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Continuum of classical-field ensembles in Bose gases from canonical to grand canonical and the
onset of their equivalence
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The canonical and grand-canonical ensembles are two usual marginal cases for ultracold Bose gases, but
real collections of experimental runs commonly have intermediate properties. Here we study the continuum of
intermediate cases and look into the appearance of ensemble equivalence as interaction rises for mesoscopic 1d
systems. We demonstrate how at sufficient interaction strength the distributions of condensate and excited atoms
become practically identical, regardless of the ensemble used. Importantly, we find that features that are fragile in
the ideal gas and appear only in a strict canonical ensemble can become robust in all ensembles when interactions
become strong. As evidence, the steep cliff in the distribution of the number of excited atoms is preserved. To
make this study, a straightforward approach for generating canonical and intermediate classical field ensembles
using a modified stochastic Gross-Pitaevskii equation is developed.
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I. INTRODUCTION

While the canonical and grand-canonical ensembles are
two dominant ways to describe thermal ultracold Bose gases,
ensembles with intermediate fluctuations of particle number
are more typical in practice. The difference can matter a lot for
ultracold experiments because they take place in a mesoscopic
regime where such fluctuations are well resolved.

Intermediate ensembles are also theoretically interesting in
their own right. In typical thermodynamic systems without
excessively long-range interactions or correlations, the differ-
ent statistical ensembles are known to give the same result
for intensive thermodynamic quantities in the limit of a large
system-ensemble equivalence [1–4]. However, in a flurry of
activity some years ago [5–18] it was found that the ideal
Bose gas at ultracold temperatures does not behave this way.
Not only do its fluctuations become extremely large in the
vicinity of the critical temperature, but the result depends
on the ensemble that is used (canonical, grand canonical, or
microcanonical), even in the thermodynamic limit N → ∞.
Reference [19] gives an extensive review.

Now, with interactions, often even weak ones, it is thought
that equivalence between ensembles is restored because the
interactions energetically suppress any excessive number
fluctuations [8]. This matter has been, and continues to be,
widely debated [3,4,8,12,13,17–24]. References [1] and [2]
explain the current understanding. Ensemble equivalence or
the thermodynamic limit is often invoked to justify the use
of the most convenient ensemble in calculations. Hence,
the details of how ensemble equivalence is imposed by
interactions and what happens in mesoscopic systems are
of much interest for practical applications as well as for a
theoretical understanding.

In experiment, the situation is that repeated runs usually
produce a set of states that correspond to something inter-
mediate between a canonical ensemble (CE) and a grand-
canonical ensemble (GCE). The evolution of a single realiza-
tion conserves particle number when particle loss is neglected,
motivating many CE theoretical treatments. However, quite
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strong fluctuations in total atom number between runs are the
norm. For example, [25] reports standard deviations δN/N of
about 20% or even 35% with a less optimized system, and
a recent study [26] about 10%. An ensemble with controlled
atom number fluctuations is what best describes an actual set of
experimental runs. Preferably, one would like an external pa-
rameter to match the degree of fluctuation to empirical observa-
tions. A further recent development in this regard are photonic
Bose-Einstein condensates (BECs), because the size of the
particle reservoir with which they are in contact can be varied to
experimentally study the crossover between the GCE and CE in
a controlled way [27]. Experiments with photonic BECs have
also been able to measure the distribution P (N0) directly [28].

In this paper we demonstrate what happens between the
CE and GCE in the uniform one-dimensional gas and develop
a convenient method to generate intermediate ensembles. The
most adaptable technique to describe degenerate thermal inter-
acting gases is ensembles of classical wave fields (“c fields”).
They are often the only way to gain quantitative access to many
quantities in the regime with nonperturbative fluctuations
[29–31]. The standard methods developed to date generate
only a grand-canonical ensemble [32–39], canonical ensemble
[40–43], or microcanonical ensemble (MCE) [29,30,44–
50] of classical fields! We develop an approach based on
the stochastic projected Gross-Pitaevskii equation (SPGPE)
[32–38] that readily generates ensembles across the entire
continuum from CE to GCE. These transitional ensembles are
parametrized by σ , which determines the standard deviation of
the total atom number N . Additionally, our method gives more
convenient access to the canonical ensemble than methods that
hardwire exact number conservation into the system, such as
[29,30,40,44–50].

We will also pay attention to an interesting phenomenon
in the CE that has not been extensively investigated, namely,
the appearance of a “cliff” in the distribution of the number of
excited particles. This occurs at relatively high temperatures
T ≈ Tc, when the constraint on N is lower than the number of
excited particles suggested by the Bose-Einstein distribution
for each mode. Evidence of this feature has been seen in
both the ideal [6–8,21,24,40,51] and 1d interacting gas in the
CE [23,52–55]. No investigation has been made in the GCE
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with interactions. It is interesting to find out how robust this
phenomenon is to a breaking of the extreme constraint on N

that occurs in the CE.
Prior to that, we derive and describe the SPGPE method for

transitional and canonical ensembles in Sec. II. We benchmark
it on the ideal gas in Sec. III, calculate the distributions and
fluctuations in the interacting gas in Sec. IV, and look into
ensemble equivalence and the “cliff” in Sec. V.

II. STOCHASTIC METHOD FOR CANONICAL AND
TRANSITIONAL ENSEMBLES

A. The system and its c-field description

We will consider a single-species gas of contact-interacting
bosons. With the Bose field �̂(x), the Hamiltonian is written

Ĥ =
∫

ddx �̂†(x)
[
H sp + g

2
�̂†(x)�̂(x)

]
�̂(x) (1)

in d dimensions. The contact interaction strength is g, and H sp

is the single-particle energy:

H sp = − h̄2

2m
∇2 + V (x). (2)

On a discretized spatial lattice with small volume per lattice
point dV , as often used for calculations, Eq. (1) becomes

Ĥ → dV
∑

x

�̂†
x

[∑
y

H sp
xy�̂y + g

2
�̂†

x�̂x�̂x

]
. (3)

The Hermitian nature of H sp implies(
H sp

xy

)∗ = H sp
yx . (4)

We will use this discretized representation interchangeably
with the continuous one, according to convenience.

In a minimalist view, the c-field (classical wave field)
description boils down largely to an assumption that the
relevant behavior of the system is captured by the highly
occupied modes, while those with O(1) occupation or less
can be neglected. Two complementary reviews of the c-field
approach are [29] and [30]. We can write the quantum Bose
field in terms of orthogonal modes labeled j with mode
functions φj (x) normalized to unity and annihilation operators
âj :

�̂(x) =
∑

j

φj (x) âj . (5)

Then, the c-field approximation corresponds to

�̂(x) →
⎧⎨⎩ ψ(x) =

∑
j∈C

φj (x)αj

⎫⎬⎭ , (6)

where C is the subspace of highly occupied modes and αj

are complex values that approximate the âj . The { . . . }
indicates that the quantum operator �̂ is in general going
to be described by an ensemble. The numbers αj will differ
among different elements of the ensemble. The subspace C is
generally chosen a priori and specified by an energy cutoff
Ecut such that all single-particle modes with energies below
this cutoff are included in C and all above excluded. This is
the most consistent choice for systems that lie close to thermal

equilibrium, since occupations will decrease monotonically
with energy. A recent detailed study of a broadly applicable
cutoff choice for ultracold interacting gases is [56].

