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Motivated by the fact that the low-energy properties of the Kondo model can be effectively simulated in spin
chains, we study the realization of the effect with bond impurities in ultracold bosonic lattices at half filling.
After presenting a discussion of the effective theory and of the mapping of the bosonic chain onto a lattice spin
Hamiltonian, we provide estimates for the Kondo length as a function of the parameters of the bosonic model.
We point out that the Kondo length can be extracted from the integrated real-space correlation functions, which
are experimentally accessible quantities in experiments with cold atoms.
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I. INTRODUCTION

The Kondo effect has been initially studied in metals, like
Cu, containing magnetic impurities, like Co atoms, where
it arises from the interaction between magnetic impurities
and conduction electrons, resulting in a net, low-temperature
increase of the resistance [1–3]. It soon assumed a prominent
role in the description of strongly correlated systems and in
motivating and benchmarking the development of (experimen-
tal and theoretical) tools to study them [2,4]. Indeed, due to the
large amount of analytical and numerical tools developed to
attack it, the Kondo effect has become a paradigmatic example
of a strongly interacting system and a testing ground for a
number of different many-body techniques.

The interest in the Kondo effect significantly revitalized
when it became possible to realize it in a controlled way in
a solid-state system, by using quantum dots in contacts with
metallic leads, in which the electrons trapped within the dot
can give rise to a net nonzero total spin interacting with the
spin of conduction electrons from the leads, thus mimicking
the behavior of a magnetic impurity in a metallic host [5–8].
An alternative realization of Kondo physics is recovered within
the universal, low-energy–long-distance physics of a magnetic
impurity coupled to a gapless antiferromagnetic chain [9,10].
In fact, though low-energy excitations of a spin chain are
realized as collective spin modes, the remarkable phenomenon
of “spin fractionalization” [11] implies that the actual stable
elementary excitation of an antiferromagnetic spin-1/2 spin
chain is a spin-1/2 “half spin wave” [12,13] (dubbed spinon).
Spinons have a gapless spectrum and, therefore, for what
concerns screening of the impurity spin, they act exactly as
itinerant electrons in metals, as the charge quantum number
is completely irrelevant for Kondo physics. A noticeable
advantage of working with the spin chain realization of the
Kondo effect is that a series of tools developed for spin systems,
including entanglement witnesses and negativity, can be used
to study the Kondo physics in these systems [14,15].

Another important, long-lasting reason for interest in
Kondo systems lies in that the multichannel “overscreened”
version of the effect [16,17] provides a remarkable realization

of non-Fermi-liquid behavior [18]. Finally, the nontrivial
properties of Kondo lattices provide a major arena in which
to study many-body nonperturbative effects, related to heavy-
fermion materials [19,20]. A recent example of both theoretical
and experimental activity on multichannel Kondo systems is
provided by the topological Kondo model [21–24], based on
the merging of several one-dimensional quantum wires with
suitably induced and possibly controllable Majorana modes
tunnel-coupled at their edges, and by recent proposals of
realizing topological Kondo Hamiltonians in Y junctions of
XX and Ising chains [25–27] and of Tonks-Girardeau gases
[28]. Finally, the effects of the competition between the Kondo
screening and the screening from localized Majorana modes
emerging at the interface between a topological superconduc-
tor and a normal metal has been recently discussed in [29]
using the techniques developed in [30].

The onset of the Kondo effect is set by the Kondo tempera-
ture TK , which emerges from the perturbative renormalization
group (RG) approach as a scale at which the system crosses
over towards the strongly correlated nonperturbative regime
[2,31]. The systematic implementation of RG techniques
has clearly evidenced the scaling behavior characterizing the
Kondo regime, which results in the collapse onto each other
of the curves describing physical quantities in terms of the
temperature T , once T is rescaled by TK [31,32]. The collapse
evidences the one-parameter scaling, that is, there is only
one dimensionful quantity, which is dynamically generated
by the Kondo interaction and invariant under RG trajectories.
Thus, within scaling regime, one may trade T for another
dimensionful scaling parameter such as, for instance, the
system size �. In this case, as a consequence of one-parameter
scaling, a scale invariant quantity with the dimension of a
length emerges, the Kondo screening length ξK , given by
ξK = h̄vF /kBTK , where vF is the Fermi velocity of conduction
electrons and kB is the Boltzmann constant [31]. Physically,
ξK defines the length scale over which the impurity magnetic
moment is fully screened by the spin of conduction electrons,
that is, the “size of the Kondo cloud” [33]. Differently from
TK , which can be directly measured from the low-T behavior
of the resistance in metals, the emergence of ξK has been
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so far only theoretically predicted, as a consequence of the
onset of the Kondo scaling [31]. Thus, it would be extremely
important to directly probe ξK , as an ultimate consistency
check of scaling in the Kondo regime. As the emergence of the
Kondo screening length is a mere consequence of the onset of
Kondo scaling regime, ξK can readily be defined for Kondo
effect in spin chains, as well [9,15,34]. Unfortunately, despite
the remarkable efforts made in the last years to estimate ξK

in various systems by using combinations of perturbative, as
well as nonperturbative, numerical methods [10], the Kondo
length still appears quite an elusive quantity to directly detect,
both in solid-state electronic systems as well as in spin chains
[33]. This makes it desirable to investigate alternative systems
in which to get an easier experimental access to ξK .

A promising route in this direction may be provided by the
versatility in the control and manipulation of ultracold atoms
[35,36]. Indeed, in the last years several proposals of schemes
in which features of the Kondo effect can be studied in these
systems have been discussed. References [37,38] suggest to
realize the spin-boson model using two hyperfine levels of a
bosonic gas [37], or trapped ions arranged in Coulomb crystals
[38] (notice that in general the Kondo problem may be thought
of as a spin-1/2 system interacting with a fermionic bath [39]).
Reference [40] proposes to use ultracold atoms in multiband
optical lattices controlled through spatially periodic Raman
pulses to investigate a class of strongly correlated physical
systems related to the Kondo problem. Other schemes involve
the use of ultracold fermions near a Feshbach resonance [41],
or in superlattices [42]. More recently, the implementation
of a Fermi sea of spinless fermions [43] or of two different
hyperfine states of one atom species [44] interacting with an
impurity atom of different species confined by an isotropic
potential has been proposed [43]. The simulation of the
SU(6) Coqblin-Schrieffer model for an ultracold fermionic
gas of Yb atoms with metastable states has been discussed,
while alkaline-earth fermions with two orbitals were also
at the heart of the recent proposal of simulating Kondo
physics through a suitable application of laser excitations
[45]. Despite such an intense theoretical activity, including
the investigation of optical Feshbach resonances to engineer
Kondo-type spin-dependent interactions in Li-Rb mixtures
[46], and the remarkable progress in the manipulation of
ultracold atomic systems, such as alkaline-earth gases, up to
now an experimental detection of features of Kondo physics
and in particular of the Kondo length in ultracold atomic
systems is still lacking.

In view of the observation that optical lattices provide
a highly controllable setup in which it is possible to vary
the parameters of the Hamiltonian and to accordingly add
impurities with controllable parameters [47,48], in this paper
we propose to study the Kondo length in ultracold atoms loaded
on an optical lattice. Our scheme is based on the well-known
mapping between the lattice Bose-Hubbard (BH) Hamiltonian
and the XXZ spin-1/2 Hamiltonian [49], as well as on the
Jordan-Wigner (JW) representation for the spin-1/2 operators,
which allows for a further mapping onto a Luttinger liquid
model [50–52]. The Kondo effect in Heisenberg spin-1/2
antiferromagnetic spin chains has been extensively studied
[53–55], though mostly for side-coupled impurities (i.e., at
the edge of the chain). For instance, in Ref. [54], the Kondo

impurity is coupled to a single site of a gapless XXZ spin
chain, while in Ref. [9] a magnetic impurity is coupled at
the end of a J1 − J2 spin-1/2 chain. At variance, in trapped
ultracold atomic systems, it is usually difficult to create an
impurity at the edge of the system. Accordingly, in this paper
we propose to study the Kondo length at an extended (at least
two links) impurity realized in the bulk of a cold atom system
on a one-dimensional (1D) optical lattice. In particular, we
assume the lattice to be at half-odd filling, so to avoid the
onset of a gapped phase that takes place at integer filling in the
limit of a strong repulsive interaction between the particles.
Since the real-space correlation functions are quantities that
one can measure in a real cold atom experiment, we address
the issue of how to extract the Kondo length from the zeros of
the integrated real-space density-density correlators. Finally,
we provide estimates for ξK and show that, for typical values
of the system parameters, it takes values within the reach of
experimental detectability (∼ tens of lattice sites).

Besides the possible technical advances, we argue that,
at variance with what happens at a magnetic impurity in a
conducting metallic host, where one measures TK and infers
the existence of ξK from the applicability of one-parameter
scaling to the Kondo regime, in an ultracold atom setup one can
extract from density-density correlation functions the Kondo
screening length, so that, to access ξK , one has not to rely on
verifying the one-parameter scaling, which is what typically
makes ξK quite hard to detect.

The paper is organized as follows:
(i) In Sec. II we provide the effective description of a system

of ultracold atoms on a 1D optical lattice as a spin-1/2 spin
chain. In particular, we show how to model impurities in the
lattice corresponding to bond impurities in the spin chain.

(ii) In Sec. III we derive the scaling equations for the Kondo
running couplings and use them to estimate the corresponding
Kondo length.

(iii) In Sec. IV we discuss how to numerically extract the
Kondo length from the integrated real-space density-density
correlations and compare the results with the ones obtained in
Sec. III.

(iv) In Sec. V we summarize and discuss our results.
Mathematical details of the derivation and reviews of

known results in the literature are provided in the various
appendixes.

