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Optical lattices as a tool to study defect-induced superfluidity
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We study the superfluid response, the energetic and structural properties of a one-dimensional ultracold
Bose gas in an optical lattice of arbitrary strength. We use the Bose-Fermi mapping in the limit of infinitely
large repulsive interaction and the diffusion Monte Carlo method in the case of finite interaction. For slightly
incommensurate fillings we find a superfluid behavior, which is discussed in terms of vacancies and interstitials.
It is shown that both the excitation spectrum and static structure factor are different for the cases of microscopic
and macroscopic fractions of defects. This system provides an extremely well-controlled model for studying
defect-induced superfluidity.
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I. INTRODUCTION

A supersolid is a spatially ordered material with superfluid
properties. Practically, since the discovery of superfluidity
by Kapitza, Allen, and Misener [1–3], there have been
constant efforts to understand and find systems that exhibit
supersolidity. From the theoretical point of view, the most
plausible mechanism of supersolidity is based on the so-called
Andreev-Lifshitz-Chester scenario [4,5]. In this theory it is
assumed that vacancies, empty sites normally occupied by
particles in an ideal crystal, exist even at absolute zero. These
vacancies might be caused by quantum fluctuations, which
also causes them to move from site to site. Because vacancies
are bosons, if such clouds of vacancies can exist at very
low temperature T , then a Bose-Einstein condensation of
vacancies could occur at temperatures less than a few tenths
of a kelvin. A coherent flow of vacancies is equivalent to
a superflow (frictionless flow) of particles in the opposite
direction. Despite the presence of the gas of vacancies, the
ordered structure of a crystal is maintained, although with
less than one particle on each lattice site on average [6–8].
Shevchenko presented another scenario for supersolidity, in
which mass flow occurs along dislocation cores forming a
three-dimensional (3D) network [9–11]. This model has many
difficulties, since it requires large density of dislocations and
their interconnections. Supersolidity regarded from this point
of view is inevitably connected to the question whether solid
helium is a quantum supersolid (for a recent review see
Ref. [12]).

Leggett [13] was perhaps the first to propose various direct
tests of supersolidity, but so far there is no clear evidence for
supersolidity in the ground state (T = 0) of superfluid 4He, and
there is an ongoing debate [14–21]. The debate concerns the
effects of elasticity, the presence of defects due to preparation,
or the absence of vacancies at T = 0 (cf. [22–24]). Anderson
argued [25–27] that Bose fluids above the critical temperature
may behave as incompressible vortex fluids and this may
explain recent experimental results concerning supersolidity.

Recent intensive studies of helium crystals by Balibar’s
group, on the other hand, suggest the following: (i) no
supersolidity in bulk 4He crystals; (ii) no clear evidence

for superfluidity in defects of 4He crystals except from
simulations; (iii) clear evidence for quantum tunneling of kinks
on dislocations, and 3He impurities in bulk 4He.

Defects in a quantum crystal might lead to a finite superfluid
signal, while the system can not be considered as being in a true
ground state as a crystal lattice without defects would have a
smaller energy. Quite similarly, the Andreev-Lifshitz-Chester
mechanism is driven by the presence of defects, although in
the true ground state. We find it appealing to study how a finite
concentration of defects induces the superfluid signal in the
system. We believe that optical lattices provide an ideal setup
for such studies, since they permit us to:

(i) create a ground state with vacancies (not possible in
helium);

(ii) create a microscopic number of defects, by remov-
ing some atoms using atom-microscope techniques [28–30]
(which should also be a feasible scenario for helium);

(iii) create a macroscopic number of defects by appropriate
loading (not feasible regime for helium).

In the last case, a mismatch between two characteristic
momenta—the Fermi momentum and that corresponding to
the edge of the first Brillouin zone—is expected to result in
intricate spatial correlations.

In this paper we investigate this possibility and study a one-
dimensional Bose gas with short-range repulsive interactions
in an optical lattice at incommensurate filling. We confirm
that it provides a perfect candidate to study the defect-induced
superfluidity, similarly to the Andreev-Lifshitz-Chester sce-
nario for supersolidity. We demonstrate how the presence
of vacancies leads to the appearance of superfluidity with
modulated density. Of course, modulation in the present study
is not spontaneous—it is caused by the presence of the optical
lattice. We expect, however, that the same mechanism will be
effective in lattice gases with dipolar or soft-core potentials,
and will be responsible for formation of supersolids at low
commensurate fillings, leading to a spontaneous appearance
of density modulations at periodicities larger than the lattice
constant (cf. [31,32]). The detailed analysis of this mechanism
in dipolar gases will be discussed elsewhere.

The paper is organized as follows. In Sec. II we introduce
the model Hamiltonian. We begin by discussing the case
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of infinite interactions (Tonks-Girardeau limit) in Sec. III
and analyze the single-particle excitation spectrum in a
homogeneous system in Sec. III A and in the presence of an
optical lattice in Sec. III B. We proceed then to the case of
finite interactions in Sec. IV. We stress here the fundamental
differences between excitations in the absence and in the
presence of defects (vacancies and interstitials). Section V
is devoted to the discussion of the superfluid fraction, using
the winding number technique, also known as boost method
(cf. [33–35]). In Sec. VI we turn to the discussion of the
static structure factor, which is useful for understanding both
structural properties and excitations. The particle-particle and
vacancy-vacancy pair-distribution function are presented in
Secs. VII and VIII. Finally, we summarize our results and
draw the main conclusions in Sec. IX.

II. HAMILTONIAN

We consider N ultracold atoms in a one-dimensional optical
lattice created by a largely detuned laser field. This gives rise
to an external periodic potential

VL(x) = V0 cos2

(
π

x

a0

)
(1)

of strength V0 with lattice constant a0. A characteristic
energy associated with the lattice is the recoil energy Erec =
π2h̄2/(2ma2

0), which we will use as a unit of energy.
The atoms are assumed to be bosons of mass m interacting

with each other by a contact potential of strength g1D =
−2h̄2/(ma1D), with a1D < 0 being the one-dimensional s-
wave scattering length. The first quantization form of the
Hamiltonian of the system then reads

Ĥ =
N∑

i=1

[
− h̄2

2m

∂2

∂x2
i

+ VL(xi)

]
+ g1D

∑
i<j

δ(xi − xj ), (2)

where xi , with i = 1, . . . ,N are the particle coordinates. We
impose periodic boundary conditions on a box of size La0,
where L is an integer.