The c-field Hamiltonian for the low-energy part of the
system takes the form

E(ψ) =
∫

ddx ψ(x)∗
[
H sp + g

2
|ψ(x)|2

]
ψ(x) (7)

and the number of particles is

N (ψ) =
∫

ddx |ψ(x)|2. (8)

The distribution of ψ(x) is then written as

P (ψ) ∝
{

exp
(−E(ψ)−μN(ψ)

kBT

)
in the GCE

exp
(−E(ψ)

kBT

)
in the CE.

(9)

We will use h̄ = m = kB = 1 units in what follows.

B. Generation of ensembles

The two most widespread approaches to produce a c-field
ensemble for interacting particles involve generating samples
from the ergodic time evolution of an initial state using the
Gross-Pitaevskii equation (GPE) and its variants. They are:

(1) Evolution of an initial state using the deterministic but
ergodic GPE [29,44,46,49,50] or its projected version (PGPE)
[30,45,47,48]. This corresponds to isolated Hamiltonian evo-
lution of the classical wave field and produces a MCE with
number and energy set by the initial state.

(2) Evolving a stochastic Gross-Pitaevskii equation (SGPE)
[32–34,36,37] or its more general projected version (SPGPE)
[35,38], which corresponds to a model where the above-cutoff
modes that are excluded from C are approximated as a particle
and energy bath. This produces a GCE with chemical potential
μ and temperature T set externally.

Regarding the canonical ensemble, several methods to
generate an interacting classical wave field ensemble have
been proposed:

(1) A Metropolis algorithm for generating samples with a
CE probability. It involves a discrete random walk taken with
steps that conserve particle number [40]. It has been used in
several studies since [39,55,57–64], and is also easily adapted
to the GCE [39,56].

(2) A particle number filter applied to grand-canonical
ensembles to obtain a CE, though this is a wasteful procedure.

(3) The noise modifications and projections laid out in [22]
constitute another method.

(4) Rooney et al. found that an SPGPE with no particle
exchange terms produces a canonical ensemble if the exotic
scattering terms are included [43].

(5) Another approximate approach that can be very accu-
rate under the right conditions used a Bogoliubov description
for excited atoms supplanted with as many condensate atoms
as required to match the total assumed atom number [65].

The above canonical ensemble approaches are not always
easily done, especially when one wants to have, e.g., a set
magnetization in spinor or multicomponent condensates. For
example, we have found that ensuring the right conservation
law while preserving detailed balance becomes very tricky
with Metropolis for multicomponent gases. It is known also
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that the implementation of the scattering-only SGPE is a
nontrivial endeavor even for single-component gases [30,43].

In this paper we derive an alternative approach that extends
the SPGPE to incorporate a controllable number filter. It
restricts the evolution to the vicinity of the CE and avoids
the waste of discarding realizations. Moreover, it gives access
to natural intermediate ensembles between the marginal CE
and GCE.

C. The SPGPE

The SPGPE is a flexible way to generate the grand-
canonical ensembles of classical wave fields given by (9)
[30,66]. It has been described in detail in [33,35,36] and
benchmarked in [23,67].

In general, one works in a projected subspace C. It is
imposed by acting with a projector P onto spatially dependent
fields f (x) such that Pf (x) lies wholly within C. This allows
one to work on a simple spatial grid x while restricting the
basis in any desired way. On the spatial lattice, this becomes

Pf (x) =
∑

y

Pxyfy. (10)

An explicit form of the matrix elements is

Pxy = dV
∑
j∈C

φj (x)φ∗
j (y). (11)

The projector P fulfills the usual properties:

PP = P, P† = (PT )∗ = P, PT = P∗. (12)

The simplified case of a plane-wave basis with cutoff set
implicitly by the lattice corresponds to setting P → 1.

The time evolution of ψ(x) is governed by the SPGPE:

∂ψ(x)

∂t
= P{−[i + γ (x)][H sp − μ + g|ψ(x)|2]ψ(x)

+
√

2T γ (x) η(x,t)}. (13)

It corresponds to coupling the c field to a thermal bath at
temperature T and chemical potential μ. The dimensionless
positive coupling strength is γ (x), which is commonly taken
to be constant in space. Such an assumption is certainly
a convenience if one is primarily interested in the long-
time ensemble rather than the transient dynamics. Physically
justified values are usually small (γ 	 1). η(x,t) is a complex
white-noise field independent at each spatial position and time,
with zero mean, and variance

〈η(x,t)∗η(x′,t ′)〉 = δd (x − x′)δ(t − t ′). (14)

The equation (13) changes only that part of the field ψ that
has support in the c-field subspace C. To be self-consistent and
physically sensible we need the initial state ψ0(x) to be fully
in this subspace, i.e.,

(P − 1)ψ0(x) = 0. (15)

To obtain a GCE one evolves the equation until transients
related to the initial state have died of and only thermally
activated fluctuations remain. Let us call this time t∗. The
choice of initial state is, in principle, irrelevant, although it may
affect the length of time needed to reach the thermally activated

regime. Starting from vacuum ψ(x,0) = 0 is a common choice.
Independent samples of the distribution can then be obtained
from values of the field ψ(x,t) sufficiently well spaced in time
after t∗. This is reminiscent in many ways of the procedure with
the Metropolis method, except that all updates are accepted
and given explicitly by the noise term. Alternatively, one can
simply evolve from the same initial state to t = t∗ but using a
different noise realization each time, and the fields ψ(x,t∗) will
be the independent samples of the GCE. The latter approach
removes the need to investigate time correlations. It also
simplifies the determination of t∗ because ensemble-averaged
quantities can be tracked for a number of times leading up to
t � t∗ to verify when the stationary ergodic ensemble has been
reached.

The system evolves to the GCE distribution (9) regardless
of the details of γ (x) > 0, which only affects the time t∗.

D. One mode and ensemble equivalence

It is instructive in the beginning to look at the behavior of
ensembles in a single mode, j = 0, say. We will see that this
example encapsulates both the basic physics of how ensemble
equivalence is restored by interactions and suggests a naturally
occurring form for the manifold of intermediate ensembles.

The Hamiltonian (7) in the c-field description can be written
as an energy

E(α) = ω|α|2 + gc|α|4 (16)

that depends on the amplitude α. The coefficients de-
pend on the shape of the mode function according to
ω = ∫

ddx φ0(x)∗H spφ0(x) and c = 1
2

∫
ddx |φ0(x)|4, while

the number of atoms is N (α) = |α|2. According to (9)
the distribution of the states in the GCE is PGCE(α) ∝
exp {− (ω−μ)|α|2+gc|α|4

T
} with all values of α represented.

For an ideal gas, the above exponent produces a very broad
distribution of particle number

PGCE(N ) ∝ e
(μ−ω)N

T . (17)

This is the most trivial case of the GCE fluctuation catastrophe
and inequivalence of ensembles, since the fluctuations of N

scale as N . In fact, δN =
√

〈N2〉 − 〈N〉2 = ω−μ

T
= N , so

PGCE(N ) never approaches the CE behavior of δN = 0, even
as N → ∞.