II. EFFECTIVE MODEL HAMILTONIAN

Based on the spin-1/2 XXZ spin chain Hamiltonian
description of (homogeneous, as well as inhomogeneous)
interacting bosonic ultracold atoms at half filling in a deep
optical lattice, in this section we propose to model impurities
in the spin chain by locally modifying the strength of the
link parameters of the optical lattice, eventually resorting to
a model describing two XXZ “half-spin chains,” interacting
with each other via a local impurity. When the impurity is
realized as a spin-1/2 local spin, such a system corresponds
to a possible realization of the (two-channel) Kondo effect
in spin chains [9,54]. Therefore, our mapping leads to the
conclusion that spin chain Kondo effect may possibly be
realized and detected within bosonic cold atoms loaded onto a
one-dimensional optical lattice.
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To resort to the spin-chain description of interacting
ultracold atoms, we consider the large on-site interaction
energy U limit of a system of interacting ultracold bosons
on a deep one-dimensional lattice. This is described by the
extended BH Hamiltonian [56–58]

HBH = −
�−1∑

j=−�

tj ;j+1(b†j bj+1 + b
†
j+1bj ) + U

2

�∑
j=−�

nj (nj − 1)

+V

�−1∑
j=−�

njnj+1 − μ

�∑
j=−�

nj . (1)

In Eq. (1), bj ,b
†
j are respectively the annihilation and the

creation operator of a single boson at site j (with j =
−�, . . . ,�) and, accordingly, they satisfy the commutator
algebra [bj ,b

†
j ′ ] = δj,j ′ , all the other commutators being equal

to 0. As usual, we set nj = b
†
j bj . Moreover, tj ;j+1 is the

hopping amplitude for bosons between nearest-neighboring
sites j and j + 1, U is the interaction energy between particles
on the same site, V is the interaction energy between particles
on nearest-neighboring sites. Typically, for alkali-metal atoms
one has V � U while, for dipolar gases [59] on a lattice, V

may be of the same order as U [60,61]. Throughout the paper
we take U > 0 and V � 0. To outline the mapping onto a
spin chain, we start by assuming that tj ;j+1 is uniform across
the chain and equal to t . Then, we discuss how to realize an
impurity in the chain by means of a pertinent modulation of
the tj ;j+1’s in real space. In performing the calculations, we
will be assuming open boundary conditions on the 2� + 1-site
chain and we will set the average number of particles per site
by fixing the filling f = NT

N where NT is the total number of
particles on the lattice and N = 2� + 1 is the number of sites.

In the large-U limit, one may set up a mapping between
the BH Hamiltonian in Eq. (1) and a pertinent spin-model
Hamiltonian HS , with HS either describing an integer [61,62],
or a half-odd spin chain [63], depending on the value of
f . An integer-spin effective Hamiltonian is recovered, at
large U , for f = n (with n = 1,2, . . .), corresponding to μ =
μ0(n) = n(U + 2V ) − U/2 and U � t [60], which allowed
for recovering the phase diagram of the BH model in this limit
by relating on the analysis of the phase diagram of spin-1
chains within the standard bosonization approach [62,64].
In particular, the occurrence of Mott and Haldane gapped
insulating phases for ultracold atoms on a lattice has been
predicted and discussed [61,65,66].

Here, we rather focus onto the mapping of the BH Hamilto-
nian onto an effective spin-1/2 spin-chain Hamiltonian. This
is recovered at U/t � 1 and half-odd filling f = n + 1/2
(with n = 0,1,2, . . .), corresponding to setting the chemical
potential so that μ = (U + 2V )(n + 1

2 ) − U
2 . In this regime,

the effective low-energy spin-1/2 Hamiltonian for the system
is given by [63]

Hspin−1/2 = −J

�−1∑
j=−�

(S+
j S−

j+1+S+
j+1S

−
j ) + J�

�−1∑
j=−�

Sz
jS

z
j+1,

(2)

with the spin-1/2 operators Sa
j defined as

S+
j = 1√

n + 1
2

P1/2b
†
j P1/2,

S−
j = 1√

n + 1
2

P1/2bj P1/2, (3)

Sz
j = P1/2[b†j bj − f ]P1/2,

and P1/2 being the projector onto the subspace of the Hilbert
spaceF1/2, spanned by the states ⊗N

j=1|n + 1
2 + σ 〉

j
, with σ =

± 1
2 . The parameters J and � are given by J = J̃ [1 − 2J̃

U
ρ] and

� = �̃

[1− 2J̃
U

ρ]
, with J̃ = 2t(n + 1

2 ), �̃ = V

J̃
− t2(2n2+6n+4)

J̃U
−

4t2(n+1)2

J̃U
, and ρ = U (n+1)

2J̃
−

√
[U (n+1)

2J̃
]
2 + n + 2. In the regime

leading to the effective Hamiltonian in Eq. (2), the large value
of U/t does not lead to a Mott insulating phase, as it happens
for a generic value of f . Indeed, the degeneracy between
the states |n〉 and |n + 1〉 at each site allows for restoring
superfluidity, similarly to what happens in the phase model
describing one-dimensional arrays of Josephson junctions at
the charge-degenerate point [67].

Notice that the spin-1/2 Hamiltonian in Eq. (2) has to be
supplemented with the condition that

∑
j Sz

j = 0, implying
that physically acceptable states are only the eigenstates of∑

j nj belonging to the eigenvalue NT : this corresponds to
singling out of the Hilbert space only the zero magnetization
sector. As discussed in detail in Ref. [63], Hspin-1/2 provides
an excellent effective description of the low-energy dynamics
of the BH model at half-odd filling. Although the mapping is
done in the large-U limit, in Ref. [63] it is shown that it is
in remarkable agreement with DMRG results also for U/J as
low as ∼3–5 and for low values of NT such as NT ∼ 30.

Additional on-site energies εi can be accounted for by
adding a term

∑�
j=−� εjnj to the right-hand side of Eq. (1).

Accordingly, Hspin-1/2 in Eq. (2) has to be modified by adding
the term

∑�
j=−� εjS

z
j . As soon as the potential energy scale

is smaller than U , we expect the mapping to be still valid
(we recall that with a trapping parabolic potential typically
εj = 	j 2 with 	 ≡ mω2λ2/8, m being the atom mass, ω the
confining frequency, and λ/2 the lattice spacing [68]). Yet we
stress that recent progresses in the realizations of potentials
with hard walls [69,70] make the optical lattice realization of
chains with open boundary conditions lie within the reach of
present technology.

Another point to be addressed is what happens slightly away
from half filling, that is, for f = n + 1/2 + ε, with ε � 1.
In this case, one again recovers the effective Hamiltonian in
Eq. (2), but now with the constraint on physically acceptable
states given by (1/N )〈∑j Sz

j 〉 = ε. Since keeping within a
finite magnetization sector is equivalent to having a nonzero
applied magnetic field [71], one has then to add to the right-
hand side of Eq. (2) a term of the formH

∑
j Sz

j , whereH ∝ ε:
again, we expect that the mapping is valid as soon as that the
magnetic energy is smaller than the interaction energy scale U ,
and, of course, that the system spectrum remains gapless [72].

To modify the Hamiltonian in Eq. (2) by adding bond im-
purities to the effective spin chain, we now create a link defect
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FIG. 1. External potential Vext (in units of V0) as a function of x (in
units of d) for different values of V1/V0 and V2/V0 (with σ = 0.2d).
In (a) and (b), we consider V2 = 0 so that only two hopping parameters
are altered: (a) corresponds to x1/d = 0.5, and (b) to x0;1/d = 0.25
(in both cases V1/V0 = 2). In (c) and (d), we have x0;1/d = 0.5 and
x−1;0/d = −0.5 in both cases, but V1/V0 = V2/V0 = 2 for (c) and
V1/V0 = 2, V2/V0 = 3 for (d).

in the BH Hamiltonian in Eq. (1) by making use of the fact that
optical lattices provide a highly controllable setup in which it
is possible to vary the parameters of the Hamiltonian as well
as to add impurities with tunable parameters [47,48]. This
allows for creating a link defect in an optical lattice by either
pertinently modulating the lattice, so that the energy barriers
among its wells vary inhomogeneously across the chain, or
by inserting one or more extra laser beams, centered on the
minima of the lattice potential. In this latter case, one makes
the atoms feel a total potential given by Vext = Vopt + Vlaser,
where the optical potential is given by Vopt = V0 sin2 (kx), with
k = 2π/λ and λ = λ0/ sin (θ/2), λ0 being the wavelength of
the lasers and θ the angle between the laser beams forming the
main lattice [47] (notice that the lattice spacing is d = λ/2).
For counterpropagating laser beams having the same direction,
θ = π and d = λ0/2, while d can be enhanced by making
the beams intersect at an angle θ �= π . Vlaser is the additional
potential due to extra (blue-detuned) lasers: with one additional
laser, centered at or close to an energy maximum of Vopt, say at
x ≡ x0;1 among the minima x0 = 0 and x1 = d, the potential
takes the form Vlaser ≈ V1e

−(x−x0;1)2/σ 2
. When the width σ is

much smaller than the lattice spacing, the hopping rate between
the sites j = 0 and j = 1 is reduced and no on-site energy
term appears, as shown in Figs. 1(a) and 1(b). Notice that we
use a notation such that the j th minimum corresponds to the
minimum xj = jd in the continuum space.

When x0;1 is equidistant from the lattice minima x0 and
x1, corresponding to x0;1 = λ/4 = d/2 and σ < d, then only
the hopping t0,1 is practically altered [see Fig. 1(a)]. When
x0;1 is displaced from d/2 one has an asymmetry and also
a nearest-neighboring link [e.g., t−1;0 in Fig. 1(b)] may be
altered (an additional on-site energy ε0 is also present). With
d ∼ 2–3 μm, one should have σ � 2 μm, in order to basically
alter only one link. Notice that a barrier of a few μm can be
rather straightforwardly implemented [28,73] and recently a
barrier of ∼2 μm has been realized in a Fermi gas [74]. As
discussed in the following, this is the prototypical realization

of a weak-link impurity in an otherwise homogeneous spin
chain [75,76].

