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Depth-resolved subcycle dynamics of photoionization in solids
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We develop a theoretical framework for the analysis of ultrafast dynamics of photoionization in solids that treats
the electron density buildup resolved within the field cycle jointly with the propagation dynamics of the laser
driver. We show that while the standard, cycle-averaging photoionization models predict a monotonic buildup of
the electron density within the driver pulse, the cycle-resolved photoionization model used in this work reveals a
subcycle modulation of optical properties of a solid, giving rise to complex patterns of reflected and transmitted
fields and providing a source for optical harmonic generation. Propagation effects are shown to heavily distort
the spectra of high-order harmonics. Still, the analysis of harmonic spectra and the temporal structure of the
harmonic field reveals physically significant properties of the nonlinear-optical response, suggesting the existence
of attosecond bursts of interband optical-harmonic emission.
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I. INTRODUCTION

Photoionization in solids has been a subject of in-depth
research since the invention of lasers. This process is central
to understanding a broad class of laser-solid interaction effects,
including laser-induced breakdown [1–3], laser filamentation
[4,5], laser micromachining [6,7], and, since recently, high-
order harmonic generation in solids [8–19] and attosecond
spectroscopy of band-gap dynamics [20]. Although many
of the fundamental properties of solids, including first and
foremost, a higher atomic density and the band structure
of electron energy states, are different from those of gases,
photoionization in solids has much in common with the
physics of photoionization in gas media. The universal physics
behind photoionization is highlighted by the Keldysh theory
of photoionization, which was developed simultaneously for
gases and solids in Keldysh’s seminal 1964 paper [21].

Analysis of photoionization effects in solids inevitably
starts with a calculation of the photoionization rate, that is, the
rate of electron transitions from the valence to the conduction
band. The Keldysh theory of photoionization [21] provides the
key to understanding the behavior of the photoionization rate of
solids as a function of laser intensity, laser frequency, and band
gap of a solid. Over five decades, this theory has been pivotal to
the research in laser science, providing a commonly accepted
framework for a quantitative analysis of photoionization in a
remarkable diversity of light-matter interaction phenomena,
including laser-induced breakdown [1], high-order harmonic
[22] and terahertz [23] generation, as well as filamentation
of ultrashort light pulses [4,5,24]. The Keldysh formalism,
however, involves averaging over the field cycle as a part of
photoionization rate derivation. As a result, it offers no recipe
for understanding photoionization dynamics within the field
cycle or calculating the rate of photoionization by ultrashort,
broadband laser field waveforms. In a recent work [25], the
Keldysh theory of photoionization of solids has been extended
to include photoionization by arbitrarily short driving pulses
with an arbitrary pulse shape.

Analysis of photoionization in the bulk of a solid
is, however, in no way reducible to photoionization rate

calculation. Photoionization gives rise to an ultrafast buildup
of the electron density, which translates into a rapid modulation
of optical properties through ionization-induced radiation
loss and intensity-dependent changes in the refractive in-
dex [26–28]. As a result, photoionization dynamics becomes
strongly coupled to the propagation dynamics of the laser
driver.

Here, we develop a theoretical framework for the analysis
of ultrafast dynamics of photoionization in solids that treats
the field-cycle-resolved buildup of the electron density jointly
with the propagation dynamics of the laser driver, which probes
the ionization-induced modulation of the optical properties
of the material. Analysis performed with the use of this
model reveals unusual, often unexpected, ultrafast laser-matter
interaction effects in a rapidly ionizing solid. At high field
intensities, ionization-induced ultrafast modulation of the
optical properties of a solid is shown to strongly couple the
dynamics of photoionization to the propagation of the laser
driver.

II. PHOTOIONIZATION AND ULTRAFAST OPTICAL
RESPONSE OF A SOLID: ANALYTICAL FRAMEWORK

The main goal of this section is to develop an analytical
framework for the analysis of the ultrafast optical response of
a rapidly ionizing solid to an ultrashort laser pulse. To this end,
we examine the polarization �P (t) and the current density �J (t)
induced in a medium by a laser field �E(t),

Pi(t) =
∫ t

−∞
χij (t,t ′)Ej (t ′)dt ′, (1)

Ji(t) =
∫ t

−∞
σij (t,t ′)Ej (t ′)dt ′. (2)

Here, χij (t,t ′) is the optical susceptibility, σij (t,t ′) is the
conductivity, and the subscripts i,j stand for the Cartesian
coordinates, i,j = x,y,z.
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Since the polarization can be expressed through the current
density,

�J (t) = d �P (t)

dt
, (3)

leading to

σij (t,t ′) = ∂χij (t,t ′)
∂t

+ χij (t,t)δ(t − t ′), (4)

where δ(τ ) is the Dirac delta function, choosing between �P (t)
and �J (t) is often a matter of convenience. In a canonical
treatment [29,30], the optical response of bound electrons
is analyzed in terms of polarization �P (t), while the current
density �J (t) would be a natural choice for a characterization of
the optical response of free, or for that matter, conduction-band
electrons.

In our model, we treat the optical response of a solid in
a standard two-band approximation [31,32], searching for
the solution for the electron wave function in the form of a
superposition

|ψ(t)〉 =
∑

�k
V (�k,t)|v,�k〉 + C(�k,t)|c,�k〉, (5)

where |v,�k〉 and |c,�k〉 are the Bloch-wave state vectors with
a quasimomentum �k in the valence and conduction bands,
respectively.