Interactions, however, make the distribution Gaussian:

PGCE(N ) ∝ exp

[
− (N − Nmid)2

2σ 2
1mode

]
, (18a)

with

Nmid = μ − ω

2gc
(18b)

and

σ1mode =
√

T

2gc
. (18c)

Now we can see that, with the help of the interaction g, one
can drive the standard deviation of the Gaussian, σ1mode, to
smaller values. Eventually, the fluctuations in particle number
δN become σ1mode ∝ 1/

√
g. Thus, for large N and σ1mode 	
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Nmid, ensemble equivalence is restored in the thermodynamic
limit N → ∞ because δN/N → 0 like in the CE. In terms of
g, this happens for

g � (μ − ω)2

2cT
. (19)

This example shows the essence of how ensemble equivalence
is restored by interactions.

E. Restricting the atom number in the SPGPE
via an additional term

It would be convenient to have an equation that explicitly
conserves N (ψ) to a set value N but keeps a similar form
as the SPGPE (13). And indeed, the one mode toy problem
of Sec. II D suggests a way: Terms of a similar form to the
interaction term should be capable of imposing a Gaussian
distribution of N with a width of our choice while leaving the
rest of the system evolution largely unchanged. In the limit of
a narrow Gaussian distribution around the desired value, we
would have effectively a CE distribution.

Consider an additional Gaussian factor to (9), thus

Pσ (ψ) ∝ exp

{
− [E(ψ) − μN (ψ)]

T
− [N (ψ) − N ]2

2σ 2

}
.

(20)

When σ becomes smaller than other widths, only fields ψ(x)
with a number of particles N ± σ occur with non-negligible
probability. In the limit of small σ this becomes effectively
a CE with N particles. What terms should be added to the
SPGPE to attain this modification?

First note that the exponent of the probability distributions
of c-field states contains all the terms of the Hamiltonian,
converted to a classical field and scaled. Secondly, the
deterministic parts of the SPGPE correspond to the classical
field simplification of the Heisenberg equations of motion for
the quantum field �̂, i.e., of d�̂(x)/dt = −i[�̂(x),Ĥ ]. Hence,
each term Ĥj in the Hamiltonian leads to the c-field version of
−P{(i + γ )[�̂(x),Ĥ ]} in the SPGPE. Taken together, these
two points suggest that the new term in (20) proportional
to the c-field version of (N̂ − N )2 will generate a term in
the stochastic equation proportional to the c-field version of
[�̂(x),(N̂ − N )2]. That is, one may expect terms proportional
to ψ(x)(N (ψ) − N ). Let us postulate, then, a modified SPGPE:

∂ψ(x)

∂t
= P{−[i + γ (x)][H sp − μ + g|ψ(x)|2]ψ(x)

+
√

2T γ (x) η(x,t) + K(x)[N (ψ) − N ]ψ(x) },
(21)

with a constant K (possibly space dependent) to be determined.
We will see if and for what value of K the stationary
distribution is equal to the desired (20). Note that we have
placed the term inside the projection P because the equation
should always preserve the property that ψ(x) has support only
in the C subspace to have a consistent c-fields description.

The correspondence between stochastic equations, Fokker-
Planck equations for the distribution, and stationary states is
well known. A detailed explanation can be found, e.g., in [68].

When one has a set of real variables �v = {v} governed by
Langevin stochastic equations of the form

dv

dt
=

∑
v

Av(�v) +
∑
uv

Buv(�v) ξv(t) (22)

with real noises of zero mean and correlations

〈ξu(t)ξv(t ′)〉 = δuvδ(t − t ′), (23)

then it is a realization of the following Fokker-Planck equation
(FPE) for the probability distribution P (�v) of the variables:

∂P (�v)

∂t
=

[
−

∑
v

∂

∂v
Av(�v) + 1

2

∑
uv

∂2

∂u ∂v
Duv(�v)

]
P (�v).

(24)

Summing is over all variables in �v, and derivatives act on all
factors to the right. The diffusion matrix D is given by elements

Duv =
∑
v′

Buv′Bvv′ . (25)

The desired stationary distribution is (20), so that we want
to impose

∂P (�v)

∂t
= 0 (26)

when the substitution

P (�v) = Pσ (ψ) (27)

is made in the FPE (24).
Consider the system on a numerical lattice as in (3) so that

the set of variables in �v consists of the real and imaginary
components of ψ at each point x, i.e., ψR

x = Re[ψx] and ψI
x =

Im[ψx], respectively. The equation (21) can be rewritten in the
general A,B,D notation of (22)–(25) using the coefficients

AψR
x

+ iAψI
x

= [N (ψ) − N ]
∑

y

PxyKyψy

−
∑

y

Pxy(i + γy)

{∑
z

H sp
yz ψz + [g|ψy|2 − μ]ψy

}
(28)

and

DψR
x ,ψR

y
= DψI

x ,ψI
y

= T

dV
Re

[∑
z

PxzγzP∗
zy

]
, (29a)

DψR
x ,ψI

y
= −DψI

x ,ψR
y

= − T

dV
Im

[∑
z

PxzγzP∗
zy

]
. (29b)

In the interest of clarity we will assume for now a constant
γ and K:

γ (x) → γ, K(x) → K, (30)

and report the more general result from Appendix A at the end
of this section.
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Substituting (27)–(30) into (24) leads (after much algebra) to the following FPE:

∂Pσ

∂t
= 2Pσ

[
Re[K] + γ T

σ 2

]{
dV

∑
xy

Pxyψyψ
∗
x

[
[N (ψ) − N ]

(
N (ψ) − N

σ 2
− μ

T

)
− 1

]
− [N (ψ) − N ]

∑
x

Pxx

}

+Pσ dV

T
[N (ψ) − N ]

∑
xy

Pxyψ
∗
x

{[
gψy|ψy|2 +

∑
z

H sp
yz ψz

][
K∗ + γ T

σ 2
− i

T

σ 2

]}
+ c.c. (31)

The first line of (31) can easily be made zero with an appropriate choice of K , but even then, the second line still remains
potentially troublesome. However, note that the properties of the equation (21) and initial state (15) ensure that the field ψ stays
in the c-field subspace in the overall model. Then, ∑

x

Pxyψ
∗
x = ψ∗

y . (32)

Using this, (31) becomes

∂Pσ

∂t
= 2Pσ

[
Re[K] + γ T

σ 2

]{
N (ψ) − N

T

[
dV

∑
x

(
g|ψx|4 +

∑
y

ψ∗
x H sp

xyψy

)
− μN (ψ)

]

+ N (ψ)[N (ψ) − N ]2

σ 2
− [N (ψ) − N ]

∑
x

Pxx − N (ψ)

}
. (33)

The following choice of prefactor on the first line,

K = −γ T

σ 2
, (34)

makes the distribution (20) stationary. This is exactly what we required. The final equation to simulate is then simply

∂ψ(x)

∂t
= P

{
−(i + γ )[H sp − μ + g|ψ(x)|2]ψ(x) − γ T

σ 2
[N (ψ) − N ]ψ(x) +

√
2γ T η(x,t)

}
. (35)

Appendix A explains what happens when we relax condition (30), allowing the coupling strength γ (x) to be spatially dependent.
The condition needed to obtain a well-behaved equation is that γ (x) varies slowly in the region of space around x compared

to Pxy, i.e.,

Pxyγx ≈ Pxyγy. (36)

It is met in most realistic cases. Then, the choice (34) turns out to generalize to

K(x) = −γ (x)T

σ 2
, (37)

and the modified SPGPE equation that keeps (20) stationary is

∂ψ(x)

∂t
= P

{
−[i + γ (x)][H sp − μ + g|ψ(x)|2]ψ(x) − γ (x)T

σ 2
[N (ψ) − N ]ψ(x) +

√
2γ (x)T η(x,t)

}
. (38)

This is just the usual SPGPE with one extra term.