In general, reducing the hopping rate between links close to
each other may either lead to an effective weak link impurity,
or to a spin-1/2 effective magnetic impurity, depending on
whether the number of lattice sites between the reduced-
hopping-amplitude links is even or odd (see Appendix A
for a detailed discussion of this point). To “double” the
construction displayed in Figs. 1(a) and 1(b) to the one we
sketch in Figs. 1(c) and 1(d), we consider a potential of
the form Vlaser ≈ V1e

−(x−x0;1)2/σ 2 + V2e
−(x−x−1;0)2/σ 2

with x−1;0

lying between sites j = −1 and j = 0: assuming again σ � d,
when V1 = V2 and x0;1 = −x−1;0 = d/2 then only two links
are altered, and in an equal way [the hoppings t−1;0 and t0;1

in Fig. 1(c)], otherwise one has two different hoppings [again
t−1;0 and t0;1 in Fig. 1(d)]. When σ is comparable with d, apart
from the variation of the hopping rates, on-site energy terms
enter the Hamiltonian in Eq. (1), giving rise to local magnetic
fields in the spin Hamiltonian in Eq. (2). Though this latter
kind of “site defects” might readily be accounted for within the
spin-1/2 XXZ framework, for simplicity we will not consider
them in the following, and will only retain link defects, due to
inhomogeneities in the boson hopping amplitudes between
nearest-neighboring sites and in the interaction energy V .
Correspondingly, the hopping amplitude tj ;j+1 in Eq. (1) takes
a dependence on the site j also far form the region in which
the potential Vlaser is centered.

In the following, we consider inhomogeneous distributions
of link parameters symmetric about the center of the chain
(that is, about j = 0). Moreover, for the sake of simplicity, we
discuss a situation in which two (symmetrically placed) inho-
mogeneities enclose a central region, whose link parameters
may, or may not, be equal to the ones of the rest of the chain.
We believe that, though experimentally challenging, this setup
would correspond to a situation in which the experimental
detection of the Kondo length is cleaner. In fact, we note that
all the experimental required ingredients are already available,
as our setup requires two lasers with σ � d (ideally, σ � d)
and centered with similar precision.

As we discuss in detail in Appendix A, an “extended central
region” as such can either be mapped onto an effective weak
link, between two otherwise homogeneous “half chains,” or
onto an effective isolated spin-1/2 impurity, weakly connected
to the two half chains. In particular, in this latter case, the
Kondo effect may arise, yielding remarkable nonperturbative
effects and, eventually, “sewing together” the two half chains,
even for a repulsive bulk interaction [53,54]. Denoting by
G the region singled out by weakening one or more links, in
order to build an effective description of G, we assume that the
mapping onto a spin-1/2 XXZ chain works equally well with
the central region, and employ a systematic Shrieffer-Wolff
(SW) summation, in order to trade the actual dynamics of G for
an effective boundary Hamiltonian, that describes the effective
degrees of freedom of the central region interacting with the
half chains. One is then led to consider the Hamiltonian in
Eq. (1), with link-dependent hopping rates tj ;j+1.

To illustrate how the mapping works, we focus onto the case
of M = 2 altered links, corresponding to two blue-detuned
lasers, and briefly comment on the more general case. To
resort to the Kondo-like Hamiltonian for a spin-1/2 impurity
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(a) (b)

FIG. 2. Sketch of two different kinds of central regions in an
otherwise uniform spin chain, respectively realizing an effective
weak-link impurity (a ) and an effective spin-1/2 impurity (b).

embedded within a spin-1/2 XXZ chain, we define the
hopping rate to be equal to t throughout the whole chain but
between j = −1 and j = 0, where we assume it to be equal
to tL, and between j = 0 and j = 1, where we set it equal to
tR , corresponding to Figs. 1(c) and 1(d). On going through the
SW transformation, one therefore gets the effective spin-1/2
Hamiltonian Hs = Hbulk + HK , with Hbulk = HL + HR and

HL = −J

−2∑
j=−�

(S+
j S−

j+1 + S+
j+1S

−
j ) + J�

−2∑
j=−�

Sz
jS

z
j+1,

(4)

HR = −J

�−1∑
j=1

(S+
j S−

j+1 + S+
j+1S

−
j ) + J�

�−1∑
j=1

Sz
jS

z
j+1.

The “Kondo-like” term is instead given by

HK = −J ′
L(S+

−1S
−
0 + S−

−1S
+
0 ) − J ′

R(S+
0 S−

1 + S−
0 S+

1 )

+ J ′
zLSz

−1S
z
0 + J ′

zRSz
0S

z
1, (5)

where J ′
α = tαf and J ′

zα ≈ V − 3J ′2
α /4U (with α = L,R).

Our choice for HK corresponds to the simplest case in
which G contains an even number of links—or, which is the
same, an odd number of sites, as schematically depicted in
Fig. 2(b). We see that the isolated site works as an isolated
spin-1/2 impurity SG, interacting with the two half chains
via the boundary interaction Hamiltonian H

(1)
B ≡ HK . The

other possibility, which we show in Fig. 2(a), corresponds
to the case in which an odd number of links is altered and G
contains an even number of sites. In particular, in Fig. 2(a)
we have only one altered hopping coefficient. This latter
case is basically equivalent to a simple weak link between
the R and the L half chain, which is expected to realize
the spin-chain version of Kane-Fisher physics of impurities
in an interacting one-dimensional electronic system [77]. In
Appendix A, we review the effective low-energy description
for a region G containing an, in principle, arbitrary number
of sites. In particular, we conclude that either the number of
sites within G is odd, and therefore the resulting boundary
Hamiltonian takes the form of HK in Eq. (5), or it is even,
eventually leading to a weak link Hamiltonian [75,76]. Even
though this latter case is certainly an interesting subject of
investigation, we are mostly interested in the realization of
effective magnetic impurities. Therefore, henceforth we will
be using Hs as the main reference Hamiltonian, to discuss the
emergence of Kondo physics in our system.

III. RENORMALIZATION-GROUP FLOW OF THE
IMPURITY HAMILTONIAN PARAMETERS

In this section, we employ the renormalization-group (RG)
approach to recover the low-energy long-wavelength physics
of a Kondo impurity in an otherwise homogeneous chain. From

the RG equations we derive the formula for the invariant length
which we eventually identify with ξK . In general, there are two
standard ways of realizing the impurity in a spin chain, which
we sketch in Fig. 2. Specifically, we see that the impurity
can be realized as an island containing either an even or odd
number of spins. The former case is equivalent to a weak link
in an otherwise homogeneous chain, originally discussed in
Refs. [77,78] for electronic systems, and reviewed in detail
in Ref. [79] in the specific context of spin chains. In this
case, which we briefly review in Appendix C, when � > 0 in
Eqs. (4), the impurity corresponds to an irrelevant perturbation,
which implies an RG flow of the system towards the fixed point
corresponding to two disconnected chains, while for � < 0
the weak link Hamiltonian becomes a relevant perturbation.
Though this implies the emergence of a “healing length” for the
weak link as an RG invariant length scale, with a corresponding
flow towards a fixed point corresponding to the two chains
joined into an effectively homogeneous single chain, there is no
screening of a dynamical spinful impurity by the surrounding
spin degrees of freedom and, accordingly, no screening cloud
is detected in this case [79].

At variance, a dynamical effective impurity screening takes
place in the case of an effective spin-1/2 impurity [34].
In this latter case, at any � such that −1 < � < 1, the
perturbative RG approach shows that the disconnected-chain
weakly coupled fixed point is ultimately unstable. In fact, the
RG trajectories flow towards a strongly coupled fixed point,
which we identify with the spin chain two-channel Kondo fixed
point, corresponding to healing the chain but, at variance with
what happens at a weak link for 0 < � � 1, this time with
the chain healing taking place through an effective Kondo
screening of the magnetic impurity [53].

A region containing an odd number of sites typically has a
twofold degenerate ground state and, therefore, is mapped onto
an effective spin-1/2 impurity SG. The corresponding impurity
Hamiltonian in Eq. (A2) takes the form of the Kondo spin chain
interaction Hamiltonian for a central impurity in an otherwise
uniform spin chain [9]. To employ the bosonization formalism
of Appendix C to recover the RG flow of the impurity
coupling strength, we resort to Eq. (B12), corresponding to
the bosonized spin Kondo Hamiltonian HK given by

HK =
∑

α=L,R

{
− J ′

α[S+
0 e−(i/

√
2)�α (0) + S−

0 e(i/
√

2)�α(0)]

+ J ′
zαSz

0

1√
2π

∂�α(0)

∂x

}
. (6)

The RG equations describing the flow of the impurity cou-
pling strength can be derived by means of standard techniques
for Kondo effect in spin chains [54] and, in particular, by
considering the fusion rules between the various operators
entering HK in Eq. (6). In doing so, in principle additional,
weak link-like, operators describing direct tunneling between
the two chains can be generated, such as, for instance, a
term ∝ e(i/

√
2)[�L(0)−�R (0)], with scaling dimension hA = 1

g
.

However, one may safely neglect a term as such, since, for
g < 1, it corresponds to an additional irrelevant boundary
operator that has no effect on the RG flow of the running
couplings appearing in HK . For g � 1 it becomes marginal
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or relevant, but still subleading, compared to the terms ∝ J ′
α ,

as we discuss in the following, and therefore it can again be
neglected for the purpose of working out the RG flow of the
boundary couplings. This observation effectively enables us to
neglect operators mixing the L and the R couplings with each
other and, accordingly, to factorize the RG equations for the
running couplings with respect to the index α .