The ground-state properties of Hamiltonian (2) are studied
using the diffusion Monte Carlo (DMC) algorithm [36], which
solves the Schrödinger equation in imaginary time. The DMC
method gives an exact estimation (in statistical sense) of any
observable commuting with the Hamiltonian, and delivers
bias-free predictions for other observables by means of pure
estimator techniques [36].

In deep optical lattices (V0/Erec � 1), the Hamiltonian
(2) reduces to the Bose-Hubbard model. In its standard and
simplest form, the Hamiltonian of this model, in second
quantization, is given by

ĤBH = −J

L∑
�=1

(â†
�â�+1 + H.c.) + U

2

L∑
�=1

â
†
�â

†
�â�â�, (3)

with â
†
� , â� standard particle creation and annihilation op-

erators. The tunneling matrix element J and the interaction

constant U are determined as [37]

J = −
∫ La0

0
W ∗

� (x)

[
− h̄2

2m

∂2

∂x2
+ VL(x)

]
W�+1(x) dx,

U = g1D

∫ La0

0
|W�(x)|4 dx, (4)

where W�(x) are the Wannier function for the lowest Bloch
band (maximally) localized near the minima x = x� of the
periodic potential VL(x). In the following, we obtain results
for the Bose-Hubbard model by exact diagonalization, and for
the Hamiltonian in Eq. (2) with the DMC method.

III. EXCITATION SPECTRUM IN THE
TONKS-GIRARDEAU REGIME

In the Tonks-Girardeau limit (g1D = +∞ or equivalently
a1D = 0), the wave function of N bosons ψB can be mapped
onto the wave function of N noninteracting fermions ψF as

ψB(x1, . . . ,xN ) = |ψF(x1, . . . ,xN )|. (5)

This equality leads to identical ground-state energy and
diagonal properties that depend on |ψ |2. In the language of
second quantization, the Bose-Fermi mapping corresponds
to the following transformation between the bosonic and
fermionic field operators (see Eq. (16.75) in Ref. [38]):

ψ̂B(x) = exp

[
iπ

∫ x

0
ψ̂

†
F(x ′)ψ̂F(x ′)d x ′

]
ψ̂F(x). (6)

We then impose periodic boundary conditions for bosons,
ψ̂B(La0) = ψ̂B(0), which is equivalent to the requirement

ψ̂F(La0) = exp
(−iπN̂

)
ψ̂F(0) (7)

for fermions. Since the field operator can be represented as a
superposition of single-particle modes

ψ̂F(x) =
∑

k

ϕk(x)ĉk, (8)

Eq. (7) implies that

ϕk(La0) = (−1)N+1ϕk(0), (9)

i.e., boundary conditions for fermions are periodic for odd N

and antiperiodic for even N .
The eigenstates of the Tonks-Girardeau gas are Slater

determinants built from the single-particle eigenfunctions
ϕk(x) of energies εk . According to the Bloch theorem, the
solutions have the following form:

ϕk(x) ≡ ϕb(x; k) = ub(x; k)eikx, εk ≡ εb(k), (10)

where ub(x; k) is a periodic function of x with period a0,
and b = 0,1, . . . is the band index. The wave number k takes
discrete values

kpbc
q = π

a0

2q

L
, kabc

q = π

a0

2q + 1

L
, (11)

for periodic and antiperiodic boundary conditions, respec-
tively, with q being a positive or negative integer. The eigenval-
ues εb(k) and the eigenfunctions ϕb(x; k) are periodic functions
of k with the period equal to the vector of the reciprocal lattice
kL = 2π/a0. Then the single-particle eigenstates obtained for
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the same Bloch band b but for different Brillouin zones, labeled
by n = 1,2, . . . and determined as intervals

ka0

π
∈ [−n,−n + 1] ∪ [n − 1,n), (12)

are equivalent to each other. In order to deal with distinct
solutions, one can consider (i) all Bloch bands within the first
Brillouin zone, or (ii) the bth Bloch band within the (b + 1)th
Brillouin zone. In order to keep the analogy with the homoge-
neous space, where no restrictions on the values of momentum
are imposed, we use the second option.

In the ground state, particles occupy the N lowest-energy
single-particle states with momenta

kq = −kF + π

a0

2q + 1

L
, q = 0, . . . ,N − 1, (13)

where kF = πN/(La0) is the Fermi momentum, i.e., the radius
of the Fermi sphere in the thermodynamic limit. The Fermi
momentum kF and the vector of the reciprocal lattice kL are
related to each other as kF = f kL/2, where f = N/L is the
filling factor. The energy of the ground state is given by

E0 =
N−1∑
q=0

ε(kq) (14)

and the total momentum
∑N−1

q=0 kq = 0. Note that Eqs. (13),
(14) are valid both for even and odd N .

The excited states of the Tonks-Girardeau gas are obtained
when one or more particles are promoted outside of the Fermi
sphere. The excitation energy vanishes at a special value of the
momentum, k = 2kF, corresponding to the umklapp process,
in which a particle is moved from one side of the Fermi surface
to the other side. This creates an excitation of finite momentum
but zero energy. Physically, it is important to locate the position
of the lowest branch E1(k) of the excitation spectrum. We
start with an overview of how excitations are generated in
a homogeneous Tonks-Girardeau gas and then consider an
optical lattice.

A. Homogeneous space

In the homogeneous space case (V0 = 0), the single-particle
eigenstates are plane waves

ϕhom
k (x) = 1√

La0
exp (ikx). (15)

The momentum k takes discrete values and the single-particle
energies are given by εk = h̄2k2/(2m).

The highest level occupied by the particles in the many-
body ground state has an energy

εmax = ε(k0) = εF

(
N − 1

N

)2

, εF = h̄2k2
F

2m
, (16)

while the total energy of the ground state is obtained from the
summation in Eq. (14), and is given by

Ehom
0 = N

3
εF

(
1 − 1

N2

)
. (17)

The excitations are created by promoting one or several
particles from the ground state to the higher single-particle

2 1 0 1 2
0

1

2

3

4

ka0/π

E
(k

)/
E

re
c

FIG. 1. Occupation of the single-particle energy levels in a homo-
geneous space (V0 = 0) for the ground state and low-energy excited
states. Black solid circles show the ground-state configuration for
N = L = 12. The lowest-energy excitation branch (18) is obtained
by removing a particle from one of the occupied states and putting
it following the solid arrow into the empty state marked by the open
red circle. The subsequent excitation process is obtained following
the dashed arrow.

levels (single or multiple particle-hole excitations). The
lowest-energy excited state with a given momentum corre-
sponds to a single-particle excitation, and is constructed by
moving a particle from an occupied single-particle state to the
empty single-particle state with q = −1 or q = N in Eq. (13)
(Fermi surface), see Fig. 1. These hole excitations possess a
momentum k ≡ kq = 2πq/(La0) and form a branch

Ehom
1 (kq) = h̄2

2m

[
k2

F − (kF − kq)2 + 2

N
kFkq

]
, (18)

where the last term describes the finite-size effects. Thus, the
lowest-lying excitation in a homogeneous Tonks-Girardeau
gas has a linear (phononic) spectrum, Ehom

1 (k) = h̄c|k| at k→0,
corresponding to a sound velocity c = h̄kF/m.