The most likely place for a breakdown of the condition
(36) in typical problems is in the low-density tails of a trapped
system that is described using harmonic oscillator modes.
Away from the main cloud, near the energy cutoff, only
very-low-wavelength parts of modes φj (x) are present, and
then Pxy may vary on comparable scales to γ (x).

The special but common case of an unprojected “plain”
SGPE, where the only projection is an implicit one imposed by
the numerical lattice (Pxy = δxy), also uses (38) with P → 1,
and without the need for the slowly varying condition on γ

that is (36).
To conclude this derivation, one can safely say that the

canonical ensemble has been achieved for small σ when all
relevant observable quantities cease to depend on σ in any
significant way.

The equations (35) and (38) are a convenient way by
which one can generate the CE. Both equations are stable,
straightforward to integrate, and require fewer numerical
tweaks than a Metropolis algorithm. We only need to set γ ,
which can be chosen over a wide range without ill effect, when
the purpose is to generate a stationary ensemble. Furthermore,
there is no wastage due to particle number filtering.

Equations (35) and (38) can also be used to produce
the dynamics of a canonical ensemble, but then one should
determine a correct value and spatial dependence of the
reservoir coupling γ (x). The question of how realistic the
physical model is remains somewhat open, since the system
corresponds to having a low-energy part of the field that
exchanges only energy but not particles with the high-energy
components that are treated as a bath. Nevertheless, such a
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model has been discussed in some detail in the context of
a scattering-only SPGPE [43] and may be useful in various
situations.

Overall, the computational cost scales the same way as
in other treatments based around the SGPE, that is, a very
lenient M log M scaling with the number of points on the
computational lattice M , regardless of the dimensionality. This
makes it convenient for 2d and 3d systems. The usual limiting
factor is the efficiency of a Fourier transform used to evaluate
kinetic energy. An issue to keep in mind is that very small
values of σ will shorten the required time step by virtue of
introducing a large gradient. It may also tend to increase the
time t∗ required to obtain stationarity. Some precursors of this
were seen at the lowest values of σ in our 1d calculations.

F. Transitional distributions between CE and GCE

Equation (38) generates the family of ensembles (20) as
its long-time stationary distribution. These span the whole
continuum between CE and GCE for interacting systems, with
the location on the continuum given by σ .

A convenient way to specify distributions intermediate
between CE and GCE is through the standard deviation of
the atom number fluctuations δN . This captures the foremost
difference between the CE and GCE, and can be readily
matched to experimental data such as in [25].

There are two contributions to δN : First, the “natural” one
(δGCEN ) that arises as a result of the interplay of the interaction
strength g and the particle bath described by the chemical
potential μ. For the single mode this is (18c). Then there is
also the externally steered fluctuation σ . It will not increase
fluctuations beyond the natural level but can decrease them.
Hence, we expect that

δN ≈
{

σ if σ � δGCEN

δGCEN if σ � δGCEN.
(39)

The largest values of σ do not affect the GCE much. Then,
when σ becomes small enough to limit the natural fluctuation
width, it begins to meaningfully steer the distribution. Finally,
when σ becomes small enough that observable quantities cease
to change, we have reached the CE. This changeover will be
seen later in Fig. 5.

In the ideal gas, for small enough σ , the center of the
Gaussian-like distribution for N can be quite well estimated
by

Nσ ≈ N + μσ 2

kBT
. (40)

This comes from inspection of (20) while omitting the H sp

contribution. Nσ converges to N in the CE limit. For large
σ , (40) becomes inaccurate because other factors come into
play, such as a nontrivial H sp contribution and the fact that the
distribution of N is nonzero only for N > 0.

In a uniform interacting gas in volume V , the properties
of the Gaussian can also be estimated. The energy functional
is E(ψ) = εspN (ψ) + g

2V
g(2)(0)N (ψ)2, where εsp is the mean

energy per particle from the single-particle Hamiltonian Hsp,
and g(2)(0) is the density-density correlation function. g(2)(0)
lies between 1 and 2 in an equilibrium ensemble. Looking first
at the natural GCE in (9), the Gaussian distribution for N (ψ)

is centered at

NGCE = V (μ − εsp)

g(2)(0)g
(41)

with a standard deviation

sGCE =
√

T V

g(2)(0)g
. (42)

For the transition distributions Pσ of (20), the center of the
Gaussian for N (ψ) shifts to

Nσ =
N + NGCE

σ 2

s2
GCE

1 + σ 2

s2
GCE

, (43)

and the standard deviation becomes

sσ = σ√
1 + σ 2

s2
GCE

. (44)

One can see that indeed in the σ 	 sGCE limit, both quantities
converge to the externally set values of N and σ , while in the
opposite σ � sGCE limit, the natural GCE behavior reasserts
itself.

Unplanned behavior can occur if the difference between N

and the natural NGCE is much greater than σ . In that case,
the external constraint N and the internal chemical potential
μ work against each other. The result is a relatively narrow
distribution that is not centered near N but at a weighted
average of N and NGCE given by (43). The upshot of this
for generation of canonical ensembles in general cases is that
one should check the actual resulting mean particle number.
If it does not closely match N , then μ should be modified to
bring NGCE close to N .

III. IDEAL GAS

Let us first check the method on the ideal gas, where exact
results are available. The typical observables studied in the
context of comparing ensembles are the distributions P (N0)
and P (Nex) of the number of atoms in the ground or excited
states, as well as their moments. An experimental method for
measuring fluctuations in the condensate occupation N0 has
been proposed in [53].

A. Procedure

We treat here a 1d uniform gas, and the procedure
outlined below was applied for both ideal and interacting
gases. The chosen basis consists of plane waves φj (x) =
eikj x/

√
L defined in a box of length L with periodic boundary

conditions. Wave vectors are kj = 2πj/L = j�k with j =
{0,±1,±2, . . . }. We take L to be the computational unit of
length in what follows, and only write it out explicitly in a few
cases to show scaling. The c-field subspace C is implemented
using a maximum kinetic energy cutoff for the plane waves
Ec = h̄2k2

c /2m.
We revisit the regimes that were investigated in the past

work of [40] (Fig. 1). Namely, we study a similar condensate
fraction n0 = N0/N and distribution of excited atoms. We
fixed the target total atom number in the CE at the higher
value of N = 500.
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FIG. 1. The probability distribution of having Nex excited atoms
in a uniform 1d ideal gas at a relatively low temperature T =
0.341T∗. Shown are the GCE (lower, yellow, σ = ∞) and CE (upper,
red, σ = 1) cases. Dotted and dashed lines correspond to exact
classical field predictions (B18) and (B14), respectively. They are
indiscernible from the full quantum predictions (B9) and (B17) for
these parameters. The target total atom number was fixed at N = 500
in both cases. A visible and distinguishable difference between the
GCE and CE is confirmed by the histograms.