More in detail, we define the dimensionless variables Gα(�)
and Gz,α(�) as

Gα(�) =
(

�

�0

)1−1/2g
J ′

α

J
and Gz,α(�) = J ′

zα

J
, (7)

(see Appendix B for a discussion on the estimate of the
reference length �0) with α = L,R.

The RG equations for the running couplings are given by

dGα(�)

d ln
(

�
�0

) = hgGα(�) + Gα(�)Gz,α(�),

(8)
dGzα(�)

d ln
(

�
�0

) = G2
α(�),

with hg = 1 − 1/(2g). For the reasons discussed above, the
RG equations in Eq. (8) for the L- and the R-coupling strengths
are decoupled from each other. In fact, they are formally
identical to the corresponding equations obtained for a single
link impurity placed at the end of the chain (“Kondo side
impurity”) [9]. At variance with this latter case, as argued
by Affleck and Eggert [53], in our specific case of a “Kondo
central impurity” the scenario for what concerns the possible
Kondo-like fixed points is much richer, according to whether
GL(�0) �= GR(�0) (“asymmetric case”), or GL(�0) = GR(�0)
(“symmetric case”), as we discuss below.

To integrate Eqs. (8), we define the reduced variables
Xα(�) ≡ Gα(�) and Xz,α(�) = Gz,α(�) + 1 − 1

2g
for α = L,R

(since the equations for the two values of α are formally equal
to each other, from now on we will understand the index α).
As a result, one gets

dX(�)

d ln
(

�
�0

) = X(�)Xz(�);
dXz(�)

d ln
(

�
�0

) = X2(�). (9)

Equations (9) coincide with the RG equations obtained for
the Kosterlitz-Thouless phase transition [80]. To solve them,
we note that the quantity

κ = X2
z (�) − X2(�) (10)

is invariant along the RG trajectories. In terms of the micro-
scopic parameters of the BH Hamiltonan one gets κ = κ(�0) =
[V/J − 3J ′2/(4UJ ) + 1 − 1/(2g)]2 − (J ′/J )2. To avoid the
onset of Mott-insulating phases, we have to assume that the
interaction is such that g > 1/2. This implies hg > 0 and
Xz(�0) > 0, thus, we assume X(�0),Xz(�0) > 0. This means
that the RG trajectories always lie within the first quarter of
the (X,Xz)-parameter plane and, in particular, that the running
couplings always grow along the trajectories.

Using the constant of motion in Eq. (10), Eqs. (9) can
be easily integrated. As a result, one may estimate the RG
invariant length scale �∗ defined by the condition that, at the
scale � ∼ �∗, the perturbative calculation breaks down (which
leads us to eventually identify �∗ with ξK ). As this is signaled

l /l
0*

l /l
0*

(a) (b)

J/VJ/V
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FIG. 3. �∗/�0 as a function of V/J for 0 � V/J � 0.5. The other
parameters are chosen so that U/J = 4 and J ′/J = 0.2 (a), and
J ′/J = 0.6 (b). As discussed in Appendix B, �0 is of order of the
lattice spacing d .

by the onset of a divergence in the running parameter X(�)
[27], one may find the explicit formulas for �∗, depending on
the sign of κ , as detailed below:

(i) κ = 0. In this case, as the symmetry at � = �0 between
K and Xz is preserved along the RG trajectories, it is enough
to provide the explicit solution for Xz(�)[= X(�)], which is
given by

Xz(�) = Xz(�0)

1 − Xz(�0) ln
(

�
�0

) . (11)

From Eq. (11), one obtains

�∗ ∼ �0 exp

[
1

Xz(�0)

]
, (12)

which is the familiar result one recovers for the “standard”
Kondo effect in metals [34].

(ii) κ < 0. In this case, the explicit solution of Eqs. (9) is
given by

Xz(�) = √−κ tan

{
atan

[
Xz(�0)√−κ

]
+ √−κ ln

(
�

�0

)}
,

X(�) =
√

−κ + X2
z (�), (13)

which yields

�∗ ∼ �0 exp

⎡
⎣π − 2 atan

(
Xz(�0)√|κ|

)
2
√|κ|

⎤
⎦. (14)

(iii) κ > 0. In this case one obtains

Xz(�) = −√
κ

⎧⎨
⎩

[Xz(�0) − √
κ]
(

�
�0

)2
√

κ + [Xz(�0) + √
κ]

[Xz(�0) − √
κ]
(

�
�0

)2
√

κ − [Xz(�0) + √
κ]

⎫⎬
⎭,

X(�) =
√

−κ + X2
z (�). (15)

As a result, we obtain

�∗ ∼ �0

{
Xz(�0) + √

κ

Xz(�0) − √
κ

}
1/2

√
κ . (16)

To provide some realistic estimates of �∗, in Fig. 3 we plot
�∗/�0 as a function of the repulsive interaction potential V ,
keeping fixed all the other system parameters (see the caption
for the numerical values of the various parameters). The two
plots we show correspond to different values of J ′. We see that,
as expected, at any value of V/J , �∗ decreases on increasing J ′.
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We observe that with realistically small values of V/J , say
between 0 and 0.5, one has a value of the Kondo length order
of 20 sites (for J ′/J = 0.2) and five sites (for J ′/J = 0.6),
that should detectable from experimental data.

Also, we note a remarkable decrease of �∗ with V/J and,
in particular, a finite �∗ even at extremely small values of
V , which correspond to negative values of J ′

z and, thus, to
an apparently ferromagnetic Kondo coupling between the
impurity and the chain. In fact, in order for the Kondo coupling
to be antiferromagnetic, and, thus, to correspond to a relevant
boundary perturbation, one has to either have both J ′ and
J ′

z positive, or the former one positive, the latter negative.
In our case, the RG equations in Eqs. (9) show how the β

function for the running coupling X(= G) is proportional
to XzG, rather than to GzG. Thus, what matters here is the
fact that Xz − Gz = 1 − 1

2g
> 0, which makes Xz(�0) positive

even though Gz(�0) is negative. As a result, even when both
J ′ and J ′

z are negative as it may happen, for instance, if one
starts from a BH model with V ∼ 0, one may still recover a
Kondo-like RG flow and find a finite �∗, as evidenced by the
plots in Fig. 3.

Being an invariant quantity along the RG trajectories, here
�∗ plays the same role as ξK in the ordinary Kondo effect,
that is, once the RG trajectories for the running strengths are
constructed by using the system size � as driving variable, all
the curves are expected to collapse onto each other, provided
that, at each curve, � is rescaled by the corresponding �∗
[2,34,81,82].

In fact, in the specific type of system we are focusing on,
that is, an ensemble of cold atoms loaded on a pertinently
engineered optical lattice, it may be difficult to vary � by,
in addition, keeping the filling constant (not to affect the
parameters of the effective Luttinger liquid model Hamiltonian
describing the system). Yet, one may resort to a fully
complementary approach in which, as we highlight in the
following, the length �, as well as the filling f , are kept fixed
and, taking advantage of the scaling properties of the Kondo
RG flow, one probes the scaling properties by varying �∗.
Indeed, from our Eqs. (12), (14), and (16), one sees that in all
cases of interest, the relation between �∗ and the microscopic
parameters characterizing the impurity Hamiltonian is known.
As a result, one can in principle arbitrarily tune �∗ at fixed �

by varying the tunable system parameter. As we show in the
following, this provides an alterative way for probing scaling
behavior, more suitable to an optical lattice hosting a cold
atom condensate. In order to express the integrated RG flow
equations for the running parameters as a function of � and
�∗, it is sufficient to integrate the differential equations in
Eqs. (9) from �∗ up to �. As a result, one obtains the following
equations:

(i) For κ = 0,

X(�) = Xz(�) = Xz(�0)

− ln
(

�
�∗

) . (17)

(ii) For κ < 0,

Xz(�) = √−κ tan

{
π

2
− √−κ ln

(
�∗
�

)}
,

(18)
X(�) =

√
−κ + X2

z (�).

(iii) For κ > 0,

Xz(�) = √
κ

⎧⎨
⎩

(
�∗
�

)2
√

κ+(
�∗
�

)2
√

κ − 1

⎫⎬
⎭,

(19)
X(�) =

√
−κ + X2

z (�).

From Eqs. (17)–(19), one therefore concludes that, once
expressed in terms of �/�∗, the integrated RG flow for the
running coupling strengths only depends on the parameter κ .
Curves corresponding to the same values of κ just collapse
onto each other, independently of the values of all the other
parameters.

We pause here for an important comment. As discussed
in [9], in the spin chain realization of the Kondo model, one
exactly retrieves the equation of the conventional Kondo effect
at g = 1/2 only after adding a frustrating second-neighbor
interaction, thus resorting to the so-called J1 − J2 model
Hamiltonian. In principle, the same would happen for the
XXX spin chain with nearest-neighbor interaction only, except
that, strictly speaking, the correspondence is exactly realized
only in the limit of an infinitely long chain. In the case of
finite chains, the presence of a marginally irrelevant Umklapp
operator may induce finite-size violations from Kondo scaling
which, as stated above, disappear in the thermodynamic limit.
Yet, as this point is mostly of interest because it may affect the
precision of numerical calculations, we do not address it here
and refer to Ref. [9] for a detailed discussion of this specific
topic.

