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Time-reversal-invariant topological superfluids in Bose-Fermi mixtures
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A mixed dimensional system of fermions in two layers immersed in a Bose-Einstein condensate (BEC) is
shown to be a promising setup to realize topological superfluids with time-reversal symmetry (TRS). The induced
interaction between the fermions mediated by the BEC gives rise to a competition between p-wave pairing within
each layer and s-wave pairing between the layers. When the layers are far apart, intralayer pairing dominates
and the system forms a topological superfluid either with or without TRS. With decreasing layer separation or
increasing BEC coherence length, interlayer pairing sets in. We show that this leads either to a second-order
transition breaking TRS where the edge modes gradually become gapped or to a first-order transition to a
topologically trivial s-wave superfluid. Our results provide a realistic road map for experimentally realizing a
topological superfluid with TRS in a cold atomic system.
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I. INTRODUCTION

The search for superfluids and superconductors with non-
trivial topological properties has experienced an explosion of
activities in recent years. One reason is that these systems
can host gapless edge (Majorana) modes with possible appli-
cations in quantum computation [1,2]. Excitingly, evidence
for topological superconductivity and gapless edge states
has been reported in nanowires [3–9]. So far the focus
has predominantly been placed on superfluids [10] without
time-reversal symmetry (TRS), which belong to the symmetry
class D in the tenfold classification scheme of topological
insulators and superfluids [11–13]. However, superfluids with
TRS, belonging to the class DIII, can also host gapless
Majorana mode pairs, which are protected by the Kramers
theorem. There are also several proposals to realize such
systems in the laboratory, both in condensed-matter systems
[14–21] and in cold atomic systems [22–24]. One example
of such intriguing systems is the superfluid 3He B phase, the
topological properties of which have been studied recently
[25,26]. However, one has yet to observe a topological
superfluid with TRS in a cold atomic system.

Recently, we showed that a mixed dimensional atomic
gas system consisting of a two-dimensional (2D) layer of
fermions immersed in a three-dimensional (3D) Bose-Einstein
condensate (BEC) constitutes a promising system for realizing
a Z topological superfluid in class D with a high critical
temperature [27,28]. Here, we show that an analogous system
with two layers of fermions, first studied in Ref. [29], is
naturally suited to realize a Z2 topological superfluid with
TRS. Fermions in the layers interact attractively via an induced
interaction mediated by the BEC. The relative strengths of the
intra- and interlayer induced interaction result in a competition
between px ± ipy-wave pairing involving fermions in the
same layer, and s-wave pairing involving fermions in different
layers. For large distance between the layers, intralayer pairing
dominates and one has either a (px + ipy) × (px − ipy)
system with TRS or a (px + ipy) × (px + ipy) system without
TRS. With decreasing layer distance or increasing BEC co-
herence length, we show that interlayer s-wave pairing occurs
in a second-order transition for the (px + ipy) × (px − ipy)
system, which breaks TRS thereby gradually gapping the edge

modes without closing the bulk gap. For short layer distance,
the system ends up in a topologically trivial s-wave superfluid,
resembling the case of a single layer with two spin components
[30]. On the other hand, the transition from the topological
(px + ipy) × (px + ipy) to the trivial s-wave superfluid is of
the first order.

II. MODEL

We consider identical (spin polarized) fermions of mass m

in two layers located at z = 0 and d (see Fig. 1). The fermions
are immersed in a 3D gas of bosons with mass mB and density
nB . The partition function of the system at temperature T is

Z =
∫

D(ψ̄F ,ψF ,ψ∗
B,ψB ) e−(SF+SB+Sint), (1)

where ψB(r,τ ) and ψF (r,τ ) are the bosonic and fermionic
fields at point r and imaginary time τ . The bosons form
a weakly interacting BEC that be described by Bogoliubov
theory, which yields

SB = β
∑
p �=0,l

γ ∗
p (−iωl + Ep)γp (2)

for the bosonic part of the action, where β = 1/T ; ωl = 2lπT

where l = 0, ± 1, ± 2, . . . are the Bose Matsubara frequen-
cies; and γp describes the quasiparticle with momentum p =
(px,py,pz) and energy Ep. Here we have defined p ≡ (p,iωl).
The Bogoliubov spectrum is Ep = √

