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Many-body formalism for fermions: The partition function
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The partition function, a fundamental tenet in statistical thermodynamics, contains in principle all
thermodynamic information about a system. It encapsulates both microscopic information through the quantum
energy levels and statistical information from the partitioning of the particles among the available energy levels.
For identical particles, this statistical accounting is complicated by the symmetry requirements of the allowed
quantum states. In particular, for Fermi systems, the enforcement of the Pauli principle is typically a numerically
demanding task, responsible for much of the cost of the calculations. The interplay of these three elements—the
structure of the many-body spectrum, the statistical partitioning of the N particles among the available levels,
and the enforcement of the Pauli principle—drives the behavior of mesoscopic and macroscopic Fermi systems.
In this paper, we develop an approach for the determination of the partition function, a numerically difficult
task, for systems of strongly interacting identical fermions and apply it to a model system of harmonically
confined, harmonically interacting fermions. This approach uses a recently introduced many-body method that is
an extension of the symmetry-invariant perturbation method (SPT) originally developed for bosons. It uses group
theory and graphical techniques to avoid the heavy computational demands of conventional many-body methods
which typically scale exponentially with the number of particles. The SPT application of the Pauli principle is
trivial to implement since it is done “on paper” by imposing restrictions on the normal-mode quantum numbers
at first order in the perturbation. The method is applied through first order and represents an extension of the SPT
method to excited states. Our method of determining the partition function and various thermodynamic quantities
is accurate and efficient and has the potential to yield interesting insight into the role played by the Pauli principle
and the influence of large degeneracies on the emergence of the thermodynamic behavior of large-N systems.
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I. INTRODUCTION

A fundamental challenge in many branches of physics is
understanding the emergence of properties of macroscopic
systems. These large systems not only depend on microscopic
information but are believed to be subject to powerful
and general principles of organization. The emergence of
thermodynamic properties at large particle number depends
on collective organizational phenomena that are insensitive
to the details of the microscopic interactions. Such collective
states of matter exhibit what is called universal behavior that
becomes exact in a macroscopic system but typically is inexact
or even nonexistent in a small ensemble.

Recently universal behavior for controlled systems has
been measured in a number of laboratories. Stabilized by
the Pauli exclusion principle, strongly interacting ultracold
Fermi gases exhibit signatures of the unitary regime including
a superfluid phase transition [1–3], a large pairing gap [4–6],
a high ratio of transition temperature Tc to Fermi energy
EF [1–3], and low viscosity [7–9]. Various thermodynamics
quantities have been measured including the compressibility,
the chemical potential, the entropy, the density, the pressure,
and the heat capacity [1,2,5,10–14]. Theoretically this strongly
interacting regime has been shown to obey a set of universal
relations that connect the physics of few-body systems to
many-body systems [15–18]. Universal behavior is also seen
in a variety of other systems of current interest including the
quark-gluon plasmas of the early universe, high-temperature
superconductivity, and nuclear matter including neutron stars.
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Knowledge of the thermodynamics of the unitary gas thus has
consequences for understanding the equation of state in these
other interesting regimes.

Determining thermodynamic quantities theoretically re-
quires the calculation of the partition function, i.e., access to
the full energy spectrum and the corresponding degeneracies
for the many-body states for which the correct symmetry
has been imposed. For systems at higher temperatures that
are weakly interacting, one can model the system using a
continuum approximation such as the Fermi-Dirac distribution
function or use a virial expansion approach [19–24].

In this study, we develop an approach to determine the
partition function that is applicable to the ultracold, strongly
interacting, controlled fermion systems currently of interest in
the laboratory. The canonical partition function Z, a natural
choice for systems with a constant particle number, is given by

Z =
∞∑

j=0

gj exp(−Ej/T ), (1)

where the Ej are the many-body energy levels that correspond
to wave functions with the appropriate symmetry, gj is the de-
generacy of the j th many-body state, and T is the temperature
measured in energy units with the Boltzmann constant kB = 1.

Obtaining this information for strongly interacting systems
presents a challenge theoretically due to the exponential
scaling of complexity as a function of particle number
N . The brute force approach to determining the informa-
tion needed, i.e., energy levels and degeneracies, is decep-
tively straightforward. The diagonalization of the full N -
particle Hamiltonian with the Pauli principle enforced through
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appropriate antisymmetrization of the wave function yields
the N -particle energy levels and their degeneracies. The
diagonalization implicitly performs the partitioning of the
energy among the different particles to yield the correct total
energies, and the multiplicity of each many-body energy gives
the degeneracy for this term in the partition function.