B. Optical lattice

When V0 > 0 the excitation spectrum of the Tonks-
Girardeau gas strongly depends on the ratio between N and
L. Here we consider three cases: N = L, N = L − 1, and
N = L + 1 (Fig. 2), corresponding to a unit filling, one
vacancy and one interstitial, respectively.

In the case of unit filling [N = L, Fig. 2(a)], the ground
state corresponds to the full population of the first Brillouin
zone. As in the homogeneous case, the lowest excitations with
different momenta kq are created by removing a particle from
one of the occupied states and inserting it into the state k−1 or
kN . The corresponding branch of excitations is given by

EN=L
1 (kq) = ε(kN ) − ε(kN−q), q = 0, . . . ,N − 1. (19)

As the states with k−1 and kN belong to the second Brillouin
zone, there is a gap 	 = ε(kN ) − ε(kN−1) in the excitation
spectrum. In a finite-size system the momenta are discretized as
shown in Fig. 2. As the system size is increased the discretiza-
tion becomes smaller, but the form the single-particle levels
remains similar and the gap survives in the thermodynamic
limit. For small k, the spectrum can be described by the value
of the gap 	 plus a quadratic dispersion relation, which defines
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FIG. 2. Occupation of the single-particle energy levels in a
deep lattice (V0 = 10 Erec) of length L = 12 for the ground state
and low-energy excited states. The following numbers of particles
are used (a) N = L (commensurate, unit filling), (b) N = L − 1
(incommensurate, one vacancy), (c) N = L + 1 (incommensurate,
one interstitial). Black solid circles correspond to the ground-
state configurations. Arrows and red open circles indicate pro-
cesses that lead to the lowest-energy excitations with different
momenta.

the effective mass meff according to

EN=L
1 (k) ≈ 	 + h̄2k2

2meff
. (20)

This situation is entirely different from the gapless excitation
of the homogeneous gas, Eq. (18), which presents a linear
dependence on momentum at low k.

In the presence of a single vacancy [N = L − 1, Fig. 2(b)],
the ground-state configuration contains one empty single-
particle state at the edge of the first Brillouin zone and the
lowest excitations are created by promoting a particle into this
state. This mechanism removes the gap from the excitation
spectrum in the thermodynamic limit (N = L − 1, L → ∞)
but leaves the same k dependence as in the N = L case
discussed above. The lowest excitation branch EN=L−1

1 (k) is
shown in Fig. 3.

0 1 2
0.0

0.2

0.4

0.6

0.8

1.0

ka0/π

E
(k

)/
E

re
c

EN=L−1
1

E
N

=
L
+

1
1

2k2

2m

FIG. 3. Energy of the lowest excitations in a deep lattice (V0 =
10 Erec) for N = L − 1 (red), N = L + 1 (green). Solid circles:
discrete allowed values of the momentum for system size L = 12;
solid lines: continuous values of the momentum in the limit of
infinitely large lattice (L → ∞). The excitation branch EN=L

1 (k) has
the same form as EN=L−1

1 (k) but shifted upwards by the energy gap
	. The corresponding effective masses defined by Eqs. (20), (21) are
meff = 5.03 m (vacancy) and mint = 0.59 m (interstitial). Dashed line
corresponds to the homogeneous space (V0 = 0) with the energy of
free particles h̄2k2/(2m).

This quadratic dependence applies only to the case of a
microscopic number of vacancies Nvac (Nvac much smaller than
the total number of atoms N ). Instead, when a macroscopic
fraction of vacancies is introduced (Nvac proportional to
N ), the excitation spectrum becomes linear. Importantly, the
common feature of introducing either a microscopic or a
macroscopic number of vacancies is that in the both cases
the excitation spectrum changes from gapped to a gapless one.
To a certain extent, the mechanism is similar to that found in
semiconductors, where an insulator can be transformed into a
conductor by a doping, which injects holes or electrons into a
fully filled crystal structure.

In the presence of an interstitial [N = L + 1, Fig. 2(c)],
the ground-state configuration consists of a fully occupied
first Brillouin zone plus another particle in one state in the
second Brillouin zone. The lowest excitations are created by
promoting a particle into empty states of the second Brillouin
zone. The corresponding excitation branch is shown in Fig. 3.
For small k, it has the form of a free particle spectrum

EN=L+1
1 (k) ≈ h̄2k2

2mint
, (21)

with an effective mass mint < m, see Fig. 3. In the particular
case of a deep optical lattice with V0 = 10Erec, the effective
mass of a vacancy is meff = 5.03 m and that of an interstitial
is mint = 0.59 m. These predictions, obtained from the low-
energy expansion of the energetic spectrum, will be confronted
to the estimation of the effective mass from the diffusion
coefficient in Sec. IV.
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FIG. 4. Lowest branch of the excitation spectrum E(k) for unit
filling (N = L = 12) in a deep lattice with V0 = 10 Erec. Solid
symbols: s-wave scattering length a1D = 0 (Tonks-Girardeau limit);
open symbols |a1D| = a0. Solid line: the exact position for the
transitions from the first into the second Brillouin zone for a1D = 0).
Squares: upper bound provided by Feynman relation (25) from the
static structure factor S(k), mixed estimator. Circles: single-exponent
fit (22) to the long-imaginary time asymptotics of the dynamic
structure factor. Arrows show the value of the gap, obtained as the
chemical potential difference (23).