Another important point to stress is that, strictly speaking,
we have so far neglected the possible effects of the asymmetry
(J ′

L �= J ′
R and J ′

z,L �= J ′
z,R) versus symmetry (J ′

L = J ′
R and

J ′
z,L = J ′

z,R) in the bare couplings. In fact, the nature of
the stable Kondo fixed point reached by the system in the
large scale limit deeply depends on whether or not the bare
couplings between the impurity and the chains are symmetric.
Nevertheless, as we argue in the following, one sees that, while
the nature of the Kondo fixed point may be quite different in
the two cases (two-channel versus one-channel spin-Kondo
fixed point), one can still expect to be able to detect the onset
of the Kondo regime and to probe the corresponding Kondo
length by looking at the density-density correlations in real
space, though the correlations themselves behave differently
in the two cases. We discuss at length about this latter point
in the next section. Here, we rather discuss the nature of the
Kondo fixed point in the two different situations, starting with
the case of symmetric couplings between the impurity and the
chains.

When J ′
L = J ′

R and J ′
zL = J ′

zR , since, to leading order in
the running couplings, there is no mixing between the L- and
the R-coupling strengths, the L-R symmetry is not expected
to be broken all the way down to the strongly coupled fixed
point which, consequently, we identify with the two-channel
spin-chain Kondo fixed point, in which the impurity is healed
and the two chains have effectively joined into a single uniform
chain. Due to the L-R symmetry, one can readily show that all
the allowed boundary operators at the strongly coupled fixed
point are irrelevant [53,54], leading to the conclusion that the
two-channel spin-Kondo fixed point is stable, in this case.
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Concerning the effects of the asymmetry, on comparing the
scale dimensions of the various impurity boundary operators,
one expects them to be particularly relevant if the asymmetry
is realized in the transverse Kondo coupling strengths, that is,
if one has J ′

L � J ′
R . We assume that this is the case which,

moving to the dimensionless couplings, implies GL(�0) �
GR(�0). Due to the monotonicity of the integrated RG curves,
we expect that this inequality keeps preserved along the
integrated flow, that is, GL(�) � GR(�) at any scale � � �0. In
analogy with the standard procedure used with multichannel
Kondo effect with nonequivalent channels, one defines �∗ as
the scale at which the larger running coupling GL(�) diverges,
which is the signal of the onset of the nonperturbative regime.
Due to the coupling asymmetry, we then expect GR(�∗) � 1,
that is, at the scale � ∼ �∗, the system may be regarded as
a semi-infinite chain at the left-hand side, undergoing Kondo
effect with an isolated magnetic impurity, weakly interacting
with a second semi-infinite chain, at the right-hand side. To
infer the effects of the residual coupling, one may assume that,
at � ∼ �∗, the impurity is “reabsorbed” in the left-hand chain
[53,54], so that this scenario will consist of the left-hand chain,
with one additional site, connected with a link of strength
∼GR(�∗) to the endpoint of the right-hand chain. Within the
bosonization approach, the weak link Hamiltonian is given by
[77]

V
Asym
B ∼ −GR(�∗)e(i/

√
2)[�L(0)−�R (0)] + H.c. (20)

V
Asym
B has scaling dimension 1

g
. Depending on whether g > 1,

or g < 1, it can therefore be either relevant, or irrelevant (or
marginal if g = 1). When relevant, it drives the system towards
a fixed point in which the weak link is healed. When irrelevant,
the fixed point corresponds to the two disconnected chains.
In either case, the residual flow takes place after the onset of
Kondo screening. We therefore conclude that Kondo screening
takes place in the left-hand chain only and, accordingly, one
expects to be able to probe �∗ by just looking at the real-space
density-density correlations in that chain only. From the above
discussion we therefore conclude that Kondo effect is actually
realized at a chain with an effective spin-1/2 impurity whether
or not the impurity couplings to the chains are symmetric,
though the fixed point the system is driven to along the RG
trajectories can be different in the two cases.

IV. DENSITY-DENSITY CORRELATIONS AND
MEASUREMENT OF THE KONDO LENGTH

In analogy to the screening length ξK in the standard Kondo
effect [83,84], in the spin chain realization of the effect, the
screening length �∗ is identified with the typical size of a cluster
of spins fully screening the moment of the isolated magnetic
impurity, either lying at one side of the impurity itself (in the
one-channel version of the effect-side impurity at the end of a
single spin chain), or surrounding the impurity on both sides
(two channel version of the effect-impurity embedded within
an otherwise uniform chain).

So far, �∗ showed itself as quite an elusive quantity to ex-
perimentally detect, both in electronic Kondo effect, as well as
in spin Kondo effect [33]. In this section, we propose to probe
�∗ in the effective spin-1/2 XXZ chain describing the BH

model, by measuring the integrated real-space density-density
correlation functions. Real-space density-density correlations
in atomic condensates on an optical lattice can be measured
with a good level of accuracy (see, e.g., Refs. [35,85]). Given
the mapping between the BH and the spin-1/2 XXZ spin
Hamiltonian, real-space density-density correlation functions
are related via Eq. (3) to the correlation functions of the
z component of the effective spin operators in the XXZ

Hamiltonian (local spin-spin susceptibility), which eventually
enables us to analytically compute the correlation function
within spin-1/2 XXZ spin chain Hamiltonian framework. The
idea of inferring information on the Kondo length by looking at
the scaling properties of the real-space local spin susceptibility
was put forward in Ref. [86]. In the specific context of lattice
model Hamiltonians, the integrated real-space correlations
have been proposed as a tool to extract ξK in a quantum dot,
regarded as a local Anderson model, interacting with itinerant
lattice spinful fermions [81]. Specifically, letting SG denote the
spin of the isolated spin-1/2 impurity and Sj the spin operator
in the site j , assuming that the impurity is located at one of the
end points of the chain and that the whole model, including
the term describing the interaction between SG and the spins
of the chain, is spin-rotational invariant, one may introduce
the integrated real-space correlation function �(x), defined as
[81]

�(x) = 1 +
x∑

y=1

[ 〈SG · Sy〉
〈SG · SG〉

]
. (21)

The basic idea is that the first zero of �(x) one encounters
in moving from the location of the impurity identifies the
portion of the whole chains containing the spins that fully
screen SG. Once one has found the solution of the equation
�(x = x∗) = 0 , one therefore naturally identifies x∗ with �∗.
It is important to stress that this idea equally applies whether
one is considering the spin impurity at just one side of the chain
(one-channel spin chain Kondo) or embedded within the chain
(two-channel spin chain Kondo). Thus, while in the following
we mostly consider the two-channel case, we readily infer that
our discussion applies also to the one-channel case.

To adapt the approach of Ref. [81] to our specific case,
first of all, since our impurity is located at the center of the
chain, one has to modify the definition of �(x) to sum over j

running from −x to x. In addition, in our case both the bulk
spin-spin interaction as well as the effective Kondo interaction
with the impurity are not isotropic in the spin space. This
requires modifying the definition of �(x), in analogy to what
is done in Ref. [81] in the case in which an applied magnetic
field breaks the spin rotational invariance. Thus, to probe �∗ we
use the integrated z component of the spin-correlation function
�z(x), defined as

�z(x) = 1 +
x∑

y=−x

[〈
Sz

GSz
y

〉 − 〈
Sz

G

〉〈
Sz

y

〉
〈
Sz

GSz
G

〉 − 〈
Sz

G

〉2
]
. (22)

In general, estimating �∗ from �z(x) would require exactly
computing the spin-spin correlation functions by means of
a numerical technique, such as it is done in Ref. [81]—
nevertheless one in general expects that the estimate of �∗
obtained using perturbative RG differs by a factor order of 1

033603-8



KONDO LENGTH IN BOSONIC LATTICES PHYSICAL REVIEW A 96, 033603 (2017)

Σ z(x)Σ z(x)

0.0

(a)

x
0.0

(b)

x

2.12.1

0.3
0.6
0.9

0.3
0.6
0.9

1 2015 301 5201 25 30151025 30

FIG. 4. (a) Plot of �z(x) vs x for U/J = 4, V = 0 (corresponding
to � = −0.1875), and J ′/J = 0.2. From the plot one infers �∗ ∼ 26,
which is in good agreement with the value obtained from the plot in
Fig. 3(a). (b) Same as before, but with V/J = 2.1875 (corresponding
to � = 0.2) and J ′/J = 0.1. As expected, the lower value of J ′ yields
a larger �∗ ∼ 32.

from the one obtained by nonperturbative, numerical means.
For the purpose of showing the consistency between the
estimate of �∗ from the spin-spin correlation functions and the
results from the perturbative analysis of Sec. III, one therefore
expects it to be sufficient to resort to a perturbative (in J ′

z,J
′)

calculation of �z(x), eventually improved by substituting the
bare coupling strengths with the running ones, computed at
an appropriate scale [34]. To leading order in the impurity
couplings, we obtain

〈
Sz

GSz
y

〉 = −J ′
z,R

∫ ∞

0
dτ Gz,z(y,1; τ |�) , (y > 0),

(23)〈
Sz

GSz
y

〉 = −J ′
z,L

∫ ∞

0
dτ Gz,z(y,1; τ |�) , (y < 0),

with the finite-τ correlation function Gz,z(x,x ′; τ |�) defined in
Eq. (C2). To incorporate scale effects in the result of Eq. (23),
we therefore replace the bare impurity coupling strengths
with the running ones we derived in Sec. III, computed at an
appropriate length scale, which we identify with the size x of
the spin cluster effectively contributing to impurity screening.
Therefore, referring to the dimensionless running coupling
Xz(λ) defined in Eqs. (8), we obtain

�z(x) = 1 − 8J ′
z(x)�

πu

x∑
y=1

∫ ∞

0
dw Gz,z

(
y,1;

πuw

�

∣∣∣∣�
)

= 1 − 8ϕ(�)

[
Xz(x) + 1

2g
− 1

]
�

x∑
y=1

×
∫ ∞

0
dw Gz,z

(
y,1;

πuw

�

∣∣∣∣�
)

, (24)

with ϕ(�) given by

ϕ(�) = arcos
(

�
2

)
π2

√
1 − (

�
2

)2
. (25)

Remarkably, ϕ(�) → 1 as � → 0. In Fig. 4, we show
�z(x) vs x (only the positive part of the graph) for two
paradigmatic situations: in Fig. 4(a) we consider the absence
of nearest-neighbor “bare” density-density interaction (V =
0). In Fig. 4(b) we consider a rather large, presently not
straightforward to be implemented in experiments, value of
V (V/J ∼ 2.2) to show the results for the Kondo length with

a positive value of the XXZ anisotropy parameter. We see that
there is not an important dependence of the Kondo length upon
V , since the main parameter affecting �∗ is actually given by
J ′/J .