This approach, while conceptually straightforward, is nu-
merically intractable for almost all systems. The ground-state
energy alone requires computer resources that limit exact
solutions using traditional full configuration interaction to
about ten particles [25]. Accurate partition functions can
require thousands if not many millions of energy levels
depending on, among other things, the temperature. To date,
determining the full energy spectrum of systems with four or
more particles remains a challenge [26].

Interestingly, even determining the partition function for
model systems with a completely known spectrum such as
the confined ideal gas presents a nontrivial problem. This fact
directs attention away from the usually challenging task of
obtaining a many-body spectrum to focus on the difficulty
of determining the degeneracies of the many-body states and
enforcing the correct symmetry on those states. Both of these
tasks are typically numerically demanding particularly for
identical fermions which must obey the Pauli principle.

Previous studies on confined ideal gases readily reveal
the challenge of determining an accurate partition function
even with the complete spectrum at hand [27–32]. Exact
recursion relations for the partition function can be formulated
for a confined ideal gas of N identical particles with either
Fermi-Dirac or Bose-Einstein statistics [27,28]. In fact the
partition function of any system whose energies can be written
as a sum of one-particle energies such as harmonium, a
harmonically confined, harmonically interacting system, can
be written recursively [27,33,34]. The resulting recursion
relations are typically feasible only for N � 10. For fermions
these recursion relations suffer from a “sign” problem due to
enforcing the Pauli exclusion principle.

Other attempts to obtain the partition function of the ideal
gas use large-N approximations including a Thomas-Fermi
approximation [30] and the Fermi-Dirac distribution function
[31,32].

Studies for interacting Fermi gases in harmonic traps have
used the Hartree-Fock approximation [35], a path-integral
approach which extracts out the partition function from a
generating function [33,34], a method that determines the
degeneracy of each energy level recursively and then performs
an explicit summation [36], and a virial expansion method that
uses results for two and three particles to get the two lowest
orders [24].

In this paper, we present a conceptually different approach
to the determination of the partition function. Although, in the
present study, we apply it to a model problem, this approach is,
in principle, applicable to systems with realistic interactions
and has the potential to yield new insight into the influence of
the Pauli principle and the degeneracies on the emergence of
macroscopic behavior. It uses a recently introduced extension
of a symmetry-invariant perturbation method (SPT) to fermion
systems [37,38] which was originally developed for bosons
[39–46]. This method uses the symmetry of high dimensions
to bring the powerful methods of group theory and graphical

techniques to bear on the many-body problem of identical
particles. Specifically, we are able to rearrange the numerical
work, which typically scales exponentially with the number of
particles, into analytic building blocks that allow a formulation
that does not scale with particle number N . These analytic
building blocks have been calculated and stored previously,
minimizing the work needed for new calculations. Results
for all N at the same level of approximation, i.e., through
first order in the perturbation, can be obtained simultaneously.
The Pauli principle is applied “on paper,” resulting in trivial
numerical demands compared to conventional methods that
explicitly enforce the antisymmetry of the many-body wave
function. This method was recently successfully applied to
the unitary regime where ground-state energies comparable
in accuracy to benchmark Monte Carlo results for N � 30
were obtained in a few seconds of computer time [37]. We
also performed an explicit test of our method of enforcing
the Pauli principle using an exactly solvable model system
of harmonically confined, harmonically interacting fermions
[38].

In this method, first-order results for the full energy
spectrum are readily accessible in the form of five normal-
mode energies. The first-order spectrum is thus harmonic
and fully known even for nonmodel problems with realistic
interactions. The Pauli principle can be applied very simply
through a trivial normal-mode quantum number assignment for
each term in the infinite sum of states without ever obtaining
the actual wave function. The degeneracy of each energy level
is a natural result of doing a straightforward partitioning of the
number of energy quanta among all N particles into different
normal-mode assignments according to the Pauli principle and
collecting the statistics.