εp(εq + 2gBnB), where
εp = p2/2mB and gB = 4πaB/mB , where aB is the boson
scattering length. The fermion part of the action is

SF = β
∑

σ

∑
k⊥,j

āk⊥σ (−iωj + ξk⊥)ak⊥σ (3)

where ak⊥σ are the Grassmann fields for the fermions in layer
σ = 1,2. The effective 2D action for the fermions results from
the fact that the vertical trapping potentials are sufficiently
tight that the fermions reside only in the lowest trap levels
φ0(z) and φ0(z − d) along the z direction. We have defined
k⊥ ≡ (k⊥,iωj ) with k⊥ = (kx,ky) as the in-plane momentum;
ωj = (2j + 1)πT where j = 0, ± 1, ± 2, . . . are the Fermi
Matsubara frequencies; and ξk⊥ = k2

⊥/2m − μ where μ is the

2469-9926/2017/96(3)/033605(6) 033605-1 ©2017 American Physical Society

https://doi.org/10.1103/PhysRevA.96.033605


MIDTGAARD, WU, AND BRUUN PHYSICAL REVIEW A 96, 033605 (2017)

FIG. 1. In the proposed experimental setup, fermions (blue
spheres) confined to two layers with distance d interact with the
surrounding BEC (red background). This results in induced intralayer
and interlayer interactions (illustrated by black wiggly lines). The
green and red arrows indicate the edge modes in the two layers,
respectively. The intralayer p-wave pairings are either of (a) different
chirality, realizing a Z2 topological superfluid, or of (b) the same
chirality, realizing a Z topological superfluid.

chemical potential of the fermions. We take μ to be the same
in each layer which contains an equal number of fermions.
Finally, the Bose-Fermi interaction is

Sint = g

∫
d3r

∫ β

0
dτ ψ̄F ψF ψ∗

BψB, (4)

where g is the boson-fermion interaction strength. Using
the Bogoliubov theory to write ψB(r,τ ) = V−1/2 ∑

p(upγp −
vpγ

∗
−p) exp[i(p · r − ωlτ )] with u2

p,v
2
p = [(εp + gBnB)/Ep ±

1]/2, and expanding the fermionic fields as ψF (r,τ ) =∑
p⊥,σ ap⊥σ exp{i(p · r⊥ − ωjτ )φ0[z − (σ − 1)d]/

√
A}, we

find

Sint = g

T

√
nB

V
∑
p �=0
l,σ

√
εp

Ep
(γp + γ ∗

p )ρp⊥σ e−ipzd(σ−1) (5)

where V is the BEC volume, A is the area of the Fermi layer,
ρp⊥σ = ∑

k⊥ āk⊥−p⊥σ ak⊥σ , and p⊥ ≡ (p⊥,iωl).
Integrating out the quadratic Bose fields in the action in

Eq. (1) yields the effective action

Seff = SF + β

2A
∑

p⊥
σ,σ ′

ρ−p⊥σV σσ ′
ind (p⊥)ρp⊥σ ′, (6)

where the induced interaction between the fermions, mediated
by the bosons, is

V σσ ′
ind (p⊥) = g2

∫
dpz

2π
eipzd(σ−σ ′)χBEC(p). (7)

Here, χBEC(p) = nBp2m−1
B /[(iωl)2 − E2

p] is the density-
density correlation function for the BEC and the pz integration
in Eq. (7) is due to the fact that the momentum along the z

direction is not conserved in the boson-fermion scattering due
to the mixed dimensional setup. We note that the induced
interaction in Eq. (7) is obtained with the assumption that the
3D BEC is not affected by the 2D Fermi gases. This is justified
in our mixed dimensional setup because the properties of the
3D BEC will only be affected locally in the vicinity of the
2D layers. Since the induced interaction between the fermions
is determined by the overall bulk properties of the BEC, we
expect that these local effects on the 3D BEC will only lead to

small corrections to the induced interaction given by Eq. (7).
For zero frequency, iωl = 0, performing the pz integrals yields

V σσ ′
ind (p⊥,0) = − 2g2nBmB√

p2
⊥ + 2/ξ 2

B

e−d|σ−σ ′ |
√

p2
⊥+2/ξ 2

B , (8)

where ξB = (8πnBaB)−1/2 is the BEC coherence length. The
interlayer (σ �= σ ′) interaction is suppressed compared to the
intralayer (σ = σ ′) interaction by an exponential factor related
to the layer distance d. Fourier transforming Eq. (8) yields a
Yukawa interaction V (r) = −g2nBmBπ−1 exp(−√

2r/ξB)/r

in real space with a range determined by ξB [28,31–33]. Here
r = |r| is the distance between the particles, which can reside
in the same plane or in different planes.