IV. EXCITATION SPECTRUM FOR FINITE INTERACTION

Once reviewed the characteristic properties of the exci-
tation spectrum of the infinitely-repulsive Tonks-Girardeau
(fermionic) gas, we consider the case of a finite interaction
strength (bosonic gas). In this case, the Bose-Fermi mapping
no longer applies, and the problem of finding the excitation
spectrum of the quantum many-body system becomes a highly
nontrivial task. Fortunately, the diffusion Monte Carlo method
gives access to imaginary-time dynamics and permits to extract
the position of the lower branch of the excitation spectrum
ω(k) by fitting the dynamic structure factor to an exponentially
decaying law

S(k,τ ) ∝ exp[−ω(k)τ ], (22)

for asymptotically large imaginary times τ . We test this
approach in the infinitely repulsive case, and compare with
the exact analysis in terms of single-particle excitations (see
Figs. 4–5). Having found a reasonable agreement, we apply
the imaginary-time method to a system with finite interaction
strength, taking |a1D|/a0 = 1 as a characteristic example. As
expected [39], at unit filling the system is insulating and a
gapped excitation spectrum is observed (refer to Fig. 5). The
value of the gap can be extracted in an alternative way from
the difference of chemical potentials between the N ± 1 and
the N particle systems

	 = EN+1 − 2EN + EN−1, (23)

FIG. 5. Same as in Fig. 4 but for an incommensurate filling (single
vacancy with N = L − 1 particles). Solid line: the exact position for
the transitions within the first Brillouin zone for a1D = 0.

which is shown in Fig. 4 as arrows at k = 0. We find a good
agreement between the imaginary-time method (22) and the
ground-state difference (23). In the limit of strong interactions
and shallow lattices, the gap scales linearly with the lattice
height, 	 ≈ V0/2. For finite interaction the gap becomes
smaller and no analytical expression is known. In the insulating
phase the value of the gap is reduced by increasing the coupling
constant. Close to the phase transition point the gap becomes
nonanalytic, as it is zero in the superfluid phase and takes finite
value the Mott-insulator one, and thus it cannot admit a Taylor
expansion at the transition point. Since the transition is of the
Berezinsky-Kosterlitz-Thouless type, the gap closes as

	 ∼ exp

(
− const√|a1D − ac|

)
, (24)

where ac is the critical value of the s-wave scattering length.
It is instructive to compare the predictions for the excitation

spectrum E(k) obtained from the static structure factor S(k)
according to the Feynman relation

E(k) � h̄2k2

2mS(k)
, (25)

which provides an upper bound to E(k). The Feynman
approximation becomes exact when the excitation spectrum
is exhausted by a single excitation. We test the accuracy of
Eq. (25) by comparing it to the exact results, as shown in Fig. 4.
We find out that for the gapped excitation at unit filling, the
Feynman approximation works reasonably well. This suggests
that there is a strong weight of excitations at the gap and its
value should be accessible experimentally, on which we will
comment in more details below.

Instead, for a single vacancy the Feynman approximation
(25) predicts a linear slope of the spectrum for small momenta,
while the exact result shows a quadratic dependence, see
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Fig. 5. On one hand, there is no contradiction, as the Feynman
approximation provides an upper bound. On the other hand,
such difference implies that the quadratic gapless mode is not
highly populated and it will be hard to see it in an experiment.
In all cases the Feynman approximation fails at the edge of
the Brillouin zone k = kL/2, where the correct excitation
spectrum must have a zero derivative, and cannot reproduce
the zero energy at the umklapp point k = 2kF.

The superfluid–Mott-insulator phase transition in a one-
dimensional optical lattice was experimentally observed in
the Innsbruck [40] and Florence [41] groups. Unfortunately,
only in the Innsbruck experiment the excitation spectrum was
measured. The value of the gap was determined by shaking
the lattice and analyzing the efficiency of the energy transfer
for different driving frequencies. The inferred experimental
values of the gap turned out to be large compared to a
subsequent theoretical prediction [39]. This discrepancy leaves
the question of the excitation spectrum still open.

V. SUPERFLUID FRACTION

The superfluidity can be quantified by imposing twisted
boundary conditions on the many-body wave function [42–44]

�(. . . ,xj + La0, . . . ) = eiθ�(. . . ,xj , . . . ), (26)

θ being the twist angle. At T = 0, this requirement leads to an
increase of the ground-state energy E0, which is attributed to
the kinetic energy of the superfluid. Since the corresponding
velocity is fixed by the value of the twist angle θ , the number
of particles in the superfluid component Ns is determined as

E0(ks) − E0(0) = h̄2k2
s

2m
Ns, ks = θ

La0
, (27)

which readily gives the superfluid fraction Ns/N ∈ [0,1]. In
the limit ks → 0, Eq. (27) yields

Ns = m

h̄2

∂2E0(ks)

∂k2
s

∣∣∣∣
ks=0

, (28)

and, for instance, in the case of noninteracting particles in a
periodic potential, where E0(ks) = Nε(ks), one gets Ns/N =
m/meff [45,46].

The superfluid fraction Ns/N of the Tonks-Girardeau gas in
deep optical lattices for N � L can be calculated analytically
and is given by [47]

Ns

N
= m

meff

sin(πN/L)

N sin(π/L)
, (29)

where meff is the single-particle effective mass. For a single
vacancy, N = L − 1, Eq. (29) simplifies to

Ns

N
= m

meff

1

N
. (30)

Similarly to the Anreev-Lifshitz mechanism in which vacan-
cies in the ground-state of a solid create superfluidity, here the
presence of vacancies in the lattice lead to a nonzero value
of Ns. The total effect is microscopic since the contribution
of a single vacancy to the superfluid fraction is of order 1/N .
Equation (30) implies that a single vacancy turns the system
completely superfluid, while its contribution to the superfluid
fraction is reduced by the effective mass.

FIG. 6. Diffusion of the center of mass in imaginary time,
〈x2(τ )〉/τ , for Tonks-Girardeau gas in a deep lattice, V0 = 10 Erec.
A constant value at asymptotically large imaginary times gives the
superfluid fraction Ns/N . Symbols: DMC data; two arrows on the
right axis, energetic estimation from a small phase twist, Eq. (28);
lines: homogeneous system, Ns = N (arbitrary filling); commen-
surate system, 〈x2(τ )〉 = 1/(2Nτ ); vacancy, Eq. (30) with mvac =
meff = 5.03 m, interstitial, Eq. (30) with mint = 0.59 m. Dashed line
with Ns = 1 is shown for comparison and allows us to distinguish
a defect with the effective mass smaller or larger than one. At very
short imaginary times, the diffusion is always ballistic and the shown
quantity always departs from one.

While Eq. (29) was derived only for vacancies and it is not
formally applicable to interstitials, still for a single interstitial
Eq. (29) with N = L + 1 leads to a result similar to Eq. (30)
but of opposite sign. Thus it is a surprise to find out that
numerical simulations based on the diffusion Monte Carlo
method confirm that Eq. (30) holds even for interstitials, as it
will be shown later.

