < g < ∞,
solutions are analytic but they are not exact, where exact

solvability means algebraic expressions for the energy and
wave functions expressed as polynomials times the ground
state [50,51]. Two state labels n and ν are non-negative
integers, and the other state label λ is found by solving a
transcendental equation. All states are either nondegenerate or
twofold degenerate, assuming distinguishable particles.

However, when g = 0 or ∞ there are exact solutions. All
three state labels can be arranged as non-negative integers and
the energy spectrum has different degeneracy patterns. In fact,
these two limiting cases are maximally superintegrable, having
five algebraically independent integrals of the motion, or in
this context operators defined as continuous transformations
on phase space that commute with the Hamiltonian. Under-
standing these exact solutions, and how these results extend for
N > 3, requires going beyond separability. The next few
sections look at the integrability and symmetry of the hybrid
model.

A. Integrals of motion

Three integrals of motion for the three-body system are
the total Hamiltonian Hg, the relative Hamiltonian Hrel,
and the angular operator �g. These integrals are realized
by operators that are algebraically independent operators in
pairwise involution, and these operators generate continuous
transformations of phase space. This establishes (Liouvillian)
integrability for N = 3. Additionally, there is another operator
that commutes with the total Hamiltonian: the total angular
operator �tot, defined as

�tot = L2
tot +

√
2gρ

∑
〈i,j〉

δ(xi − xj ), (33)

where L2
tot is the normal three-dimensional angular momentum

squared operator in configuration space. Similarly, the operator
�g can be expressed

�g = L2
rel +

√
2gρ

∑
〈i,j〉

δ(xi − xj ), (34)

where L2
rel = −∂2/∂φ2. Note that the operator �tot does not

commute with the other two integrals of motion Hrel and
�g. The extra integral of motion can be associated with the
separability of the Hamiltonian in spherical coordinates as
well as cylindrical coordinates [52]. Therefore, the three-body
hybrid model is minimally superintegrable in the terminology
of Evans [53].

These same four operators Hg, Hrel, �g, and �tot can
be generalized to any N using the well-known higher-
dimensional generalization of angular momentum. However,
there are still only three integrals in involution and four total,
therefore not enough to integrate the N = 4 case or higher.

The expressions (33) and (34) for the total and relative
angular operators make it clear that in the limit g = 0
these operators are the standard angular momentum squared
operators in total and relative configuration space. This
case corresponds to the N -dimensional isotropic harmonic
oscillator, which is maximally superintegrable and massively
multiseparable [54]. There are multiple ways to choose the
additional algebraically independent quadratic operators that
realize the missing 2N − 5 integrals of motion [53–55].
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In the limit g → ∞, the N -body hybrid model also
corresponds to the γ = 0 limit of the N -body Calogero-Moser
model. This limiting model is also maximally superintegrable
but is provably not separable for N � 4 [56]. Note that in this
limit the four integrals of motion are no longer bounded on
the Hilbert space of Lebesgue square-integrable functions on
configuration space. However, one can restrict the domain to
only those functions that have zero support on the manifold
defined by the N (N − 1)/2 coincidence planes. The other
integrals of motion required for maximal superintegrability
are not quadratic [57]. In future work, we plan to explicitly
construct these integrals and use them to determine which
integrals are preserved in the near unitary limit. The model in
the near unitary limit can be mapped onto an integrable spin
chain [20,21]. Perhaps this method will also explain why the
ansatz for the spin chain coupling coefficients presented in
Ref. [22] is surprisingly effective.

B. Symmetry and degeneracy

In principle, every energy level of a Hamiltonian should
correspond to an irreducible unitary representation of the
kinematic symmetry group of the Hamiltonian. By kinematic
symmetry group, we mean a group that acts on configuration
space or phase space and is represented by unitary operators
that commute with the Hamiltonian [58].

For the N -body hybrid model with general 0 < g < ∞,
the kinematic symmetries of the model contain the following
subgroup [33]:

U(1) × O(1) × SN. (35)

The first factor describes rotations that mix the separable
center-of-mass position and momentum coordinates in phase
space, or equivalently the symmetry of rephasing the center-
of-mass creation and annihilation operators. The second factor
is inversion by relative parity; for three particles this is
the rotation φ �→ φ + π . The third factor comes from the
exchange symmetry of identical particles. The first two factors
are both Abelian groups with one-dimensional irreducible
representations (irreps), so any degeneracies must correspond
to the dimensions of the irreps of SN (see Ref. [43] for
a detailed description of SN irreps). For three particles,
this agrees with previous results: For each relative parity
there are one-dimensional irreps for states symmetric or
antisymmetric under exchange and two-dimensional irreps for
mixed symmetry states. This should extend to all N without
any change, leading, for example, to onefold, twofold, and
threefold degeneracies for four distinguishable particles and
to onefold, fourfold, fivefold, and sixfold degeneracies for
N = 5.

Additionally, the kinematic group must also contain the
three independent one-parameter groups generated by Hg,
Hrel, and �g. These groups also have one-dimensional irreps
and therefore do not change the degeneracy.

Note that the contact interaction shares the same kinematic
symmetry subgroup (35). The loss of separability removes �g

and its one-parameter subgroup from the kinematic symmetry,
but they have the same structure of degeneracies. For a
discussion of the limiting cases of g = 0 and g → ∞ which

coincide with the same limits of the contact-interaction model,
see Ref. [33].