III. GAP EQUATIONS

Since the induced interaction given by Eq. (8) is attractive,
fermions with opposite momenta can form Cooper pairs within
each layer (intralayer pairing) as well as between different
layers (interlayer pairing). The BCS Hamiltonian describing
such parings is

HBCS = 1

2

∑
p

�†(p)H(p)�(p), (9)

where �(p) = (ap1,a
†
−p1,ap2,a

†
−p2)T and

H(p) =

⎡
⎢⎢⎢⎣

ξp �11(p) 0 �12(p)

�∗
11(p) −ξp −�∗

12(p) 0

0 −�12(p) ξp �22(p)

�∗
12(p) 0 �∗

22(p) −ξp

⎤
⎥⎥⎥⎦. (10)

Here the ⊥ subscript is dropped since we are dealing only
with 2D momenta of the fermions from now on, and apσ

are the Fermi annihilation operators for layer σ = 1,2. We
neglect retardation effects and use only the zero-frequency
component of the induced interaction. Retardation effects are
small when the Fermi velocity vF in the layers is much smaller
than the speed of sound in the BEC, while for larger vF they
suppress the magnitude of the pairing without changing the
qualitative behavior [27]. The pairing fields are determined
self-consistently as

�σσ ′(p) = −
∑

k

V σσ ′
ind (p − k,0)〈akσ a−kσ ′ 〉. (11)

We take the interlayer pairing to be s-wave so that �12(p) =
�12(−p) = −�21(p) and the Fermi antisymmetry dictates that
�σσ (p) = −�σσ (−p) for the intralayer pairing. Since the
system has rotational symmetry with respect to the z axis, we
take the intralayer pairing to be of the px ± ipy form, as this
fully gaps the Fermi surface [34], i.e., �σσ (p) = �σ (|p|)eiφσ (p)

where φσ (p) = φ0σ ± ϕp with ϕp being the azimuthal angle of
p. Furthermore, for identical layers we assume that �1(|p|) =
�2(|p|) and we thus have �22(p) = �11(p)ei[φ2(p)−φ1(p)]. We
diagonalize Eq. (9) by introducing new pairing fields �±(p) =
�11(p) ± �12(p)e−i[φ2(p)−φ1(p)−π]/2. Equation (11) then yields
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a set of gap equations in a symmetrical form as

�ν(p) = −
∑
ν ′,k

Vνν ′ (p − k)
�ν ′ (k)

2Ek,ν ′
tanh

(
Ek,ν ′

2T

)
. (12)

Here ν = ±, Ep,± =
√

ξ 2
p + |�±(p)|2, and

Vνν ′ (p − k) ≡ 1

2

[
V 11

ind(p − k) + sgn(ν,ν ′)e−i[φ2(p)−φ1(p)]/2

×V 12
ind(p − k)ei[φ2(k)−φ1(k)]/2

]
, (13)

where sgn(ν,ν) = 1 and sgn(ν, − ν) = −1. Finally, the num-
ber equation is N = ∑

ν,p[1 − ξp tanh(Ep,ν/2T )/Ep,ν]/2 and
the BCS ground-state energy is

EBCS − μN = 1

2

∑
ν, p

[ξp − Ep,ν + |�p,ν |2/2Ep,ν]. (14)

We note that when the s- and p-wave order parameters coexist
their relative phase is important. It cannot be gauged away
contrary to the case of a single order parameter. The relative
phase therefore has physical consequences, and we shall see
that it determines whether the system has a time-reversal
symmetry or not.