Applied to the DMC algorithm, the winding number method
for the estimation of the superfluid density [48], Eq. (28), is
equivalent to the calculation of the diffusion coefficient of the
center of mass. The center of mass position is known from
the particle position, xcm = ∑N

i=1 xi/N , and we measure the
mean square distance 〈x2

cm〉 = 〈[xcm(τ ) − xcm(0)]2〉 it diffuses
in a time τ . Characteristic examples of the diffusion of the
center of mass in the Tonks-Girardeau gas are shown in
Fig. 6. In the absence of lattice, the superfluid response is
macroscopic with Ns = N for any filling fraction. This could
be commonly interpreted as a fully superfluid homogeneous
system, although in one dimension this is pathological, as
even a tiny external potential greatly changes the superfluid
response. Indeed, the Tonks-Girardeau gas can be mapped to
an ideal Fermi gas, which is not superfluid and suffers from
the orthogonality catastrophe, where the wave function in the
presence of a tiny perturbation is asymptotically orthogonal to
the wave function of the unperturbed state. In lattice systems
a similar effect in commensurate systems is present not only
for infinite but also for finite interactions, for which the Mott
insulator is formed for arbitrarily small height of the lattice.

This effect is also seen in a Tonks-Girardeau gas in a
commensurate lattice as the system is no longer superfluid.
Indeed, a direct energy calculation of the Tonks-Girardeau
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energy plugged into Eq. (28) gives zero superfluid fraction. In
DMC simulations, we find that the center of mass is pinned
and its spreading 〈x2

cm〉 is bounded from above for large times,
resulting in 〈x2

cm〉/τ ∝ 1/τ → 0 for τ → ∞.
The presence of a single vacancy enables defect-induced su-

perfluidity, similarly to the Andreev-Lifshitz mechanism. The
superfluid response is microscopic, Ns = m/meff = O(1), as
only one defect contributes to the superfluidity. Furthermore,
the contribution to the superfluid component is further reduced
by the effective mass. The propagation of a vacancy physically
corresponds to a quasiparticle created by atoms tunneling from
one site to another, with the quasiparticle propagating in the
opposite direction. It is natural that the movement of particles
over a barrier is slower compared to the movement of a free
particle, and so the effective mass is increased, mvac > m.
Specifically, for the considered case of a deep optical lattice
V0 = 10 Erec, the vacancy is rather heavy, with mvac = 5.03 m,
see Fig. 3.

A single interstitial introduces a finite superfluid response
as well. The contribution is again microscopic and is scaled
by the effective mass of the defect. Remarkably, Eq. (30) with
mint taken from the quadratic expansion around the edge of
the second Brillouin zone gives exactly the same result as the
energetic estimation (28) and agrees with the diffusion of the
center-of-mass method in the DMC calculation. This verifies
the applicability of Eq. (30) and also validates the microscopic
description of the superfluidity in terms of defects.

VI. STATIC STRUCTURE FACTOR

Relevant information about the spatial structure of the
system is contained in the static structure factor. In the
superfluid phase, the long-range (small-momenta) correlations
are well captured by the Luttinger liquid theory. Both for
bosons and fermions, the characteristic length is the mean
interparticle distance La0/N , or the Fermi momentum kF =
πN/(La0) in the reciprocal space. The Luttinger liquid theory
predicts oscillations at multiples of the Fermi momentum, k =
kF,2kF, . . . . The lattice provides an additional, external scale,
which in terms of length and momentum is the lattice spacing
a0 and the edge of the Brillouin zone kL/2, respectively.
At unit filling both scales coincide, kF = kL/2 while for
a fractional filling the Fermi momentum can be expressed
as kF = f kL/2. It can be anticipated that the correlation
functions at momentum k, corresponding to the difference
k = kL/2 − kF = (1 − f )kL/2, have special properties. In the
following we analyze the cases of both a close mismatch
between kL/2 and kF (i.e., in the presence of few vacancies
or interstitials) as well as a large one (macroscopic fraction of
vacancies) showing that elaborate correlations appear in the
system.

A. Continuum model

In order to quantify the effect of correlations, we consider
the static structure factor, which has two commonly used
definitions. The first one is given by

Sρ(k) = 1

N

∫ La0

0
dx1

∫ La0

0
dx2e

ik(x2−x1)〈ρ̂(x1)ρ̂(x2)〉

= 1 + 1

N

∫ La0

0
dx1

∫ La0

0
dx2e

ik(x2−x1)g2(x1,x2), (31)

where ρ̂(x) = ψ̂†(x)ψ̂(x) is the density operator. It is closely
related to the Fourier transform of the pair-distribution function
that can be written in the language of second and first
quantization as

g2(x1,x2) = 〈ψ̂†(x1)ψ̂†(x2)ψ̂(x2)ψ̂(x1)〉

= N (N − 1)
∫ La0

0
|ψ(x1,x2,x3, . . . ,xN )|2

× dx3 . . . dxN . (32)

The second definition uses density fluctuations 	ρ̂(x) =
ρ̂(x) − 〈ρ̂(x)〉 instead of the density ρ̂(x) and has the explicit
form

S	ρ(k) = 1

N

∫ La0

0
dx1

∫ La0

0
dx2e

ik(x2−x1)〈	ρ̂(x1)	ρ̂(x2)〉,
(33)

while the two definitions are related to each other as

Sρ(k) = S	ρ(k) + 1

N

∣∣∣∣
∫ La0

0
dxe−ikx〈ρ̂(x)〉

∣∣∣∣
2

. (34)

As we will show later in the figures, Sρ(k) contains
singularities at k = qkL with integer q originating from the
last term in Eq. (34) and induced by the lattice periodicity. In
order to illustrate this point, we expand the density profile in a
Fourier series,

〈ρ̂(x)〉 =
∑

n

cn exp

(
i2πn

x

a0

)
, (35)

where c0 = N/(La0) is the averaged density and c−n = c∗
n

since 〈ρ̂(x)〉 is real. The momentum k takes discrete values
and it is easy to see that the last term in Eq. (34) is nonzero
only for k = qkL with q = 0,±1, . . .. In this way, we get

Sρ(qkL) = S	ρ(qkL) + N

∣∣∣∣cq

c0

∣∣∣∣
2

, (36)

and thus if |cq | is of order of unity, Sρ(k) presents strong peaks
at k = qkL on top of S	ρ(k) and the height of the peaks grows
linearly with N .