From the analysis of Ref. [63], one sees that, even at V =
0, a nonzero attractive density-density interaction between
nearest-neighboring sites of the chain is actually induced by
higher order (in t/U ) virtual processes, which implies that,
for V = 0, g keeps slightly higher than 1. At variance, for
finite V , g can be either larger or smaller than 1, as is the
case in the plot in Fig. 4(b). In both cases we see the effect of
“Friedel-like” oscillations in the density-density correlation,
which eventually conspire to set �z(x) to 0 at a scale x ∼ �∗
(see the caption of the figures for more details on the numerical
value of the various parameters).

In general, Eq. (24) has to be regarded within the context of
the general scaling theory for �z(x) [34]. In our specific case, at
variance with what happens in the “standard” Kondo problem
of itinerant electrons in a metal magnetically interacting with
an isolated impurity [34], the boundary action in Eq. (B12)
contains terms that are relevant as the length scale grows.
In general, in this case a closed-form scaling formula for
physical quantities cannot be inferred from the perturbative
results, due to the proliferation of additional terms generated
at higher orders in perturbation theory [87]. Nevertheless, here
one can still recover a pertinently adapted scaling equation, as
only dimensionless contributions to SB

G effectively contribute
�z(x) to any order in perturbation theory. The point is that,
as we are considering a boundary operator in a bosonized
theory in which the fields �L,R(x,τ ) obey Neumann boundary
conditions at the boundary, the fields �L.R(0,τ ) appearing in
the bosonized formula for Sz

1,L,Sz
1,R in Eqs. (B8) are pinned at a

constant for any τ . As a result, the corresponding contribution
to the boundary interaction reduces to the one in Eq. (B12),
which is purely dimensionless and, therefore, marginal. As
for what concerns the contribution ∝ J ′

L,R , it is traded for a
marginal one once one uses as running couplings the rescaled
variables XL and XR , rather than J ′

L,J ′
R . Now, from Eqs. (B8)

we see that the bosonization formula for Sz
j contains a term that

has dimension d1 = 1 and a term with dimension d2 = (2g)−1.
Taking into account the dynamics of the degrees of freedom of
the chains comprised over a segment of length x, we therefore
may make the scaling ansatz for �z in the form

�z[x,�,Xz,X] = ω̃0

[x

�
,Xz,X

]
+ �1−g ω̃1

[x

�
,Xz,X

]
, (26)

with ω0,ω1 scaling functions. Now, we note that, due to
the existence of the RG invariant κ , which relates to each
other the running parameters Xz and X along the RG
trajectories [Eq. (10) in the perturbative regime], we may trade
ω̃0,1[ x

�
,Xz,X] for two functions ω0,1 of only x

�
and X. As a

final result, Eq. (26) becomes

�z[x,�,Xz,X] = ω0

[x

�
,Xz(x)

]
+ �1−g ω1

[x

�
,Xz(x)

]
. (27)

Equation (27) provides the leading perturbative approximation
at weak boundary coupling, as can be easily checked from
the explicit formula in Eq. (C2). Equation (27) illustrates
how the function we explicitly use in our calculation can
be regarded as just an approximation to the exact scaling
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function for �z(x). A more refined analytical treatment might
in principle be done by considering higher-order contributions
in perturbation theory in SB

G . Alternatively, one might resort to
a fully numerical approach, similar to the one used in Ref. [81].
Yet, due to the absence of an intermediate-coupling phase
transition in the Kondo effect [2], in our opinion resorting to
a more sophisticated approach would improve the quantitative
relation between the microscopic bare system parameters and
the ones in the effective low-energy long-wavelength model
Hamiltonian, without affecting the main qualitative conclusion
about the Kondo screening length and its effects.

For this reason, here we prefer to rely on the perturbative RG
approach extended to the correlation functions which, as we
show before, already provides reliable and consistent results
on the effects of the emergence of �∗ on the physical quantities.

The obtained estimate of ξK , although perturbative, pro-
vides, via the RG relation kBTK = h̄vF /ξK , an estimate of the
Kondo temperature. When the measurements are done at finite
temperature, of course thermal effects affect the estimate of
ξK : we anyway expect that if the temperature is much smaller
than TK , then such effects are negligible. Considering that TK

has been estimated of order of tens of nK [28], and that TK may
be increased by increasing vF , which may be up to hundreds
nK, and by increasing J ′/J , we therefore expect that with
temperatures smaller than the bandwidth one can safely extract
ξK . One should anyway find a compromise since by increasing
J ′/J the Kondo length decreases (and the Kondo effect itself
disappears). A systematic study of thermal effects on the
estimate of ξK is certainly an important subject of future work.

V. CONCLUSIONS

In this paper we have studied the measurement of the Kondo
screening length in systems of ultracold atoms in deep optical
lattices. Our motivation relies primarily on the fact that the
detection of the Kondo screening length from experimen-
tally measurable quantities in general appears to be quite a
challenging task. For this reason, we proposed to perform
the measurement in cold atom setups, whose parameters can
be, in principle, tuned in a controllable way to desired values.

Specifically, after reviewing the mapping between the BH
model at half filling with inhomogeneous hopping amplitudes
onto a spin chain Hamiltonian with Kondo-like magnetic
impurities, we have proposed to extract the Kondo length
from a suitable quantity obtained by integrating the real-space
density-density correlation functions. The corresponding es-
timates we recover for the Kondo length are eventually
found to assume values definitely within the reach of present
experiments (∼ tens of lattice sites for typical values of the
system parameters). We showed that the Kondo length does
not significantly depend on nearest-neighbor interaction V ,
and it mainly depends on the impurity link J ′.

Concerning the Kondo length, a comment is in order for
quantum-optics oriented readers: in a typical measurement of
the Kondo effect at a magnetic impurity in a conducting metal-
lic host, one has access to the Kondo temperature TK , by just
looking at the scale at which the resistance (or the conductance,
in experiments in quantum dots) bends upwards, on lowering
T . The very existence of the screening length ξK is just inferred
from the emergence of TK and from the applicability of

one-parameter scaling to the Kondo regime, which yields ξK =
h̄vF /kBTK . However the latter relation stems from the validity
of the RG approach. Thus, ultimately probing directly ξK in
solid-state samples would correspond to verifying the scaling
in the Kondo limit, which is what makes it hard to actually
perform the measurement. At variance, as we comment for
solid-state oriented readers, in the ultracold gases systems we
investigate here, one can certainly study dynamics (e.g., tilting
the system) but a stationary flow of atoms cannot be (so far)
established, so that the measure of TK may be a hard task to
achieve. Rather surprisingly, as our results highlight, it is the
Kondo length which can be more easily directly detected in
ultracold gases and our corresponding estimates (order of tens
of lattice sites) appear to be rather encouraging in this direction.

Several interesting issues deserve in our opinion further
work: as first, it would be desirable to compare the perturbative
results we obtain in this paper with numerical, nonperturbative
findings in the Bose-Hubbard chain, to determine the cor-
responding correction to the value of �∗. It would be also
important to understand the corrections to the inferred value
of ξK coming from finite temperature effects, that should be
anyway negligible for T (much) smaller that TK . Even more
importantly, we mostly assumed that it is possible to alter
the hopping parameters in a finite region without affecting the
others. This led us to infer, for instance, the existence of the en-
suing even-odd effect—however, having two lasers with σ �
d is a condition that may be straightforwardly implementable.
In this case, one has to deal with generic space-dependent
hopping amplitudes tj ;j+1. It would therefore be of interest to
address, very likely within a fully numerical approach, the fate
of the even-odd effect in the presence of a small modulation in
space of the outer hopping terms. In particular, a theoretically
interesting issue would be the competition between an ex-
tended nonlocal central region and the occurrence of magnetic
and/or nonmagnetic impurities in the chain. Another point to
be addressed is that an on-site nonuniform potential may in
principle be present (even though its effect may be reduced
by hard wall confining potentials) and an interesting task is
to determine the interplay between the Kondo length and the
length scale of such an additional potential.

In conclusion, we believe that our results show that the
possible realization of the setup proposed in this paper could
pave the way to the study of magnetic impurities and, in
perspective, to the experimental implementation of ultracold
realizations of Kondo lattices and detection of the Kondo
length, providing, at the same time, a chance for studying
several interesting many-body problems in a controllable way.
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APPENDIX A: EFFECTIVE WEAK LINK AND KONDO
HAMILTONIANS FOR A SPIN-1/2 X X Z SPIN CHAIN

In this Appendix we review the description of a region
G, singled out by weakening two links in a XXZ spin
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chain, in terms of an effective low-energy Hamiltonian HG.
In particular, we show how, depending on whether the number
of sites contained within G is odd or even, either HG coincides
with the Kondo Hamiltonian HK in Eq. (5), or it describes a
weak link between two “half-chains” [75,76].