In the following section we give a brief review of the
formalism emphasizing the enforcement of the Pauli principle
and the determination of the full spectrum of excited states at
first order in the perturbation. This constitutes an extension of
the SPT formalism to excited states.

II. THE SPT FORMALISM

The SPT method uses a dimensionally scaled version of the
Schrödinger equation:

H̄� =
(

1

κ(D)
T̄ + V̄eff

)
� = Ē�, (2)

where κ(D) is a scale factor which regularizes the large-
dimension limit [42] and the barred quantities indicate vari-
ables in scaled units (κ(D) = D2/(h̄ω̄ho) for this work; see
Ref. [42]). The term T̄ contains the derivative terms of the
kinetic energy and V̄eff includes centrifugal, two-particle, and
confinement potentials [42].

At large dimension, a totally symmetric configuration of
the N particles is chosen. Each particle has the same radius,
r̄∞, from the center of the confining potential, and the same
angle cosine, γ ∞, with every other particle. This highly
symmetric, δ = 1/D → 0 (D → ∞) structure imparts a point
group structure to the system which is isomorphic to the
symmetric group of N identical objects [47], SN , allowing
a largely analytic solution. The δ → 0 approximation may be
systematically improved by using it as the starting point for a
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perturbation expansion [41] whose terms individually have to
transform as a scalar under the SN point group.

The perturbation series for the energy has the form

Ē = Ē∞ + δ

∞∑
j=0

(δ
1
2 )j Ēj , (3)

where Ēj = 0 ∀ j odd. The j = 0 term is obtained from a
harmonic equation and referred to as the first-order energy.
To obtain this harmonic correction for small values of
δ, we expand about the minimum of the δ → 0 effective
potential.

The harmonic-order Hamiltonian is solved using the FG
matrix method [48] to obtain the normal-mode frequencies
ω̄μ. The N (N + 1)/2 roots, ω̄2

μ, of the secular equation are
highly degenerate due to the SN symmetry, resulting in a
reduction to five distinct roots irrespective of the number of
particles.

Since the FG matrix is invariant under SN , its normal
coordinates must transform under irreducible representations
of SN [49]. The normal coordinates are linear combinations of
the internal displacement vectors r̄i and γij , which transform
under reducible representations of SN . These reduce to two
one-dimensional [N ] irreducible representations denoted by
0+,0−, two (N − 1)-dimensional [N − 1,1] irreducible repre-
sentations denoted by 1+,1−, and one angular (N (N − 3)/2)-
dimensional [N − 2,2] irreducible representation denoted by
2 [39].

The energy through first order in δ is [39]

E = E∞ + δ

⎡
⎣ ∑

μ={0±,1±,2}

(
nμ + 1

2
dμ

)
ω̄μ + vo

⎤
⎦, (4)

where nμ is the total number of quanta in the normal mode with
the frequency ω̄μ; μ is a label which runs over 0+, 0−, 1+, 1−,
and 2, regardless of the number of particles in the system (see
Ref. [39] and see Ref. [15] in Ref. [42]); and vo is a constant.
The 2 normal modes are phonon, i.e., compressional modes;
1+ has single-particle angular behavior while 1− shows single-
particle radial behavior. The 0+ mode describes center-of-mass
motion, and the 0− mode is a symmetric breathing motion.

This energy expression gives the full spectrum of excited
states through the assignment of the normal-mode quantum
numbers that enforce the Pauli principle.

The possible assignments are found by relating the normal-
mode states |n0+ ,n0− ,n1+ ,n1− ,n2〉 to the states of the confining
potential, a spherically symmetric three-dimensional harmonic
oscillator [Vconf(ri) = 1

2mω2
hori

2] for which the restrictions
imposed by antisymmetry are known. These two series of
states can be related in the double limit D → ∞, ωho → ∞,
where both representations are valid. Two conditions result
[38]:

2n0− + 2n1− =
N∑

i=1

2νi, 2n0+ + 2n1+ + 2n2 =
N∑

i=1

li , (5)

where the radial and orbital angular momentum quantum
numbers of the three-dimensional harmonic oscillator, νi and
li , respectively, satisfy ni = 2νi + li , with ni , the energy level

quanta of the ith particle, defined by

E =
N∑

i=1

[
ni + 3

2

]
h̄ωho =

N∑
i=1

[
(2νi + li) + 3

2

]
h̄ωho.