IV. SYMMETRIES AND TOPOLOGICAL PROPERTIES

The topological properties of the bilayer system are
determined by its symmetries and 2D dimensionality [11–13].
Consider first the limit where the two layers are uncoupled,
which corresponds to the layer distance being much larger
than the range of the induced interaction given by the BEC
coherence length, i.e., d 
 ξB. There is then only particle-hole
symmetry for each layer, and they each form a topological
px ± ipy superfluid in symmetry class D, which supports
chiral edge states. Consider now the case when the two layers
are brought closer to each other so that they interact. The
topological properties and the fate of the edge states then
depend on whether the Cooper pairs in the two layers have
opposite or the same angular momentum, corresponding to
(px + ipy) × (px − ipy) or (px + ipy) × (px + ipy) pairing,
respectively.

For (px + ipy) × (px − ipy) pairing illustrated in Fig. 1(a),
which we refer to as the (+,−) case, the system possesses in
addition to particle-hole symmetry the time-reversal symmetry

T (ap1,ap2)T −1 = (a−p2, − a−p1), (15)

which swaps particles in the two layers. Note that this
antiunitary symmetry operation is different from the usual
time-reversal symmetry operation, which flips the spin of the
particles. Here, the layer index plays the role of a pseudospin.
Since T 2 = −1, the bilayer system is then in symmetry class
DIII, and its ground state is a Z2 topological superfluid, which
supports helical edge modes in analogy with the quantum

spin Hall state [35–37]. The counterpropagating edge modes
in the two layers are related by TRS and protected by the
Kramers theorem. However, when the layers are sufficiently
close together, the s-wave interlayer pairing (�12(p) �= 0) will
dominate, and the system forms a topologically trivial s-wave
superfluid. Thus, the edge states must become gapped at some
critical interlayer distance. Without solving the gap equation,
one can envision two ways this can happen: either the interlayer
pairing explicitly breaks TRS thereby gapping the edge modes
as soon as �12(p) �= 0, or the interlayer pairing respects TRS
and the edge states become gapped only when the bulk energy
gap is closed. By analyzing the properties of the interlayer gap
under time reversal, we find that these two scenarios corre-
spond to �12(p) being imaginary and real, respectively. Our
numerical results (see later) show that �12(p) is in fact imag-
inary and the first scenario describes the physical transition.

For (px + ipy) × (px + ipy) pairing illustrated in Fig. 1(b),
which we refer to as the (+,+) case, the system only has the
particle-hole symmetry and is a Z topological superfluid in
class D, which supports chiral edge modes propagating in the
same direction in the two layers. When the layer distance is
decreased, the possible onset of interlayer pairing coexisting
with the intralayer pairing will not gap these edge modes
as long as the bulk gap remains nonzero, since this pairing
does not break any symmetry. However, we shall see later
that such a coexisting scenario does not occur for the (+,+)
case. Similar to the (+,−) case, the system ends up in the
topologically trivial interlayer s-wave superfluid for small
interlayer distances. We shall demonstrate below that this
happens via a first-order phase transition.

The topological Z and Z2 invariants of class D and DIII,
respectively, can be calculated from the two energy bands
Ep,+ and Ep,− of the bilayer system [38]. If the two layers are
uncoupled, these bands are degenerate and the invariant for
class D is simply given by the sum C = C1 + C2 of the Chern
numbers Cσ of each layer, whereas it is given by the difference
ν = C1 − C2 (mod 2) for class DIII. This is consistent with the
fact that the (+,−) state has C1 = −1,C2 = 1 and is therefore
topological in class DIII, whereas it is trivial in class D.
Therefore, if the TR symmetry is broken for the (+,−) state
by an imaginary �12(p) that mixes the two bands, the system
is in class D and it is no longer topological.

V. EDGE STATES

In this section, we show explicitly how the edge states of
the (+,−) system become gapped with the onset of interlayer
s-wave pairing �12(p) which is imaginary. We consider the
following low-energy Hamiltonian in real space:

H =
∫

d2r �†(r)H(r)�(r)

where �(r) = (ψ1,ψ
†
1 ,ψ2,ψ

†
2)T and

H(r) =

⎛
⎜⎜⎜⎝

−μ(r) �11e
−iφ0 (−∂x + i∂y) 0 �12

�11e
iφ0 (∂x + i∂y) μ(r) −�∗

12 0

0 −�12 −μ(r) �11e
iφ0 (−∂x − i∂y)