In general, Kondo effect in spin-1/2 chains has been studied
for an isolated magnetic impurity (the “Kondo spin”), which
may either lie at the end of the chain (boundary impurity), or at
its middle (embedded impurity) [53,54]. In the former case, the
impurity can be realized by “weakening” one link of the chain;
in the latter case, instead, it can be realized by weakening two
links in the body of the chain. Following the discussion in
Sec. III of the main text, here we mostly focus on the latter
case. In general, in a spin chain, impurities may be realized as
extended objects, as well, that is, as regions containing two, or
more, sites. Whether the Kondo physics is realized, or not, does
actually depend on whether the level spectrum of the isolated
impurity takes, or not, a degenerate ground state. A doubly
degenerate ground state is certainly realized in an extended
region with an odd number of sites, without explicit breaking
of “spin inversion” symmetry (that is, in the absence of local
“magnetic fields”). For instance, let us consider a central region
realized by three sites (j = −1,0,1), lying between the weak
links. Let the central region Hamiltonian be given by

H middle
3J = −J

(
S+

−1S
−
0 +S+

0 S−
1 + H.c.

)+J z
(
Sz

−1S
z
0 +Sz

0S
z
1

)
,

(A1)

and let the central region be connected to the left-hand chain
(which, as in the main text, we denote by the label L), and to
the right-hand chain (denoted by the label R) with the coupling
Hamiltonian

Hcoupling = −(J ′
LS+

1,LS−
−1 + J ′

RS+
1,RS−

1 + H.c.)

+ (J ′
z,LSz

1,LSz
−1 + J ′

z,RSz
1,RSz

1). (A2)

A simple algebraic calculation shows that the ground state
of H middle

3J is doubly degenerate and consists of the spin-1/2
doublet given by∣∣∣∣1

2

〉
2

= 1√
2

{
sin

(
θ

2

)
[↑↑↓〉 + |↓↑↑〉]

+
√

2 cos

(
θ

2

)
|↑↓↑〉

}
, (A3)

and ∣∣∣∣−1

2

〉
2

= 1√
2

{
sin

(
θ

2

)
[↓↓↑〉 + |↑↓↓〉]

+
√

2 cos

(
θ

2

)
|↓↑↓〉

}
, (A4)

with

cos(θ ) = Jz√
2J 2 + Jz

, cos(θ ) =
√

2J√
2J 2 + Jz

, (A5)

whose energy is given by E
1/2
2 = −Jz − √

J 2
z + 2J 2. Defining

an effective spin-1/2 operator for the central region, SG, as

S+
G ≡

∣∣∣∣1

2

〉
22

〈
−1

2

∣∣∣∣, Sz
G ≡ 1

2

∑
b=±1

b

∣∣∣∣b1

2

〉
22

〈
b

1

2

∣∣∣∣, (A6)

allows us to rewrite H middle
3J + Hcoupling as

V 3J
B = −{[J ′

L sin(θ )S+
1,L+J ′

RS+
1,R]S−

G +[J ′
LS−

1,L+J ′
RS−

1,R]S+
G}

+ cos(θ )[J ′
z,LSz

1,L + J ′
z,RSz

1,R]Sz
G. (A7)

Thus, we see that we got back to the spin-1/2 spin chain
Kondo Hamiltonian, with a renormalization of the boundary
couplings, according to

J ′
L(R) −→ J ′

L(R) sin(θ ) =
√

2J ′
L(R)J√

2J 2 + Jz

,

(A8)

J ′
z,L(R) −→ J ′

z,L(R) cos(θ ) = J ′
z,L(R)Jz√
2J 2 + Jz

.

A local magnetic field h may break the ground-state degener-
acy, thus leading, in principle, to the breakdown of the Kondo
effect. However, in analogy to what happens in a Kondo dot in
the presence of an external magnetic field [7,8,88], Kondo
physics should survive, at least as long as h � EK , with
EK (∼kBTK ) being the typical energy scale associated to the
onset of Kondo physics.

At variance, when the central region is made by an even
number of sites, the ground state is not degenerate anymore.
As a consequence, the central region should be regarded as a
weak link between two chains. For instance, we may consider
the case in which the central region is made by two sites. Using
for the various parameters the same symbols we used above,
performing a SW resummation, we obtain the effective weak
link boundary Hamiltonian,

V 2J
B = −λ⊥

(
S+

L,1S
−
R,1 + S+

R,1S
−
L,1

) − λzS
z
L,1S

z
R,1, (A9)

with

λ⊥ ∼ (J ′)2

J + 2Jz

, λz ∼ (J ′
z)2

2J
. (A10)

APPENDIX B: BOSONIZATION APPROACH TO
IMPURITIES IN THE X X Z SPIN CHAIN

In this section we review the bosonization approach to
the XXZ spin chain as it was originally developed in
Refs. [53,54]. As a starting point, we consider a single,
homogeneous spin-1/2 XXZ spin chain, with � sites, obeying
open boundary conditions at its endpoints, described by the
model Hamiltonian HXXZ, given by

HXXZ = −J

�−1∑
j=1

(S+
j S−

j+1 + S+
j+1S

−
j ) + J z

�−1∑
j=1

Sz
jS

z
j+1. (B1)

The low-energy, long-wavelength dynamics of such a chain is
described [53] in terms of a spinless, real bosonic field �(x,τ )
and of its dual field �(x,τ ). The imaginary time action for �

is given by

SE[�] = g

4π

∫ β

0
dτ

∫ �

0
dx

[
1

u

(
∂�

∂τ

)2

+ u

(
∂�

∂x

)2
]
,

(B2)
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where the constants g,u are given by

g = π

2
[
π − arccos

(
�
2

)] , u = vf

⎡
⎣π

2

√
1 − (

�
2

)2

arccos
(

�
2

)
⎤
⎦, (B3)

with vf = 2dJ , d being the lattice step, and � = J z/J .
The fields � and � are related to each other by the
relations ∂�(x,τ )

∂x
= 1

u

∂�(x,τ )
∂x

, and ∂�(x,τ )
∂x

= 1
u

∂�(x,τ )
∂x

. A careful
bosonization procedure shows that, in addition to the free
Hamiltonian in Eq. (B2), an additional sine-Gordon, Umklapp
interaction arises, given by

H SG
L = −GU

∫ �

0
dx cos[2

√
2�(x)]. (B4)

Since the scaling dimension of H SG
L is hU = 4g, it will be

always irrelevant within the window of values of g we are
considering here, that is, 1/2 < g. In fact, H SG

L becomes
marginally irrelevant at the “Heisenberg point,”, g = 1/2
which deserves special attention [9], though we do not consider
it here. Within the continuous bosonic field framework, the
open boundary conditions of the chain are accounted for
by imposing Neumann-like boundary conditions on the field
�(x,τ ) at both boundaries [76,89–91], that is

∂�(0,τ )

∂x
= ∂�(�,τ )

∂x
= 0. (B5)

Equation (B5) implies the following mode expansions for
�(x,τ ) and �(x,τ ):

�(x,τ ) =
√

2

g

{
q − iπuτ

�
P

+ i
∑
n�=0

α(n)

n
cos

[πnx

�

]
e−(πn/�)uτ

}
,

�(x,τ ) =
√

2g

{
θ + πx

�
P

+
∑
n�=0

α(n)

n
sin

[πnx

�

]
e−(πn/�)uτ

}
, (B6)

with the normal modes satisfying the algebra

[q,P ] = i, [α(n),α(n′)] = nδn+n′,0. (B7)

The bosonization procedure allows for expressing the spin
operators in terms of the � and � fields. The result is [92]

S+
j −→ {

c(−1)j e(i/
√

2)�(xj ,τ ) + be(i/
√

2)�(xj ,τ )+i
√

2�(xj ,τ )
}
,

Sz
j −→

[
1√
2π

∂�(xj ,τ )

∂x
+ a(−1)j sin[

√
2�(xj ,τ )]

]
.

(B8)

The numerical parameters a,b,c in Eq. (B8) depend only
on the anisotropy parameter � = Jz/J [92–96]. While their
actual values is not essential to the RG analysis in Sec. III, it
becomes important when computing the real-space correlation
functions of the chain within the bosonization approach, in
which case one may refer to the extensive literature on the
subject, as we do in Sec. IV.

To employ the bosonization approach to study an impurity
created between the L and the R chain, we start by doubling
the construction outlined above, to separately bosonize the two
chains with open boundary conditions [which is appropriate in
the limit of a weak interaction strength for either HK in Eq. (5),
or V 2J

B in Eq. (A9)]. Therefore, on introducing two pairs of
conjugate bosonic fields �L,�L and �R,�R to describe the
two chains, the corresponding Euclidean action is given by

SE[�L,�R] = g

4π

∫ β

0
dτ

∫ �

0
dx

×
∑

X=L,R

[
1

u

(
∂�X

∂τ

)2

+ u

(
∂�X

∂x

)2
]
, (B9)

supplemented with the boundary conditions

∂�L(x,0)

∂x
= ∂�L(�,τ )

∂x
= 0,

∂�R(x,0)

∂x
= ∂�R(�,τ )

∂x
= 0.

(B10)

Taking into account the bosonization recipe for the spin-1/2
operators, Eqs. (B8), one obtains that, in the case in which G
contains an even number of sites (and is, therefore, described
by the prototypical impurity Hamiltonian V 2J

B ), the effective
weak link impurity between the two chains is described by the
Euclidean action

SB
G = −λ⊥

∫ β

0
dτ {e(i/

√
2)[�L(τ )−�R (τ )]+e−(i/

√
2)[�L(τ )−�R (τ )]}

− λz

2π2

∫ β

0
dτ

∂�L(τ )

∂x

∂�R(τ )

∂x
, (B11)

with �L,R(τ ) ≡ �L,R(0,τ ), and �L,R(τ ) ≡ �L,R(0,τ ). Simi-
larly, in the case in which G contains an odd number of sites,
in bosonic coordinates, the prototypical Kondo Hamiltonian
HK yields to the Euclidean action given by

SB
G = −

∫ β

0
dτ {[J ′

Le(i/
√

2)�L(τ ) + J ′
Re(i/

√
2)�R (τ )]S−

G + H.c.}

+ 1√
2π

∫ β

0
dτ

{[
J ′

z,L

∂�L(τ )

∂x
+ J ′

z,R

∂�R(τ )

∂x

]
Sz

G

}
.