(6)

These equations determine a set of possible normal-mode
states |n0+ ,n0− ,n1+ ,n1− ,n2〉 that are consistent with an anti-
symmetric wave function from the known set of permissible
harmonic oscillator configurations. As particles are added
to the system at the ωho → ∞ limit, additional harmonic
oscillator quanta, νi and li , i.e., additional subshells, are, of
course, needed to satisfy the Pauli principle. Equivalently,
this corresponds to additional normal-mode quanta that must
accompany each new particle to maintain antisymmetry.

III. APPLICATION: HARMONIUM

We studied the model system of harmonically confined,
harmonically interacting, spin-polarized identical fermions.
This model not only constitutes a fully interacting many-body
system but is also a realistic model for various physical
systems such as quantum dots in a magnetic field and trapped
fermions with the interaction parameters adjusted to reproduce
properties of real systems [36], an approach also used in
nuclear and condensed matter physics for many years [50,51].
This system has been the subject of many accurate studies
allowing comparison of the current work with more than one
method, for both attractive and repulsive interactions, and
against benchmark accuracy. The Hamiltonian for harmonium
is

H = 1

2

⎛
⎝ N∑

i

[
− ∂2

∂ r2
i

+ ω2
t r2

i

]
+

N−1∑
i=1

N∑
j>i

ω2
pr2

ij

⎞
⎠. (7)

We obtain the SPT energies using the full formalism,
defining symmetry coordinates from the internal displacement
coordinates and using the FG method to solve for the five
normal coordinates and their frequencies. The normal-mode
frequencies are ω̄0+ = 2, ω̄0− = 2λ, ω̄1+ = 2λ, ω̄1− = 1 + λ,
and ω̄2 = 2λ, where

λ =
√

1 + N λ2
p, (8)

and λp = ωp

ωt
is a measure of the relative strength of the

interaction versus the confinement. For a repulsive interaction
ω2

p and λ2
p are brought in with a negative sign, so 0 < λ < 1,

while an attractive interaction corresponds to positive ω2
p and

λ2
p so λ > 1.

The SPT energies are obtained using Eq. (4) with the
normal-mode quanta nμ determined from Eqs. (5) to ensure
antisymmetry. We choose quanta that correspond to the lowest
values of the normal-mode frequencies to yield the lowest
energy for each excited state. For repulsive interaction, i.e.,
0 < λ < 1, this results in occupation in n0− and n2 which have
the lowest radial and angular frequencies, respectively, while
if λ > 1, i.e., an attractive interaction, the occupation becomes
n1− and n0+ which then have the lowest radial and angular
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frequencies. The conditions are, for repulsive interaction,

2n0− =
N∑

i=1

2νi, 2n2 =
N∑

i=1

li , (9)

and for attractive interaction,

2n1− =
N∑

i=1

2νi, 2n0+ =
N∑

i=1

li . (10)

SPT actually yields the exact energies for this problem
since at this order the Hamiltonian has been transformed into
normal coordinates and yields the normal-mode energies for
the system. This normal-mode spectrum includes energies that
do not correspond to systems which obey the Pauli principle.
Our method of enforcing the Pauli principle chooses only those
energies that correspond to explicitly antisymmetrized wave
functions, which are a small percentage of the full spectrum.

IV. PARTITIONING THE ENERGY AND COLLECTING
STATISTICS: DEGENERACIES

Obtaining the degeneracies of a many-body state is a
nontrivial task. Various ways to obtain this include the straight-
forward diagonalization of the many-body Hamiltonian, re-
cursive methods, and using a high-N approximation such
as the Fermi-Dirac distribution. The present method offers
a conceptually different approach. The sum over levels in the
partition function is a sum over the many-body energy levels
of the three-dimensional harmonically confined, harmonically
interacting system with the N particles distributed among
the available energy levels so the total energy is correct.
The degeneracies of this interacting system do not depend
on the strength of the two-body interaction; i.e., the number
of states that belong to a degenerate level is constant and
does not change with a continuous variation of the interaction.
This means that the correct degeneracy of the many-body
energy levels of the interacting system can be obtained
from the degeneracy of the many-body energy levels of the
noninteracting three-dimensional harmonic oscillator at the
double limit D → ∞, ωho → ∞ where both representations
are valid. For each partition into particular levels with energy
quantum numbers ni , i = 1, . . . ,N , there are sublevels labeled
with the radial and orbital angular momentum quantum
numbers of the three-dimensional harmonic oscillator, νi and
li , respectively, satisfying ni = 2νi + li , and having a defined
sublevel degeneracy of 2li + 1. The many-body degeneracy for
each partition of the energy into specific ni , i = 1, . . . ,N , so
that E = ∑N