For the Tonks-Girardeau gas, the pair-distribution function
is the same as for free fermions. Therefore, it can be written
in terms of single-particle eigenfunctions ϕα(x) as [49–51]

g2(x1,x2) = 1

2

N−1∑
α1,α2=0

|ϕα1 (x1)ϕα2 (x2) − ϕα1 (x2)ϕα2 (x1)|2,

leading to the following expression for the static structure
factor:

S	ρ(k) = 1 − 1

N

N−1∑
α1,α2=0

|Iα1α2 (k)|2,

Iα1α2 (k) =
∫ La0

0
dxe−ikxϕ∗

α1
(x)ϕα2 (x). (37)

In homogeneous space, the single-particle functions ϕhom
α (x)

are plane waves, Eq. (15), with the discrete values of momenta
given by Eq. (13). Then,

I hom
q1q2

(kq) = δq2−q1,q , (38)
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and Eq. (37) leads to the well-known result for a homogeneous
system in one dimension,

Shom
	ρ (k) = min

(
k

2kF
, 1

)
, Shom

ρ (k) = Shom
	ρ (k) + Nδk0,

(39)

which is a linear (phononic) up to the umklapp point k = 2kF ,
with a kink at this point, and followed by a constant plateau.

B. Discrete model

For discrete lattice models (such as the Bose-Hubbard
model), one can define discrete structure factors in analogy
to Eqs. (31), (33):

Sn(k) = 1

N

∑
�1,�2

〈n̂�1 n̂�2〉eik(x�2 −x�1 ), (40)

S	n(k) = 1

N

∑
�1,�2

〈	n̂�1	n̂�2〉eik(x�2 −x�1 ), (41)

with 	n̂� = n̂� − 〈n̂�〉, which are related to each other as

Sn(k) = S	n(k) + 1

N

∣∣∣∣∣
∑

�

e−ikx�〈n̂�〉
∣∣∣∣∣
2

. (42)

In the tight-binding approximation described by the Bose-
Hubbard model (3), the static structure factors of the con-
tinuum model are determined by the corresponding structure
factors of the discrete model. For S	ρ(k) we get [47]

SBH
	ρ (k) = 1 + G2

0(k)[S	n(k) − 1], (43)

where

G0(k) =
∫ La0

0
dx|W�(x)|2 exp [−ik(x − x�)]. (44)

It is easy to see that S	n(k) is a periodic function of k with the
period equal to the vector of the reciprocal lattice kL = 2π/a0.
Also, S	n(k) vanishes at special points k = qkL, q = 0,1, . . . ,
which implies that SBH

	ρ (qkL) = 1 − G2
0(qkL) is determined

entirely by the periodic potential and does not depend on the
atomic interaction and filling factor.

For the Tonks-Girardeau gas in the tight-binding approxi-
mation with the filling f � 1 one has〈

n̂�1 n̂�2

〉 − 〈
n̂�1

〉〈
n̂�2

〉

= 〈
n̂�1

〉
δ�1�2 −

∣∣∣∣∣
N−1∑
α=0

φ∗
α�1

φα�2

∣∣∣∣∣
2

, (45)

where φα� are the single-particle eigenfunctions on a lattice.
The discrete structure factor can be rewritten in a form
analogous to Eq. (37):

S	n(k) = 1 − 1

N

N−1∑
α1,α2=0

∣∣Iα1α2 (k)
∣∣2

,

Iα1α2 (k) =
∑

�

e−ikx�φ∗
α1�

φα2�. (46)

FIG. 7. Static structure factor Sρ(k) of the Tonks-Girardeau gas in
a deep lattice (V0 = 10 Erec) with L = 100 lattice sites and fractional
filling (decreasing the height of the peak) 1/5; 1/2; 3/5; 4/5; 99/100;
1. The peaks at commensurate momentum k = qkL,q = 1,2, . . . are
macroscopically large and are denotes with arrows and the trivial
peak Sρ(0) = N is not shown. Inset: zoom for small momentum part.

Since the parameters of the Bose-Hubbard model do not
depend on the lattice-site index,

φq� = 1√
L

exp(ikqx�), (47)

where kq are determined by Eq. (13), and

Iq1q2 (kq) =
∞∑

n=−∞
δq2−q1,q+nL. (48)

S	n(k) takes the form [47]

S	n(k) = min

(
k

2kF
,ξ,

kL − k

2kF

)

ξ = min

(
1 − f

f
,1

)
, (49)

where k ∈ [0,kL]. This leads to the visible kinks in Fig. 7. Note
that

Sn(k) = S	n(k) + N

∞∑
q=−∞

δk,qkL
. (50)

C. Discussion of numerical results

Figure 7 reports the static structure factor for filling smaller
or equal to one. At unit filling the system is insulating and the
spectrum is gapped. According to the Feynman relation (25),
the low-momentum behavior is quadratic with coefficient of
proportional to the inverse of the gap, S	ρ(k) = h̄2k2/(2m	).
For a single vacancy it is possible to create a low-lying
phononlike excitation at the lowest allowed momentum kmin =
2π/(La0), see inset in Fig. 7, and, accordingly, the value
of S	ρ(kmin) is largely increased. For two vacancies it is
possible to create low-lying excitations at the first two allowed
momenta, both S	ρ(kmin) and S	ρ(2kmin). Eventually, for
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FIG. 8. Static structure factor Sρ(k) of the Tonks-Girardeau gas in
a deep lattice (V0 = 10 Erec) with L = 100 lattice sites. The fractional
filling: 1; 101/100; 102/100; 6/5; 3/2; 2; 3. Dashed line, uniform
density limit, Eq. (39). The peaks at commensurate momentum
k = qkL,q = 1,2, . . . are macroscopically large and are denotes with
arrows and the trivial peak Sρ(0) = N is not shown. Inset: zoom for
small momentum part.

many vacancies a phononic branch E(k) = h̄c|k| is formed,
leading to a linear static structure factor at low momenta k,
S	ρ(k) = h̄|k|/(2mc). For the Tonks-Girardeau gas the speed
of sound is determined by the Fermi velocity, c = vF, which is
entirely defined by the density, vF = h̄kF/m = h̄πN/(mLa0).
The slope at low k, in units of kL, is then given by the inverse
of the filling factor f = N/L:

S	ρ(k) = |k|
2kF

= 1

f

|k|
kL

. (51)

As anticipated at the beginning of this section, there are
special values of the momenta, k = (1 − f )kL, where S	ρ(k)
shows kinks. It is interesting to understand the underlying
physical processes behind them. In the linear regime, the upper
and lower branches of excitations correspond, respectively,
to the particle and hole excitations, where the displaced
particle moves outside of the Fermi sphere (particle excitation)
or creates a hole in the Fermi surface (hole excitation).
Both processes are possible in a single-particle excitation
for momenta 0 < k < 2kF. Instead, for higher momentum a
particle is always displaced outside of the Fermi surface. This
abrupt change in the structure of the excitations results in
the kinks in the static structure factor at k = 2kF = f kL and
k = (1 − f )kL.