(B12)

Equation (B12) provides the starting point to perform the RG
analysis for the Kondo impurity of Sec. III. To illustrate in
detail the application of the RG approach to link impurities in
spin chains, in the following part of this appendix we employ it
to study the weak link boundary action in Eq. (B11). Following
the standard RG recipe, to describe how the relative weight of
the impurity interaction depends on the reference cutoff scale
of the system, we have to recover the corresponding RG scaling
equations for the running coupling strengths associated to λz

and to λ⊥. This is readily done by resorting to the Abelian
bosonization approach to spin chains applied to the boundary
action in Eq. (B11) [53]. From Eq. (B11) one readily recovers
the scaling dimensions of the various terms from standard
Luttinger liquid techniques, once one has assumed the mode
expansions in Eqs. (B6) for the fields �L(x,τ ),�L(x,τ ), as
well as �R(x,τ ),�R(x,τ ) [53,54]. Specifically, one finds that
the term ∝ λ⊥ has scaling dimension h⊥ = 1

g
, while the term
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∝ λz has scaling dimension h‖ = 2. As we use the chain
length � as scaling parameter of the system, to keep in touch
with the standard RG approach, we define the dimensionless
running coupling strengths L⊥(�) = ( �

�0
)
1−1/g λ⊥

J
and L‖(�) =

( �
�0

)
−1 λz

J
, with �0 being a reference length scale (see below for

the discussion on the estimate of �0). To leading order in the
coupling strengths, we obtain the perturbative RG equations
for the running parameters given by [77]

dL⊥(�)

d ln
(

�
�0

) =
[

1 − 1

g

]
L⊥(�),

(B13)
dL‖(�)

d ln
(

�
�0

) = −L‖(�).

Equations (B13) encode the main result concerning the
dynamics of a weak link in an otherwise uniform XXZ chain
[53,76,79]. Leaving aside the trivial case g = 1, corresponding
to effectively noninteracting JW fermions, which do not induce
any universal (i.e., independent of the bare values of the system
parameters) flow towards a conformal fixed point, we see
that the behavior of the running strengths on increasing � is
drastically different, according to whether g < 1 (� > 0), or
g > 1 (� < 0). In the former case, both h⊥ and h‖ are > 1,
which implies that V 2J

B is an irrelevant perturbation to the
disconnected fixed point. The impurity interaction strengths
flow to zero in the low-energy, long-wavelength limit, that is,
under RG trajectories, the system flows back towards the fixed
point corresponding to two disconnected chains. At variance,
when g > 1, L⊥(�) grows along the RG trajectories and the
system flows towards a “strongly coupled” fixed point, which
corresponds to the healed chain, in which the weak link has
been healed within an effectively uniform chain obtained by
merging the two side chains with each other [77]. The healing
takes place at a scale � ∼ �Heal, with [75,76]

�Heal ∼ �0

(
1

L(�0)

)g/(g−1)

. (B14)

As we see from Eq. (B14), defining �Heal requires introducing
a nonuniversal, reference length scale �0. �0 is (the plasmon
velocity times) the reciprocal of the high-energy cutoff D0 of

our system. To estimate D0, we may simply require that we cut
off all the processes at energies at which the approximations
we employed in Appendix B to get the effective boundary
Hamiltonians break down. This means that D0 must be of the
order of the energy difference δE between the ground state(s)
and the first excited state of the central region Hamiltonian.
From the discussion of Appendix B, we see that δE ∼ J ,
which, since we normalized all the running couplings to J ,
implies �0 ∼ d, d being the lattice step of the microscopic
lattice Hamiltonian describing our spin system. To conclude,
it is important to stress that, though an RG invariant length
scale �Heal emerges already at a weak link between two chains
with � < 0, there is no screening cloud associated to this
specific problem. Indeed, in the case of a weak link impurity,
the healing of the chain is merely a consequence of repeated
scattering off the Friedel oscillations due to backscattering
at the weak link [97–99], which conspire to fully heal the
impurity at a scale �Heal. At variance, when there is an active
spin-1/2 impurity, the density oscillations are no longer simply
determined by the scattering by Friedel oscillations, but there
is also the emergence of the Kondo screening cloud induced
in the system [79].

APPENDIX C: BOSONIZATION RESULTS FOR THE
CORRELATION FUNCTIONS BETWEEN SPIN
OPERATORS AT FINITE IMAGINARY TIME

In this Appendix we provide the generalization of the
equal-time spin-spin correlation functions on an open chain,
derived in Ref. [92], to the case in which the spin op-
erators are computed at different imaginary times τ,τ ′.
As discussed in the main text, such a generalization is a
necessary step in order to compute the contributions to the
spin correlations due to the impurity interaction in SB

G . The
starting point is provided by the finite-τ bosonic operators
over a homogeneous, finite-size chain of length �, which
we provide in Eqs. (B6) of the main text. Inserting those
formulas for �(x,τ ) and �(x,τ ) in the bosonic formulas
in Eqs. (B8) and computing the imaginary-time ordered
correlation functions G+,−(x,x ′; τ |�) = 〈Tτ S

+
x (τ )S−

x ′ (0)〉 and
Gz,z(x,x ′; τ |�) = 〈Tτ S

z
x(τ )Sz

x ′ (0)〉, one obtains

G+−(x,x ′; τ |�)

= c2(−1)x−x ′
∣∣∣∣2�

π
sin

(πx

�

)∣∣∣∣
1/4g∣∣∣∣2�

π
sin

(
πx ′

�

)∣∣∣∣
1/4g∣∣∣∣2�

π
sinh

( π

2�
[uτ +i(x − x ′)]

)∣∣∣∣
−1/2g∣∣∣∣2�

π
sinh

( π

2�
[uτ +i(x+x ′)]

)∣∣∣∣
−1/2g

+ b2

∣∣∣∣2�

π
sin

(πx

�

)∣∣∣∣
1/4g−g∣∣∣∣2�

π
sin

(
πx ′

�

)∣∣∣∣
1/4g−g∣∣∣∣2�

π
sinh

( π

2�
[uτ +i(x − x ′)]

)∣∣∣∣
−1/2g−2g∣∣∣∣2�

π
sinh

( π

2�
[uτ +i(x+x ′)]

)∣∣∣∣
−1/2g+2g

+ bc sgn(x−x ′)
∣∣∣∣2�

π
sin

(πx

�

)∣∣∣∣
1/4g∣∣∣∣2�

π
sin

(
πx ′

�

)∣∣∣∣
1/4g∣∣∣∣2�

π
sinh

( π

2�
[uτ +i(x−x ′)]

)∣∣∣∣
−1/2g∣∣∣∣2�

π
sinh

( π

2�
[uτ +i(x+x ′)]

)∣∣∣∣
−1/2g

×
[

(−1)x
∣∣∣∣2�

π
sin

(
πx ′

�

)∣∣∣∣
−g

− (−1)x
′
∣∣∣∣2�

π
sin

(πx

�

)∣∣∣∣
−g

]
, (C1)
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as well as

Gzz(x,x ′; τ |�)

= − g

4�2

{[
1 − cosh

(
πuτ

�

)
cos

(
π(x−x ′)

�

)
[
1+cos2

(
π(x−x ′)

�

) − 2 cos
(

π(x−x ′)
�

)
cosh

(
πuτ

�

)+sinh2
(

πuτ
�

)]
]

+
[

1 − cosh
(

πuτ
�

)
cos

(
π(x+x ′)

�

)
[
1+cos2

(
π(x+x ′)

�

) − 2 cos
(

π(x+x ′)
�

)
cosh

(
πuτ

�

)+sinh2
(

πuτ
�

)]
]}

+ a2

2
(−1)x−x ′

∣∣∣∣2�

π
sin

(πx

�

)∣∣∣∣
−g∣∣∣∣2�

π
sin

(
πx ′

�

)∣∣∣∣
−g

×
⎧⎨
⎩
∣∣∣∣∣ sinh

{
π
2�

[uτ +i(x − x ′)]
}

sinh
{

π
2�

[uτ +i(x+x ′)]
}
∣∣∣∣∣
−2g

−
∣∣∣∣∣ sinh

{
π
2�

[uτ +i(x − x ′)]
}

sinh
{

π
2�

[uτ +i(x+x ′)]
}
∣∣∣∣∣
2g
⎫⎬
⎭ − aig

2�
(−1)x

′
∣∣∣∣2�

π
sin

(
πx ′

�

)∣∣∣∣
−g

×
{

coth

[
π

2�
[uτ +i(x+x ′)]

]
− coth

[
π

2�
[uτ − i(x+x ′)]

]
− coth

[
π

2�
[uτ +i(x − x ′)]

]
+coth

[
π

2�
[uτ − i(x − x ′)]

]}

− aig

2�
(−1)x

∣∣∣∣2�

π
sin

(πx

�

)∣∣∣∣
−g

×
{

coth

[
π

2�
[uτ +i(x+x ′)]

]
− coth

[
π

2�
[uτ − i(x+x ′)]

]
+coth

[
π

2�
[uτ +i(x − x ′)]

]
− coth

[
π

2�
[uτ − i(x − x ′)]

]}
.

(C2)

As stated above, Eqs. (C1) and (C2) provide the finite-τ generalization of Eqs. (8a) and (8b) of Ref. [92], to which they reduce
in the τ → 0 limit.
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