i=1 [ni + 3
2 ]h̄ωho can be calculated by determining

the number of ways the particles filling in a sublevel, νi,li , can
be arranged, i.e., using the binomial coefficient for p particles
in m = 2li + 1 states, i.e.,

(
m

p

) = m!
(m−p)!p! . These sublevel

degeneracies are multiplied by other sublevel degeneracies
for this partition, resulting in the degeneracy for this partition.
Given a total many-body energy, there can be many different
partitions (in the same way that change for a dollar can be
made in many different ways given a fixed number of pennies,
nickels, dimes, and quarters) whose degeneracies must be
added together to determine the total many-body degeneracy
for this energy. The sum in the expression for the partition
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FIG. 1. Number of states as a function of Ntot excitation quanta
for 3, 6, and 10 fermions for the harmonically trapped harmonically
interacting gas.

function sums over all many-body energy levels, each of
which must be partitioned among all N particles as described
above and the statistics collected into the correct many-body
degeneracy.

Each partition identifies particular radial and orbital angular
momentum quantum numbers, νi and li , for each level
occupied, and these quantum numbers are then summed as
in Eqs. (5) in order to make the assignments to the normal-
mode quantum numbers that enforce the Pauli principle using
Eqs. (9) and (10) which are used in Eq. (4) to obtain the
corresponding many-body energy of the interacting system
that has the correct symmetry satisfying the Pauli principle
needed in this term in the partition function.

Figure 1 shows the sharp increase in the degeneracy even for
modest increases of the number of quanta and/or the number of
particles. This rapid increase of the degenerate states to many
powers of ten as the energy of the many-body state increases
competes with the decay of the Boltzmann factor to determine
the impact of each term in the partition function.

V. RESULTS

We determined the following thermodynamic quantities:
the free energy F , the energy E, the entropy S, and the heat
capacity CV ,

F = −T ln Z = E − T S, E = T 2 ∂ ln Z

∂T
, CV = ∂E

∂T
,

(11)

for both attractive and repulsive interactions and compared our
SPT results to values in the literature. As discussed above [see
Eqs. (9) and (10)], we chose normal-mode quantum numbers
that enforced the Pauli principle by choosing the quantum
numbers that minimized the energy. We checked that this
choice also maximized the entropy and minimized the free
energy.

Figure 2 shows our SPT results for the free energy for
a system with repulsive interactions compared to a method
that used a combination of the path-integral method and a
symmetrized density matrix formulation with the partition
function itself extracted from a generating function [34].
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FIG. 2. Scaled free energy per particle, f = (F/N )/(h̄λ(6N )1/3),
for a repulsive interaction with λ = 0.8 and 10 particles. Our
SPT results (solid circles) are compared to a path-integral method
(solid diamonds) [34] as a function of scaled temperature t =
kBT /(h̄λN1/3).

Our approach, which does an explicit summation, included
energies corresponding to energy quanta up through 120 in
order to converge the results at t = 2.0 in scaled units of
kBT /(h̄λN1/3). Our results, shown here for N = 10 particles
and λ = 0.8, show excellent agreement with the scaled results
of Ref. [34].

In Fig. 3 we compare our SPT results using an attractive
interaction with λ = 1.5 and N = 10 to a recursive method
introduced by Armstrong and co-workers, which they applied
mostly to two-dimensional systems [36]. To compare to our
three-dimensional results, we extended their work to three
dimensions with the results shown in the plot. The agreement
is quite good. (The agreement is particularly close at the
first three temperatures so we have used slightly different
temperatures for the two methods to spread out the symbols
on the graph.)

FIG. 3. Free energy of the harmonically trapped, harmonically
interacting gas for an attractive interaction with λ = 1.5 and 10
particles. Our SPT results (solid circles) are compared to a recur-
sive method (solid diamonds) [36] as a function of temperature.
The ground-state energy, Egs, is subtracted and the energies and
temperature are in units of h̄ωt .