The static structure factor for filling fraction f � 1 is shown
in Fig. 8. For a reduced number of interstitials, only the lowest
momenta get strongly affected. Similarly to the f < 1 case,
the quadratic dependence at small momenta gets gradually
replaced by a linear behavior. When the number of interstitials
grows, the linear part extends further. As the filling fraction
is increased, the static structure factor becomes more similar
to that of a uniform system, given by Eq. (39) with the Fermi
momentum kF = f kL/2 (see the case f = 3 in Fig. 8). This is
because highly energetic states are less affected by the optical

FIG. 9. Density profile in a deep lattice (V0 = 10 Erec) for unit
filling (above) and half filling (below) is shown for a single lattice
period. Density for other periods is obtained by simply repeating
the shown density. Two extreme cases of interactions are shown:
Tonks-Girardeau gas, g1D = ∞, solid lines; ideal Bose gas, g1D = 0,
dashed lines. Integral of ρ(x) over one period gives 1 for unit filling
and 1/2 for half filling.

lattice. Still, for an integer filling, there is always a gap in the
excitation spectrum in the Tonks-Girardeau regime, although
the value of the gap diminishes as f is increased.

VII. SPATIAL CORRELATIONS

In our model the external lattice induces spatial density
ordering with the period equal to the lattice spacing a0. An
important issue is to determine whether the system is capable
of forming a spontaneous ordering with a period different from
that imposed by the external field.

Figure 9 shows typical examples of density profiles (only a
single period is shown). As can be observed, for deep optical
lattices the strength of the interaction has a minor effect on the
density (compare the cases of infinite and zero interactions).
The spreading of particles close to lattice sites is mostly
controlled by the height of the optical lattice and it mimics
the spreading of particles in quantum crystals. A typical way
to control the localization strength in real crystals is to change
the density (or pressure), which provides a rather limited
and complicated way of controlling the system parameters.
An important advantage of incommensurate gases in optical
lattices as a model for defects in quantum crystals is the
possibility to controllably change the particle localization and
to study its effect on the superfluid response by changing the
intensity of the laser beams.

In order to address the question of whether for some
parameters, the system spontaneously self-organizes into a
solid with a period different from that of the underlying lattice,
we study a particularly well-suited situation of half filling. This
case is appropriate for a potential formation of a crystal with
double spacing. If such a crystal exists, the state with particles
occupying odd sites will be degenerate with a state in which
particles occupy even sites. In that case, the equilibrium density
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FIG. 10. Pair density function in a deep lattice (V0 = 10 Erec) for
the Tonks-Girardeau gas for N = L = 12.

corresponds to the average over both double-period states, with
a resulting density profile where only single-period oscillations
are visible (see also Fig. 9). Thus, the effect of statistical aver-
aging prevents observation of the period doubling in the total
density. Instead, the double period should be still visible in
the pair-distribution function, which is the same for the states
occupying even and odd positions.

Figure 10 shows an example of a pair-distribution function
g2(x1,x2), which is proportional to the probability of simul-
taneously finding two particles at positions x1 and x2. In one
dimension, g2(x1,x2) depends only on two scalar arguments
and can be conveniently visualized with a contour plot. In the
Tonks-Girardeau regime, strong repulsion effectively prohibits
double site occupation, as seen from the void diagonal in
Fig. 10. A regular structure that follows the lattice period can
be clearly seen.

By integrating out the position of the center of mass R =
(x1 + x2)/2 one effectively reduces the function to the relative
coordinate x = x1 − x2,

g2(x) = 1

La0

∫ La0

0
g2

(
R + x

2
,R − x

2

)
dR. (52)

This averaged pair-distribution function is closely related to
Fourier transform of the static structure factor,

g2(x) = N

L2

∑
k

[Sρ(k) − 1]eikx. (53)

Figure 11 shows g2(x) of the Tonks-Girardeau gas at half
filling. It can be appreciated that the even peaks are higher
than the odd peaks, which reflects the tendency of period
doubling. Still this tendency does not result in a long-range
order as the corresponding correlations decay as a power law.
For the comparison we show the pair-distribution function of

FIG. 11. Thick solid black line, averaged pair-distribution
function as defined by Eq. (52) for the same parameters as in Fig. 10.
Thin solid red line, ideal Fermi gas result (54) giving the height of
the peaks. Thin dashed blue line, inverse-square decay (55).

the Tonks-Girardeau gas in the homogeneous space

ghom
2 (x)a2

0 = f 2

[
1 − sin2(πf x/a0)

(πf x/a0)2

]
. (54)

For the discrete Bose-Hubbard model it can be demonstrated
[47] that Eq. (54) describes the pair-distribution function of the
Tonks-Girardeau gas at the discrete positions x = x� = �a0.
As can be seen from Fig. 11, in a continuous description the
ideal Fermi gas behavior (54) is valid for the discrete points
x = �a0,� = 0; ±1; ±2, . . ., which is exactly at the positions
of the maxima. This immediately provides the information on
how the height of the odd peaks, � = 1,3, . . ., changes with
the distance

ghom
2 (�a0)a2

0 = f 2

[
1 − 1

(πf �)2

]
. (55)

The inverse-square decay (54) is typical for the density fluc-
tuations. The long-range order is absent for the spontaneously
formed double period as it is lost in a power-law decay, while
the long-range order is present for the single period, as imposed
by the external periodic potential. In momentum space this
is reflected by the peak at k = kL/2 in Fig. 7. The height
of this spontaneously formed peak is constant and does not
change if the system size is increased. Instead, the height of
the peaks at the commensurate momenta k = qkL is given by
the last term in Eq. (36) and is linearly proportional to N . This
qualitative difference in the scaling of the height of the peak
with the number of particles (macroscopic for commensurate
and microscopic for incommensurate momenta) might be
interpreted as a tendency to form a spontaneous diagonal
long-range order rather than its real formation.

VIII. INTERACTION BETWEEN VACANCIES

A conceptually important question is to determine an ef-
fective interaction potential between two vacancies. Although
it is very hard to find a complete answer to it, even a partial
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knowledge of the sign of the interaction only permits us to
obtain insights on the behavior of the vacancies. Attractive
vacancies will have a tendency to bunch together and might
eventually make macroscopic holes in the system, while
repulsive ones will be miscible with the host gas and no phase
separation particles vacancies is possible.

A direct measure of the attractive or repulsive character
of the interaction is provided by the pair-distribution function
g2(x) of Eq. (31), which is proportional to the probability of
finding two particles separated by distance x. A repulsive two-
body interaction typically depletes g2(x) at short distances,
with a finite or zero value at x = 0 depending on its strength
around x = 0. However, the opposite situation is found when
the interaction is attractive and the value of g(x) is enhanced
at x = 0.