It is convenient to give the temperature scaled with respect
to a finite-size characteristic temperature for condensation. In
the ideal gas canonical ensemble, the occupation of excited
modes is given by Nk ≈ NBE

k = [ek2/2T − 1]−1, provided the
total number of excited atoms Nex = ∑

j �=0 Nkj
does not reach

N . Otherwise, it invokes the constraint and mode occupations
reduce below NBE

k . To estimate the temperature T∗ below
which a significant condensate will appear, one can evaluate
the simple condition Nex(T∗) = N using the estimates NBE

k . In
our particular case of N = 500, we find T∗ = 3195/L2. The
simplest general estimate comes from considering only the
two lowest lying excited states, in which case T∗ = π2N/L2.

The cutoff used for calculations was the recommended
value for matching the condensate fraction and P (Nex) in a 1d

ideal gas in a box in the CE [51],1 i.e., k2
c = 0.58T . This leads

to a cutoff of 4�k for the low temperature T = 0.341 T∗ of
Sec. III B and kc = 8�k for the high temperature T = 1.365 T∗
of Sec. III C, like in the work of [40].

The generation of each member of the ensemble proceeds
by starting with the vacuum state ψx(0) = 0 on a numerical
lattice with spacing �x = L/27. Note that the maximum
allowable wave vector on this lattice, kmax = π/�x, is much
greater than the cutoff kc. This allows us to accurately calculate
the interacting evolution, which would otherwise suffer from
some small but spurious aliasing and umklapp processes on a
lattice with kmax = kc. The state ψx(t) is then evolved using
(35) with a constant value of γ until a stably randomly
fluctuating solution is reached above t∗. We used values of
γ in the range 0.01–0.1. This is repeated for each sample,

1This corresponds to fc = 1.9023 in the global optimized cutoff
notation of [39,56], where kc = fc

√
2πT .

using a new set of noises ηx(t). The stationarity of the
ensemble is checked by tracking ensemble averages of various
observables, and this allows us to determine appropriate
t∗. These times were t∗ = O(10/γ ), with some variation
depending on parameters and σ .

When changing σ to move between the CE and GCE, we
keep the chemical potential μ constant for each temperature
and interaction strength. This assumption aids in obtaining a
sequence of physically related intermediate ensembles. The
value of μ is chosen so that the mean number of atoms 〈N〉 in
the GCE matches the CE value of N . This helps to avoid the
possible competition between N and μ that was discussed in
Sec. II F.

B. Low-temperature case

Let us consider first a low-temperature case in which the
majority of atoms are in the condensate. This is the regime
in which P (N0) or P (Nex) distributions have most commonly
been described, for example, [6–8,21,22,24,40,51,55,69] in
the ideal gas and [23,40,52–55,69–71] in the interacting.
One reason for its popularity is that it is accessible by the
Bogoliubov approximation.

Figure 1 shows the distribution of the number of excited
atoms Nex at T = 0.341 T∗ in the CE and GCE. The CE has
N = 500 and the ensemble is obtained using (35) with σ = 1.
In the c-field description, Nex = ∑

k �=0 |ψ̃k|2�k, and ψ̃ is the
Fourier transformed field

ψ̃k =
√

2π

L

∑
x

e−ikxψx. (45)

The GCE is obtained using a simple SPGPE (13) in the limit
σ → ∞. As explained in Sec. III A, the chemical potential is
chosen so that the mean number of atoms 〈N〉 in the GCE
matches the CE value of N = 500. This is μ = −2.135/L2

here. The numerical histograms are compared to exact results
which are obtained in Appendix B. We see that despite the not-
so-large shift from CE to GCE in this regime, the distribution
tracks it in detail. The histogram is from S = 2.5 × 104

samples of the ensemble.
Figure 2 shows the behavior of the probability distribution

of the total atom number P (N ) as σ is varied through the tran-
sition ensembles. This is for the same low-temperature case.
As expected, we move from an extremely broad distribution
in the GCE, through a Gaussian (initially broad, later narrow),
which converges to an extremely narrow distribution around
N = N .

C. High-temperature case

Distributions for the high-temperature case have been
reported for the ideal gas [6–8,21,24,40,51] and interacting
gas [23,52–55] in this regime. They behave very differently,
though this has not been analyzed as much in the literature.

Figure 3 shows the CE, GCE, and two intermediate
ensembles for T = 1.365 T∗. We set N = 500 and use μ =
−32.789/L2 to have matching 〈N〉 = 500 in the GCE. The
match to exact CE and GCE results is ideal. Particularly
notable is the reconstruction of the CE “cliff” in P (Nex),
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FIG. 2. Probability distribution of the total number of atoms as
the CE → GCE parameter σ is varied. The inset shows the range
of σ values for which the properties of the ensemble are very close
to an ideal canonical Bose gas. Low-temperature case, T = 0.341T∗,
N = 500.

despite the total atom number not being hardwired into the
simulation and all values being at least in principle allowed.

This is an unusual regime in a number of aspects. Apart
from the presence of the sharp cliff, another interesting feature
appears, namely, the most commonly occurring values of the
number of excited atoms are larger in the CE (and the σ =
30 case) than in the GCE. They are around 400 versus 300,
respectively. This is rather counterintuitive compared to the
usual impression that the GCE in the ideal gas allows much
larger numbers of excited particles. What we observe here is a
consequence of the strong restriction on allowable states that
the CE (or low σ ) condition imposes.

Further ideal gas results will appear as limiting cases in the
later discussion and Figs. 4–9, such as P (N0), mean values of
〈N〉, and fluctuations of N and N0.
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FIG. 3. The progression of probability distributions of the number
of excited atoms Nex in the high-temperature case of T = 1.365 T∗,
N = 500. From bottom to top, we have the GCE (yellow), going
through intermediate ensembles to the CE (upper, red). Dotted and
dashed lines correspond to the exact classical field results (B18) and
(B14), respectively.
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FIG. 4. Relative variance of condensate atom number N0 in the
low-temperature (T = 0.341 T∗,N = 500) regime as a function of the
σ parameter for a wide spectrum of interaction values g (in units of
1/L). Gray lines are exact asymptotic results for the ideal gas system
(g = 0) in the CE and GCE.

IV. INTERACTING GAS AND TRANSITIONAL
ENSEMBLES

Having verified that the method reproduces the expected
ideal gas distributions exactly, we now turn to a more detailed
analysis of the effect of nonzero interactions on the transitional
ensembles.