�∗
12 0 �11e

−iφ0 (∂x − i∂y) μ(r)

⎞
⎟⎟⎟⎠.
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Assuming that we can apply a local-density approximation,
we take μ(r) = μ(r) to be positive within the radius R,
and negative outside. Solutions to the eigenvalue equation
H(r)χ (r) = Eχ (r) with definite angular momentum can then
be found, and we use the following ansatz in the usual polar
coordinates:

χ (r) = κeinθ

⎛
⎜⎜⎜⎝

e−iφ/2[A(r) + iB(r)]

eiφ/2[A(r) − iB(r)]

eiφ/2[C(r) + iD(r)]

e−iφ/2[−C(r) + iD(r)]

⎞
⎟⎟⎟⎠

where κ is a normalization constant. The real functions
A,B,C,D satisfy a set of four coupled equations, and for
a large system with tightly confined edge modes we can
find solutions with the energy ±E = ±

√
(�11n/R)2 + |�12|2.

Here, n is a half integer related to the angular momentum of
the edge state. These solutions require �12 to be real. If it
is imaginary, it is possible to show that the edge modes do
not acquire a gap. When finding the specific solutions for the
edge states, care should be taken to choose the solution that
is normalizable and confined to the edge. As an example,
consider the physical, positive branch of energies, +E. A
possible solution is given by A(r) = D(r) = 0 and

B(r) = exp

{
1

�11

∫ r

0
μ(r ′)dr ′

}
C(r) = αB(r)

with

α = �11n

|�12|R −
√(

�11n

|�12|R
)2

+ 1.

We see that the edge states lowest in energy are localized on
both layers when the two gap parameters coexist. The states
higher in energy approach the solutions for uncoupled layers,
which are only localized on a single layer.

VI. NUMERICAL SOLUTION OF THE GAP EQUATION

We now numerically solve the gap equations (12) along with
the number equation at T = 0. The (+,−) case corresponds to
φ2(p) − φ1(p) = π − 2ϕp, while the (+,+) case corresponds
to φ2(p) − φ1(p) = π .

A. (+,−) system

In Fig. 2(a), we plot the magnitude of the pairing fields
at the Fermi surface as a function of the layer distance
d for the (+,−) system. Here kF = √

4πnF is the Fermi
momentum with nF the density of fermions in each layer. We
have chosen a relatively weak Bose-Fermi coupling strength
g = 2πa/

√
mrmB with kF a = 0.1, where a is the 2D-3D

mixed dimensional scattering length [39]. The gas parameter
of the BEC is (nBa3

B)1/3 = 0.01 and the ratio of the Fermi and
Bose interparticle distances is n

1/2
F /n

1/3
B = 0.2. The energy of

the system is plotted in Fig. 2(b).
For layer distances d � 0.754ξB , there is no interlayer

pairing and the two layers are uncoupled, each realizing
a px ± ipy topological superfluid. The corresponding edge

FIG. 2. (a) The magnitude of the interlayer s-wave pairing
(dashed line) and intralayer p-wave pairing (solid line) as a function
of the layer distance for the (+,−) system. (b) The corresponding
ground-state energy per particle (solid line). The dashed lines indicate
the energy of states with only inter- or intralayer pairing. The dashed
vertical line at d � 0.751ξB indicates where the two solutions have
the same energy. (c) The edge modes of the (+,−) system and their
spectrum. For d � 0.754ξB (right column) the counter clockwise
and clockwise edge modes are localized in the upper and lower
layer, respectively. For 0.747ξB � d � 0.754ξB (middle column), the
low-lying edge modes are localized in both layers and they acquire a
gap. For d � 0.747ξB (left column), there are no edge modes.

states, illustrated in Fig. 2(c), propagate in opposite directions
in the two layers and are related by the TRS operator T . We
have chosen a circular boundary with radius R to illustrate the
typical geometry formed by the harmonic trap in an atomic gas
experiment. As the layer distance decreases, interlayer pairing
sets in for d � 0.754ξB via a second-order transition and it
coexists with the intralayer pairing. We find numerically that
the interlayer pairing �12(k) is purely imaginary and it there-
fore breaks TRS. The edge modes in the two layers mix and
become gapped as illustrated in Fig. 2(c). More precisely, the
dispersion of the edge modes is E =