Once thermalized, Monte Carlo simulations yield samples
of ground-state configurations, which can be used to estimate
the pair-distribution functions. In the present case where the
number of particles N is different from the number of sites
L, Monte Carlo sampling can be used to determine both
the pair-distribution function of particles g(x) and the pair-
distribution function of vacancies gvac(x). While the procedure
for getting the former is standard, finding a good estimation
of the latter can be tricky. This is because one has to infer
the vacancy position for each particle configuration sample,
while the particles can fluctuate considerably around site
positions x�.

In order to determine the pair-distribution function of
vacancies we follow the following procedure. For a given
particle configuration and a list of site positions, we look for
the particle coordinate xi and site position x� that minimize
the distance |xi − x�|. Once found, xi and x� are removed
from their respective lists, and the procedure is repeated.
The algorithm ends when all particle coordinates have been
removed, considering there are more sites than particles. We
finally identify the vacancy positions with the remaining
site coordinates. This procedure is similar to the greedy
method described by Prokof’ev and Svistunov in Ref. [52],
and the final distance obtained when removing the last
particle coordinate provides a measure of the delocalization
of particles in the given configuration. Once a large set of
particle configurations is processed, one has a list of vacancy
positions that can be used to estimate the corresponding pair-
distribution function gvac(x). We have checked that the outlined
procedure and the method of Clark and Ceperley, based on a
combinatorial minimization of the distances between particles
and all possible sites [53], yield the same results in small
systems with N < 10 particles with one or two more sites
while our approach greatly reduces the computational costs.

Figure 12 shows characteristic examples of the pair-
distribution function gvac(x) for the strong repulsion (Tonks-
Girardeau gas) and for a weak interaction (|a1D|/a0 = 10).
Both cases correspond to two vacancies and 98 particles on a
100 sites in a deep optical lattice with V0 = 10Erec. As it can
be seen, in both cases gvac(x) is suppressed for short distances
reaching the maximal value for the largest possible separation.
From that one concludes that, for the particle interaction
employed, the effective interaction between vacancies is
repulsive, and that vacancies tend to separate as much as
they can from each other. This effect is stronger when the

FIG. 12. Pair distribution function of vacancies gvac(x) for the
Tonks-Girardeau gas (solid line) and for the softer interaction
with |a1D|/a0 = 10 (dashed line) in a lattice with V0 = 10 Erec

corresponding to L = 100 sites and N = 98 particles.

interaction strength between particles increases, as evidenced
by the fact that the curve corresponding to a1D = 0 starts
from a lower value compatible with zero at the origin,
and gathers more strength than the |a1D|/a0 = 10 system at
L/2. We thus conclude that the effective interaction between
vacancies is repulsive when the interaction between particles
is also repulsive, and that the strength of the interaction
between vacancies also increases as the interaction between
the particles is increased. For the sake of completeness, we
show in Fig. 13 the pair-distribution function of particles g2(x),
for the same lattice and number of particles, corresponding to
the Tonks-Girardeau gas. As can be seen, the marked shell
structure of this function indicates that already at this value of
V0 particles tend to localize around site positions, supporting
the assumption that vacancies have a similar behavior.

FIG. 13. Pair distribution function of particles g(x) for the Tonks-
Girardeau gas in a lattice with V0 = 10 Erec, L = 100 sites and
N = 98 particles.
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IX. CONCLUSIONS

To conclude, we have studied the onset of superfluidity
in a one-dimensional Bose gas in optical lattices applying
the language of vacancies and interstitials, commonly used
in the description of supersolids. At difference with the
paradigmatic solid 4He case, the ground state of ultracold
atoms in optical lattices can have by construction defects
moving through the system as quasiparticles. This provides a
unique, highly controllable system to study how the presence
of defects affect their energetic, superfluid, and structural
properties. For infinite repulsion (Tonks-Girardeau limit), the
Bose-Fermi mapping permits to obtain the solution of the
many-particle problem in terms of the single-particle states,
while for a contact δ pseudopotential of finite strength we
perform quantum Monte Carlo simulations. For deep optical
lattices we employ the Bose-Hubbard model, which can be
solved numerically by exact diagonalization for arbitrary
interaction strength and allows simple analytical solutions in
the Tonks-Girardeau limit.

When the number of defects is low, the net effect is
found to be similar to that of doping in semiconductors,
when each single defect in an initially insulating system
contributes to the mobility (superfluidity in our case). We
verify that for a single defect the contribution to the superfluid
fraction is renormalized by the ratio of the effective to the
bare masses, Ns = m/meff , with meff taking the same value
as extracted from the k → 0 quadratic excitation spectrum.
For an interstitial, the effective mass is meff/m > 1 and the
contribution of each defect to the mobility is reduced. Instead,
for a vacancy the effective mass is mvac/m < 1 and each
vacancy contributes with a weight larger then one. This is
a fully quantum effect stemming from enhanced quantum
correlation in one-dimensional systems (as compared to three
and two dimensions).

The presence of defects produces influences significantly
on the structure of the excitation spectrum. In a defect-free
system there is a zero-temperature phase transition between
a superfluid and a Mott insulator, with linear and gapped
excitation spectra, respectively. The presence of defects turns
the gapped spectrum into a gapless one. For a microscopic
fraction of defects the low-lying excitations have a quadratic
dispersion relation. We find that this behavior is completely

missed when using the Feynman approximation, which, on the
contrary, remains qualitatively correct in a linear (superfluid)
and gapped (insulating) phases. A macroscopic fraction of
defects instead transforms a gapped spectrum into a gapless
linear one.

We speculate that the interaction between vacancies is
repulsive as evidenced by suppression of the vacancy-vacancy
pair-distribution function at short distances. This makes
phase separation into vacancy-hole regions improbable. The
interaction strength between vacancies is found to be largest for
the strongest particle-particle repulsion (the Tonks-Girardeau
limit).

Defects strongly modify the structural properties and
particle-particle correlations, as can be seen from the changes
in the static structure factor S(k), which possesses a very
involved shape. Starting from the discrete Bose-Hubbard
model, we show how an increase in the fraction of vacancies
alters the shape of S(k) in a continuous model. In a superfluid
system the low-momentum part of S(k) is linear with k, while
in an insulating system it is quadratic. We show how the
injection of vacancies introduces a linear part, which can span
only a limited number of k values due to its finite concentration.
Finally, we note that the value of the gap 	 can be extracted
from the convexity of the static structure factor, which might
serve as an alternative to the modulation spectroscopy.
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