Figure 4 shows how the relative fluctuation of the number
of condensate atoms

δN0

〈N0〉 =
√〈

N2
0

〉 − 〈N0〉2

〈N0〉 (46)

changes with σ and g in the low-temperature case T =
0.341 T∗. The behavior of this quantity when temperature,
N , or interaction are changed has been studied extensively
in the standard ensembles (CE, GCE, MCE) [5–8,11,21–
23,27,40,55,69,70,72] but not the transition between ensem-
bles or for experimentally relevant intermediate cases.

On the figure, the ideal gas case appears as hollow symbols
and unsurprisingly has the highest relative fluctuations. We see
two plateau regions, the first for σ � 20, in which there is no
discernible difference from the CE. The size of this range is
related to the width of typical features in the distribution of
P (N0). When the allowable fluctuation in N (which is ∼σ )
becomes several times smaller, it will cease to visibly affect
P (N0). For example, in Fig. 1 features in the distribution of
P (Nex) have a width of O(50) atoms, and the same applies for
P (N0) in the CE.

The second plateau area for σ � 1000 displays the same
magnitude of fluctuations of N0 as in the GCE. Note that this
is a point where σ ≈ N , and indeed we would not expect the
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the variance due to just the effect of the external parameter σ .

Gaussian narrowing caused by σ to affect things much if it is
significantly broader than the natural size of N0 fluctuations in
the GCE.

As interaction is raised, initially only the fluctuations in the
GCE are affected because they are large. This starts for quite
small interaction strengths. As interaction grows, the GCE-like
region expands somewhat to lower values of σ . Eventually,
though, for strong-enough interaction, the fluctuations of N0

begin to reduce also in the CE, somewhat unexpectedly.
Figure 5 shows the relative fluctuation of the total number

of atoms, N . This has not been studied so much in the standard
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FIG. 6. Mean number of atoms as the fluctuation control param-
eter σ changes. Various interaction strengths, and the ideal gas case,
are shown. Low-temperature case, T = 0.341 T∗, N = 500. The red
line shows the simple estimate (40) for the ideal gas.
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FIG. 7. Relative variance of condensate atom number N0 in the
high-temperature (T = 1.365 T∗,N = 500) regime. Notation is the
same as in Fig. 4.

ensembles, primarily because not much happens in those cases
(e.g., in the CE or MCE). For intermediate ensembles, we
also see the two plateau regions in the limits of σ and strong
reductions in fluctuation with increasing g.

A comparison of δN/〈N〉 with the naively expected effect
of only the Gaussian narrowing (which is σ/N ) in Fig. 5 shows
that the total particle fluctuations track this estimate faithfully
from small σ up to σ ≈ 150. This agrees with (39). Note

 0

 2

 4

 6

 8

 0  200  400  600

P(
 N

ex
 ) 

Nex

× 10-3

σ=∞, g=0
σ=2,  g=0

 0

 2

 4

 6

 8

 0  200  400  600  800

P(
 N

0 )
 

N0

× 10-3

σ=∞, g=0
σ=1,  g=0

 0

 5

 10

 0  200  400  600

P(
 N

ex
 ) 

Nex

× 10-3 σ=∞, g=2
σ=2,  g=2

 0

 5

 10

 0  200  400  600  800

P(
 N

0 )
 

N0

× 10-3 σ=∞, g=2
σ=2,  g=2

FIG. 8. A demonstration of the equivalence of ensembles as inter-
action rises. Low-temperature (T = 0.341 T∗,N = 500) probability
distributions of Nex (left) and N0 (right) in the case of large interaction,
g = 2 (upper panel), in comparison to the probability distributions in
the noninteracting atom case (lower panel).
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FIG. 9. Approach to equivalence of ensembles in the high-
temperature (T = 1.365 T∗,N = 500) case. Notation as in Fig. 8.
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interaction, g = 8 (upper panel), in comparison to the probability
distributions in the noninteracting atom case (lower panel). Note the
robust reproduction of the cliff in P (Nex) near Nex = N .

that δGCEN ≈ 400, and the center of the transition between
σ -limited behavior and natural GCE behavior in Fig. 5 is also
around this value of σ .

To see in more detail what goes on in the transitional
ensembles, Fig. 6 shows the mean atom number as a function
of σ . There is some (mostly minor) variation despite μ

being chosen to match CE and GCE mean atom numbers
in the two limiting cases. At low values of σ , the ideal gas
behaves as predicted by (40) (red line). Overall, there is a
dip at intermediate σ . This comes about because the GCE
distribution of N has a positive skewness (long tail at high N ).
The tail is more strongly suppressed by the Gaussian multiplier
in (20) than the low-N part of the distribution, because the
latter is closer to the mean.

Finally, Fig. 7 shows the relative fluctuations of the ground-
state (“condensate”) occupation for the high-temperature case
T = 1.365 T∗. The relative fluctuations are large even in the
CE. Note that this occupation is still appreciable (in the range
0–300) despite T > T∗, since we are considering a mesoscopic
system, not one in the limit of N → ∞. The usual plateau
behaviors seen before in Fig. 4 are also present. Differently
from low T , it takes a rather strong interaction g � 0.01 (units
of 1/L) to invoke a response in the relative fluctuations.
Moreover, it is difficult to bring the fluctuations down to
the CE level by interactions alone, despite the CE value of
δN0/N = 0.66 being very high, e.g., g = 2 is still not fully
sufficient.

V. EQUIVALENCE OF ENSEMBLES

Let us now look in some more detail at the matter of the
equivalence of ensembles as interaction is increased. In most
studies, the relative fluctuation of N0 is the quantity that has

been investigated in this context. For equivalence, we expect
the CE and GCE values to be equal (or ideally, to see a
horizontal line across all σ values). This is indeed what is
seen in Fig. 4 for the highest values of g (e.g., it is close for
g = 0.3 and truly equal at g = 1.5). A very good match for
our parameters occurs only once the CE value (and the rest)
have fallen below the ideal gas value due to interactions. At
this stage we have insufficient information to state whether
this is a general feature.

The detailed behavior of the distributions is shown for this
low-T case in Fig. 8, in which each panel compares the CE and
GCE distributions. The lower panels show the ideal gas, and
apart from the huge discrepancy in P (N0), we see that P (Nex)
also differs. At the strong interaction of g = 2, however, both
distributions have become very close. A small difference in
P (N0) remains, though it is of a size that would often be
inconsequential operationally.

The above plots quantitatively validate many existing intu-
itions about ensemble equivalence. The system is somewhat
more resistant to ensemble equivalence at the higher tempera-
tures above T∗ in Fig. 7. The behavior of the distributions (in
which we expect the appearance of the cliff) is shown for this
case in Fig. 9. In the ideal gas the CE and GCE distributions are
dissimilar for both Nex and N0, though the difference for N0

is nowhere near as great as at lower temperatures. In the end,
though, at the high interaction value of g = 8 shown (larger
than in Fig. 7), the shape of the CE and GCE distributions in
the upper panels have become very close. The conclusion is
that ensemble equivalence has been restored by interactions
also here. This is despite the complicated form of the CE or
GCE distribution itself.