FIG. 4. Heat capacity SPT results for the harmonically trapped
harmonically interacting gas for an attractive interaction with λ = 1.5
for 6 particles show convergence to the high-temperature limit of
3NkB from the equipartition theorem.

The studies we used for comparison with our SPT results
use quite different approaches to enforce the Pauli principle
and to determine the degeneracies. The path-integral method
obtained the partition function directly after using a permu-
tation matrix to enforce antisymmetry [34]. The recursive
method determined the number of degenerate states of the
correct symmetry recursively for each total number of particles
and total quanta, then performed an explicit summation [36].
Our method agrees very well with both of these studies for
all the thermodynamic quantities tested, for different particle
numbers, for repulsive and attractive interactions, and for low
temperatures where we expect quantum statistical effects to
be important as well as for higher temperatures where we
confirmed the correct thermodynamic limits.

In Fig. 4, we show the results for the SPT heat capacities for
six particles in units of NkB . Our SPT method correctly gives
the high-temperature behavior of 3NkB = 3

2NkB + 3
2NkB as

predicted by the equipartition theorem.

VI. CONCLUSIONS

In a general sense, the partition function for an ensemble of
N particles tells us the number of thermally accessible states
at the temperature of interest. This number depends of course
on the temperature, but, more interesting, it depends on the
structure of the spectrum of energy levels of the appropriate
symmetry and the degeneracies, the number of ways the total
energy of a many-body state can be partitioned among the
N particles. The Pauli principle is known to have a profound
effect on the energy levels as well as the quantum statistics
particularly at low temperature.

This study of the partition function has tested the SPT
method in several ways. It constitutes an extension of the
SPT method to excited states. As previously stated, the
entire spectrum of excited states at first order is accessible
once the normal-mode frequencies are determined even for
real systems with arbitrary interactions. For harmonium, the
first-order energies are actually the exact energies of the
system since the normal-mode coordinates yield an exact
solution for harmonium. The spectrum is determined by
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the application of the Pauli principle, which picks out the
correct normal-mode quantum numbers to choose states that
correspond to antisymmetric wave functions. This study also
constitutes a successful test of the simple enforcement of the
Pauli principle for excited states, yielding thermodynamic
quantities in excellent agreement with independent results.
(Choosing normal-mode quantum numbers not corresponding
to the dictates of the Pauli principle gave erroneous results
for thermodynamic quantities.) The validity of our method
of determining the degeneracies for each many-body energy
as described in Sec. IV also is confirmed by the excellent
agreement of multiple thermodynamic quantities with the
results of independent studies in the literature. Neither of
the methods used for comparison offers a direct check on
the degeneracies themselves.

The method presented in this paper does an explicit
summation of the partition function. Converging the results
for the particle numbers and the temperatures used in this
paper for comparison to the literature was tractable on a
desktop computer with a few hours of time. The increase in
resources needed as the particle number and/or the temperature
increases is severe but does not appear to be exponential. This
is to be expected since we are not obtaining the explicitly
antisymmetrized wave functions for each state in a degenerate
level. However, we are obtaining the normal-mode quantum
numbers that uniquely specify each state within a degenerate
level. This is valuable information that is typically not
obtained in other approaches that seek to avoid determining the

wave function. Knowing the normal-mode quantum numbers
and the corresponding degeneracies that are relevant as N

increases has the potential to yield interesting insight into the
emergence of the collective organizational phenomena that are
characteristic of mesoscopic and macroscopic behavior when
this method is applied to real systems.

In this paper we have developed an approach for the
determination of the partition function for confined, interacting
identical fermions using our simple SPT method of enforcing
the Pauli principle which is trivial to implement. Our first
application has been for harmonically confined, harmonically
interacting fermions, a system interesting in its own right as a
model for various physical systems. We expect the application
to real, strongly interacting systems of fermions will be more
challenging, but the ability to obtain both the full spectrum
of energies through first order and the many-body degen-
eracies needed to determine the partition function without
the considerable numerical expense of obtaining explicitly
antisymmetrized many-body wave functions suggests that this
approach will offer interesting opportunities for the study of
the thermodynamic behavior of real systems of fermions.
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