√
(�11n/R)2 + |�12|2,

where |�12| � |�12(0)| and �11(p) � �11(px + ipy) give the
magnitude of the inter- and intralayer pairing at low momenta,
as seen above. The low-energy edge states with small n are
hybridized between the two layers; for larger n, the edge states
become increasingly localized in a single layer, approaching
those for the uncoupled layers. Finally, for layer distances
d � 0.747ξB the intralayer pairing is completely suppressed
by the interlayer pairing and the system is a topologically
trivial s-wave superfluid with no edge modes. We have not been
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FIG. 3. The intra- (solid line) and interlayer (dashed line) pairing
as a function of the BEC coherence length for the (a) (+,−) and (b)
(+,+) system.

able to find a numerical solution with a real interlayer pairing
coexisting with intralayer pairing, which would preserve TRS
and support the gapless edge modes. While the coexistence
region shown here is quite narrow, the width can be tuned by
altering the parameters (see below).

B. (+,+) system

For the (+,+) system, our numerical results show that
the transition between the topological and trivial phase is
first order. The transition occurs at the critical layer distance
d � 0.751ξB when the phases with only one type of pairing
have the same energy, as indicated by the vertical line in
Fig. 2(b). We do not find numerical solutions with both types
of pairing coexisting. Instead, the intralayer pairing and the
associated gapless edge modes disappear and the interlayer
pairing appears abruptly.

VII. VARYING THE COHERENCE LENGTH

Experimentally, it might be easier to change the BEC
coherence length, which determines the range of the induced
interaction, by varying aB using a Feshbach resonance, instead
of changing the layer distance. To examine this case, we plot in
Fig. 3 the magnitudes of the intra- and interlayer pairings as a
function of ξB with kF a = 0.12, kF d = 1.0, and n

1/2
F /n

1/3
B =

0.2. The coherence length is varied by changing aB keeping
nB fixed. For a small ξB , the two layers are uncoupled forming
the (+,−) or the (+,+) topological superfluid. The (+,−)
system undergoes a second-order phase transition to a state
where intra- and interlayer pairings coexist for ξB � 1d. Note
that contrary to decreasing the distance d the system does not
end up in a pure s-wave state for large ξB . The reason is that
for a large interaction range the suppression of the p-wave
channel compared to the s-wave channel is small, and intra-

and interlayer pairings therefore coexist. The (+,+) system on
the other hand again undergoes a first-order transition between
the topological and the trivial phases at ξB ∼ 1.05d.

VIII. DISCUSSION

All the ingredients in the proposed setup have been real-
ized experimentally. Bose-Fermi mixtures as well as species
selective optical potentials to produce mixed dimensional
systems have been reported [40–42]. It was moreover shown
in Ref. [27] that the Berezinskii-Kosterlitz-Thouless critical
temperature for the px ± ipy superfluid in the present Bose-
Fermi setup can be as high as TBKT = EF /16, which is within
experimental reach [43]. We expect the critical temperature
of the phase with s-wave pairing to be even higher. The edge
modes can be observed for instance by direct imaging or by
the response to an external drive in analogy with topological
insulators [44–46].

An intriguing question concerns the robustness of the edge
modes beyond mean-field BCS theory. To investigate this, one
could analyze the coupling between the edge modes forming a
Luttinger liquid [47,48], which is an interesting future project.

IX. CONCLUSION

We demonstrated that a mixed dimensional system con-
sisting of two layers of fermions in a BEC is a powerful
setup to realize topological superfluids with TRS. The induced
interaction between the fermions mediated by the BEC leads
to a competition between p-wave pairing within each layer and
s-wave pairing between the layers. For large layer separation
or short BEC coherence length, intralayer pairing dominates
and the system forms a topological superfluid either with or
without TRS. In the case of TRS, the system goes from a Z2

topological superfluid to a topologically trivial superfluid via
a second-order transition where s-wave pairing gradually gaps
the edge modes. When there is no TRS, the transition from a
Z topological superfluid to a topologically trivial superfluid is
first order. These results show how cold atomic gases offer a
realistic path to realizing topological superfluids with TRS.
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