Of particular note is the fact that the cliff near Nex = 500
is also present in the GCE! In the ideal gas, this feature was
due exclusively to the property P (N0) = P (N − N,ex) caused
by the hardwired external constraint N = 500 in the CE and
was rather fragile with respect to a change of the ensemble.
For example, at σ = 30, the cliff has already practically
disappeared in Fig. 1, while other quantities such as δN0/〈N0〉
are more robust and have hardly budged from their CE value.
However, in Fig. 9 interactions impose the cliff again in the
GCE where there is absolutely no explicit constraint on particle
number. This quantitatively validates ensemble equivalence at
high temperatures, including the preservation of features that
appear fragile in the ideal gas.

VI. CONCLUSIONS

We have derived extended SPGPE-like equations that
generate a canonical ensemble (rather than grand canonical) as
the stationary state. This occurs in the limit of small σ , which
is a control parameter for the allowed fluctuations of the total
atom number

δN ≈ σ . (47)

The equations are easily adaptable to arbitrary external
potentials and nonlocal interactions. A major added benefit
is the possibility to readily generate a whole range of inter-
mediate ensembles between canonical and grand canonical.
Relationship (47) makes it quite simple to match simulations
to the true variability of atom number in an experimental run.
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We have tested the ensembles produced (Sec. III), and
also shown their utility for studying the transition to the
canonical ensemble and the onset of ensemble equivalence as
interaction grows. We have also drawn attention to the unusual
behavior of canonical ensembles with low numbers of atoms:
the appearance of a “cliff” in the distribution of atoms in
excited modes and its retention also in the grand-canonical
ensemble when interactions are sufficiently high.

It is hoped that the method will be useful for the study of
canonical ensembles, other experimentally obtained ensem-
bles that do not fit neatly into the CE or GCE categorization,
as well as for the study of ensemble equivalence and other
related phenomena. Here, we have quantitatively validated
the ensemble equivalence scenario and shown the details
of how it gradually appears with growing g (Figs. 4, 5,
and 7–9). Interestingly and importantly, we find that even
canonical ensemble features such as the cliff that are fragile to
a weakening of the canonical ensemble constraint in the ideal
gas can nevertheless be robustly reproduced when interactions
become strong.

Importantly, the equations should be readily applicable
to multiple components. One −γ (Nj − Nj )ψj (x)/σ 2

j term
can be added to the evolution equation dψj (x)/dt for each
component j . This is much preferable to trying to set the
magnetization or relative populations of different components

using Lagrange multipliers μj because the latter set only
the mean particle number and may allow very large relative
fluctuations from shot to shot. This is a work in progress.

Looking further ahead, the equations presented here should
be capable of producing ensembles of attractive gases with
g < 0, something that absolutely cannot be stably treated using
the standard SGPE. Moreover, they should also be easily exten-
sible to the case of long-range interactions, another situation
when ensemble equivalence is known to be broken [2].

Recent experiments have demonstrated atom number mea-
surements well below atomic shot noise using dispersive
imaging [26,73], which suggests that high-precision studies
of ensemble equivalence could be carried out with the present
technology.

ACKNOWLEDGMENT

This work was supported by the National Science Centre
through Grant No. 2012/07/E/ST2/01389.

APPENDIX A: THE CASE OF NONUNIFORM γ (x)

If we do not assume (30), then instead of (31) one obtains
the following even more cumbersome form of the FPE:

∂Pσ

∂t
= 2Pσ

∑
x

Pxx[(2g|ψx|2 − μ)γx − (N − N )Re[Kx]] − 2Pσ

∑
xz

PxzγzPzx

[
2g|ψx|2 − μ + T (N − N )

σ 2

]

+Pσ

N − N

T

[
T (N − N )

σ 2
− μ

] ∑
xy

dV ψyψ
∗
x

{
2T

σ 2

∑
z

PxzγzPzy + PxyKy + PxyK
∗
x

}

−2Pσ

∑
xy

dV ψxψ
∗
y

{
PxyRe[Ky] + T

σ 2

∑
z

PxzγzPzy

}

+Pσ

N − N

T

∑
xy

dV ψxψ
∗
y

[
gψy|ψy|2 +

∑
z′

ψz′H
sp
yz′

]{
Pxy

(
K∗

x − γy + i

σ 2

)
+ 2T

σ 2

∑
z

PxzγzPzy

}
+ c.c.

+Pσ

dV

T

∑
xy

[
2

∑
z

PxzγzPzy − Pxy
(
γx + γy

)]{
ψyψ

∗
x

[
(g|ψy|2 − μ)(g|ψx|2 − μ) − T μ(N − N )

σ 2

]

+
∑
z′z′′

H
sp
yz′H

sp
z′′xψz′ψ∗

z′′ + ψ∗
x

∑
z′

H
sp
yz′ψz′ (g|ψy|2 − μ) + ψy

∑
z′

H
sp
z′xψ

∗
z′ (g|ψx|2 − μ)

}
. (A1)

We omitted the ψ dependence of N (ψ) for a minor improvement in brevity. Due to the fact that in many terms there is no
summation index that involves only P and ψ , one cannot apply (32) in all necessary cases as was done for a constant γ .

A special but very common case is when the projection is made implicitly by the numerical lattice, as done in the plain SGPE
approach (rather than the SPGPE). Then, Pxy = δxy and all the inconvenient features of (A1) abate. One obtains

∂Pσ

∂t
= 2Pσ

∑
x

[
Re[Kx] + γxT

σ 2

]{
−(N − N + |ψx|2dV ) + N − N

T

[
g|ψx|2 − μ + T (N − N )

σ 2

]
|ψx|2dV

}

+2Pσ

N − N

T

∑
x

dV Re

[(
K∗

x + T γx

σ 2

)
ψ∗

x

∑
z

H sp
xz ψz

]
, (A2)
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which is similar in complexity to (33). This still complicated expression can be made zero with the simple choice

Kx = −γxT

σ 2
(A3)

in full space-dependent analogy to (34).
Now, if we return to the general projected case, the typical situation is that γ (x) is slowly varying in space compared to the

highest energy modes in C. These produce features of length λE . On the other hand, Pxy is typically close to diagonal with a
width given by the length scale of the highest-energy components. This means that it decays to zero on length scales of the order
o λE . Thus, as long as γ (x) varies slowly in the region of space around x compared to Pxy, one will have

Pxyγx ≈ Pxyγy. (A4)

This condition allows us to put the troublesome terms in (A1) involving γ into a form in which the projection property of the
field, Eq. (32), can be applied. For example, one has ∑

z

PxzγzPzy → Pxyγx, (A5a)

[
2

∑
z

PxzγzPzy − Pxy
(
γx + γy

)]
→ 0. (A5b)

However, there are some remaining (also troublesome) terms in (A1) which involve Kx not γx. Judging by the earlier result
(A3) for a special case, the rate at which K will vary spatially is similar to that of γ . So, let us also provisionally assume the
same slowly varying property for K , and check its consistency later. This assumption lets us apply

PxyKx ≈ PxyKy. (A6)

Conditions (A4)–(A6) lead to much simplification in (A1):

∂Pσ

∂t
= 2Pσ

∑
x

[
Re[Kx] + γxT

σ 2

]{
(N − N )Pxx − |ψx|2dV + N − N

T

[
g|ψx|2 − μ + T (N − N )

σ 2

]
|ψx|2dV

}

+2Pσ

N − N

T

∑
x

dV Re

[(
K∗

x + T γx

σ 2

)
ψ∗

x

∑
z

H sp
xz ψz

]
. (A7)

The above equation becomes stationary using the same simple expression (A3) as for the unprojected case. This confirms the
validity of the condition (A6) once (A4) is assumed.