C. Dynamical SO(2,1) symmetry

Finally, we want to comment on the dynamical (or hidden)
SO(2,1) symmetry [59] [or equivalently SL(2,R) symmetry
[57]]. Define the operators

W± = 1

2

[
Hg − ρ2 ±

(
N − 1

2
+ ρ

∂

∂ρ

)]
(36)

as in Ref. [59]. These operators satisfy the commutation
relations

[Hg,W±] = ±2W± and [W−,W+] = Hg, (37)

and generate a hidden SO(2,1) symmetry in the system. In
other words, they do not commute with the total Hamiltonian,
but they do map energy eigenstates into other energy eigen-
states, like ladder operators. The action of the operators is to
increase or decrease the radial quantum number ν by one unit:

W+Rλ
ν (ρ) =

√
(ν + 1)(ν + λ + 1)Rλ

ν+1(ρ),

W−Rλ
ν (ρ) =

√
ν(ν + λ)Rλ

ν−1(ρ). (38)

In the N -particle case, the solution to the relative radial
equation is

Rλ
ν (ρ) =

√
2ν!

�
(
ν + λ + N−1

2

)ρλe−ρ2/2Lλ+(N−3)/2
ν (ρ2), (39)

if the angular equation is taken to be

�g� = λ(λ + N − 3)�. (40)

The corresponding Casimir operator is

C = H 2
g − 2(W+W− + W−W+) = �g − 1. (41)

Notice that the above considerations regarding a hidden
SO(2,1) symmetry are not specific to the hybrid model. A
similar analysis applies to all systems—having any number
of particles or dimensions—as long as the Hamiltonian is
separable in relative hyperspherical coordinates. This sepa-
ration is possible for any quadratic external field, but only for
interaction with the correct scaling.

D. Comparison with no harmonic trap

For the sake of completeness, we briefly consider the
case of no external trapping field. Informally, this can be
thought of as the zero-frequency limit of the trapped model.
However, we cannot take the zero-frequency limit of the
hybrid Hamiltonian (1) [or the contact-interaction or Calogero
Hamiltonians (3) and (4)], because the trap frequency has been
absorbed into natural units length scale. When there is no trap,
the physically relevant length scale for all three models is set
by the interaction strength parameter.

The separable center-of-mass motion is now unbounded.
Mathematically, instead of the harmonic symmetry U(1) in
Eq. (35), the kinematic symmetry is the Euclidean group
of one-dimensional translations and reflections E1 (not to
be confused with E1, the notation for the two-dimensional
irrep of D6). The center-of-mass momentum is an integral of

033616-7



ANDERSEN, HARSHMAN, AND ZINNER PHYSICAL REVIEW A 96, 033616 (2017)

motion, but we note that the corresponding generator does not
have proper eigenvectors in the Hilbert space, only generalized
(Dirac) eigenkets. Except for the zero-energy state, the irreps
of E1 are two dimensional. In other words, there are two
states with the same energy that are mixed by reflections.
Further, the untrapped model has the dynamical symmetry of
G1 the group of Galilean transformations in one dimension.
This group contains the spatial symmetry E1 but is extended
by one-dimensional boosts.

In the relative motion, the absence of the trapping potential
changes the nature of the hyper-radial solutions, but preserves
the hyper-radial separability. This separability means the
three-body hybrid model is still minimally superintegrable
and exactly solvable for N = 3, but is neither for N > 3. The
Calogero model retains its maximal superintegrability for all
N . Most interestingly, for the contact-interaction model, the
lack of the trapping potential makes the scattering interaction
diffractionless. The Hamiltonian is integrable and solvable via
the Bethe ansatz [34].

V. CONCLUSION

The argument of this paper went from solving a three-
body model, to comparing it to known results for a related
model, and then to analyzing the separability, symmetry, and
integrability. Of course, the idea behind and motivation for the
paper was reversed: Use symmetry to identify solvable models,
see how they compare to physical models of known interest,
and then solve them to gain insight. The goal of this avenue
of research is to have a toolbox for identifying when a model
can be solved and, when it cannot be solved, to have a method
for finding nearby solvable models. Then these nearby models
can be used to interrogate the few-body physics through direct
application if relevant and possible, or through analytic and
numerical extensions like variational methods, perturbation

methods, and analytical approximation techniques. In light of
this motivation, the hybrid model should be a useful tool in the
one-dimensional few-body toolbox.

An extension of this paper is explicitly constructing the
integrals of motion at the limiting case and seeing how
perturbations from the limits break some of these integrals
and preserve others. Because one-dimensional atomic gases
have been considered as possible working material for quan-
tum sensors, quantum simulators, and quantum information
processing devices, quantifying the robustness of integrability
under perturbations could have direct application.

Finally, a natural question is to ask what happens in higher
dimensions. The contact-interaction models in higher dimen-
sions require regularization or renormalization for rigorous
treatment [60–62]. The modified two-dimensional contact in-
teraction is already relative hyper-radial–hyperangular separa-
ble without any further changes, leading to the special nature of
the two-dimensional solutions [60,62]. The three-dimensional
(modified) contact interaction requires multiplication (not
division) by ρ in order to become separable. In this case,
each pairwise interaction in the N -body interaction potential
is reduced or screened by the close presence of other particles,
i.e., the opposite of what takes place in one dimension. There
may be interesting applications of this potential, but the one
additional integral of motion that comes from separability is
not going to make as much of a difference to solvability or
integrability in the 6N phase space.
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