Substituting (A3) into the general postulated stochastic equation (21) gives us the most general transition SPGPE (38).

APPENDIX B: SOME EXACT RESULTS FOR
THE IDEAL GAS

We follow the same approach as [51] used for the 1d trapped
gas but adapt the procedure for the doubly degenerate levels
that occur in the uniform gas. We have plane-wave modes kj

with energies

εj = h̄2k2
j

2m
, (B1)

occupied by nj bosons, and temperature set by β = 1/kBT .
The total energy of a state is E = ∑

j εjnj , and the number of
atoms is N = ∑

j nj .

1. Canonical ensemble

The fuller version of (1) from [51] that also includes the
canonical ensemble constraint N = N is

P (Nex) =
⎡⎣∏

j

∞∑
nj =0

e−βεj nj

⎤⎦δNex,
∑

j �=0 nj
δN,

∑
j nj

. (B2)

j enumerates modes over all integers, including the ground
state j = 0, which is the only nondegenerate mode and sets
the energy zero, ε0 = 0. Normalization of P is ignored.
Combining the two δ’s immediately implies the obvious n0 =
N − Nex and the necessity of the “cliff,” i.e., P (Nex > N ) = 0.

Substituting

δa,b = 1

2π

∫ 2π

0
eix(a−b)dx (B3)

into (B2) we get

P (Nex) = 1

2π

∫ 2π

0
dx eixNex

∏
j �=0

⎡⎣ ∞∑
nj =0

e−nj (βεj +ix)

⎤⎦. (B4)

The sum has the form
∑∞

n=0 f n = 1
1−f

where f = e−βεj −ix .
So

P (Nex) = 1

2π

∫ 2π

0
dx eixNex

∏
j �=0

1

1 − e−βεj −ix
. (B5)
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We now have a right-hand contour on the unit circle in the variable z = eix . In particular, dz = izdx, so

P (Nex) = −i

2π

∮
dz zNex−1

∏
j �=0

z

z − e−βεj
. (B6)

The poles (doubly degenerate) are at locations

am = exp[−βεm], ∀εm > 0, (B7)

and are all within the contour because βεk > 0. Note that m � 0 now counts only energy levels, not modes, and we denote m = 0
to be the ground state. With the help of the Cauchy residue theorem, the result is

P (Nex) =
∑
m>0

Res

⎡⎣zNex−1
∏
j �=0

z

z − e−βεj
, am

⎤⎦ (B8a)

= aNex
m

⎡⎣1 + Nex + 2
∑

m′′ �=m,0

1

1 − am/am′′

⎤⎦ ∏
m′ �=m,0

(
1

1 − am′/am

)2

. (B8b)

Upon substitution, the sum is now over excited energy levels, and the end result looks like this:

P (Nex) =
{∑

εk>0 e−βεkNex
[
1 + Nex + 2

∑
εk′ �=0,εk

1
1−e

−β(εk−ε
k′ )

] ∏
εl �=0,εk

(
1

1−e−β(εl−εk )

)2
if 0 � Nex � N

0 if Nex > N.
(B9)

2. Classical field expression

In the c-field approximation, again analogously to [51], the expression corresponding to (B2) is

Pc(Nex) =
⎡⎣∏

j∈C

∫
d2αj

π
e−βεj |αj |2

⎤⎦δ

⎛⎝Nex −
∑

j∈C,�=0

|αj |2
⎞⎠δ

⎛⎝N −
∑

j

|αj |2
⎞⎠, (B10)

with Dirac δ’s and mode amplitudes αj . Here also the two δ’s give a deterministic condition δ(|α0|2 − [N − Nex]) on the
ground-state amplitude, and the “cliff” is present as well. Moving on to the evaluation of this expression for degenerate states,
we use (B3) again and find

Pc(Nex) = 1

2π

∫ 2π

0
dx eixNex

∏
j∈C,�=0

[∫
d2αj

π
e−|αj |2(βεj +ix)

]
. (B11)

The integrals are easily done, giving

Pc(Nex) = 1

2π

∫ 2π

0
dx eixNex

∏
j∈C,�=0

1

βεj + ix
. (B12)

Changing to contour variable z,

Pc(Nex) = −i

2π

∮
dz zNex−1

∏
j∈C,�=0

1

βεj + log z
(B13)

=
∑
m>0

Res

⎡⎣zNex−1
∏

j∈C,�=0

1

βεj + log z
,am

⎤⎦.

The poles are at the same locations (B7) as before in the quantum case, with the same degeneracy, so that evaluation of the
residues leads to

Pc(Nex) =
{∑

εk>0,∈C e−βεkNex
[
Nex + 2

∑
εk′ �=0,εk

1
β(εk−εk′ )

] ∏
εl∈C,�=0,�=εk

(
1

β(εl−εk )

)2
if 0 � Nex � N

0 if Nex > N .
(B14)

This sum is overall similar to the quantum one (B9), replacing the Bose-Einstein occupations with Rayleigh-Jeans, working with
only the states in the subspace C and without the extra +1 term in the prefactor.
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3. Grand-canonical ensemble

Consider now the GCE in the quantum case. Here, weights for states are

e−β(εj −μ)nj , (B15)

with μ < 0. We have, rather similarly to (B2), that

P (Nex) =
∏
j

⎡⎣ ∞∑
nj =0

e−β(εj −μ)nj

⎤⎦δNex,
∑

j �=0 nj
, (B16)

with no constraint on N . In principle the j = 0 state enters above, but only as a prefactor
∑∞

n0=0 eβμn0 = 1/(1 − eβμ) that can be
incorporated into the normalization. Hence

∏
j → ∏

j �=0 and the expression for P (Nex) differs from the expression (B2) for the
canonical ensemble only by the replacement εj → (εj − μ). Proceeding as before, one obtains

P (Nex) =
∑
εk>0

e−β(εk−μ)Nex

⎡⎣1 + Nex + 2
∑

εk′ �=0,εk

1

1 − e−β(εk−εk′ )

⎤⎦ ∏
εl �=0,εk

(
1

1 − e−β(εl−εk )

)2

, (B17)

and for the c-field case,

Pc(Nex) =
∑

εk>0,∈C
e−β(εk−μ)Nex

⎡⎣Nex + 2
∑

εk′ �=0,εk

1

β(εk − εk′)

⎤⎦ ∏
εl∈C,�=0,�=εk

(
1

β(εl − εk)

)2

. (B18)
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Rev. Lett. 106, 135301 (2011).
[58] T. Karpiuk, P. Deuar, P. Bienias, E. Witkowska, K. Pawłowski,
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