With the expansion coefficients C(�k,t) and V (�k,t) found
from the relevant time-dependent Schrödinger equation, we
calculate the photoionization probability ρ(t) and the pho-
toionization current density �J (t). It is convenient and physi-
cally meaningful to represent the current density �J (t) as the
sum �J (t) = �J (i)(t) + �J (c)(t), where the terms �J (i)(t) and �J (c)(t)
relate to the inter- and intraband parts of the overall current

density. Physically, the �J (c)(t) term describes the current of
electrons or holes driven by the field within the respective
bands of a semiconductor, while �J (i)(t) represents the current
induced by interband processes, including transitions of
electrons from the valence to the conduction band, as well
as electron-hole recombination [8,9,12].

We consider a periodic dispersion profile, consistent with
the nearest-neighbor interaction approximation [33],

E( �p) = Eg + 	 − 	

D

D∑
j=1

cos(pjdj ), (6)

where D is the number of spatial dimensions, 	 is the band
width, and dj is the lattice constant in the direction j .

Calculation details are presented in the Appendix. The
physical scope of our analysis and the overall scheme of
our calculations are as follows. We present the electron
wave function in the form of Eq. (5) and plug this wave
function into the time-dependent Schrödinger equation with
the Hamiltonian as defined by Eq. (A3) in the Appendix. This
Hamiltonian treats a semiconductor or a dielectric in a standard
two-band approximation [31,32] and includes the external field
in the dipole approximation. The time-dependent Schrödinger
equation leads to a set of coupled partial differential equations
for the expansion coefficients C(�k,t) and V (�k,t) in Eq. (5)
[Eq. (A5) in the Appendix]. Solving these equations and
defining the pertinent probability amplitudes in Eq. (A9),
we then calculate the field-induced polarization [Eqs. (A15)
and (A17)] and photocurrent [Eqs. (A19), (A20), and (A24)].
In the regime where the population of the conduction band
remains much smaller than the population of the valence band,
we also derive an explicit expression for the ionization rate
[Eq. (A37)]. With the dispersion profile taken in the form of
Eq. (6), this leads us to Eqs. (A60)–(A64) for ρ(t), �J (i)(t),
and �J (c)(t), which we reproduce also here for the sake of
convenience,

ρ(t) = |N |2
∫ t

−∞

∫ t

−∞
dt1dt2 �E(t1) · �E(t2)ei(Eg+	)(t2−t1)

D∏
j=1

J0(|
j (t2,t1)|), (7)

J
(i)
j (t) = 2|N |2

∫ t

−∞
dt1Ej (t1)Re ei(Eg+	)(t−t1)

⎡
⎣ D∏

l=1

J0(|
l(t,t1)|)(Eg + 	)

− i	

D

D∑
k=1

J1(|
k(t,t1)|) cos[dkAk(t) − arg 
k(t,t1)]
∏
l �=k

J0(|
l(t,t1)|)
⎤
⎦, (8)

J
(c)
j (t) = |N |2

∫ t

−∞

∫ t

−∞
dt1dt2 �E(t1) · �E(t2)ei(Eg+	)(t2−t1)

× i	

D
J1(|
j (t2,t1)|) sin[djAj (t) − arg 
j (t2,t1)]

∏
k �=j

J0(|
k(t2,t1)|), (9)

where Eg is the band gap, |N |2 is the normalization factor, J0(z) and J1(z) are the zeroth- and first-order Bessel functions of the
first kind, �A(t) = ∫ t

−∞ �E(t ′)dt ′ is the vector potential, and


j (t1,t2) = 	

D

∫ t2

t1

eidj Aj (t ′)dt ′, (10)

and the system of units where h̄ = |e| = 1 is used.
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Equation (7) for the ionization probability is fully consistent with the result of Ref. [25]. It will be referred to hereinafter as
the field-cycle-resolved photoionization theory (FCRPI). In accordance with their definitions [Eqs. (1) and (2)], the interband
optical susceptibility and the inter- and intraband conductivities are thus given by

χ
(i)
ij (t,t ′)=2δij |N |2

[
sin[(Eg+	)(t−t ′)]

D∏
k=1

J0(|
k(t,t ′)|)
]
, (11)

σ
(c)
ij (t,t ′) = 2|N |2

∫ t ′

−∞
dt1Ej (t1) sin[(Eg + 	)(t ′ − t1)]

∏
k �=i

J0(|
k(t ′,t1)|)	
D

J1(|
i(t
′,t1)|) sin[diAi(t) − arg 
i(t

′,t1)], (12)

and

σ
(i)
ij (t,t ′) = 2δij |N |2

⎡
⎣cos[(Eg + 	)(t − t ′)]

D∏
k=1

J0(|
k(t,t ′)|)(Eg + 	) − 	

D
sin[(Eg + 	)(t − t ′)]

×
D∑

k=1

J1(|
k(t,t ′)|) cos[dkAk(t) − arg 
k(t,t ′)]
∏
l �=k

J0(|
l(t,t
′)|)

⎤
⎦. (13)

In the limiting case of | �E| → 0, Eqs. (12) and (11) become,
respectively,

σ
(c)
ij (t,t ′) → 0, (14)

χ
(i)
ij (t,t ′) → χ

(i)
ij (t − t ′), (15)

where

χ
(i)
ij (τ ) = 2δij |N |2 sin[(Eg + 	)τ ]J0

(
	

D
τ

)D

(16)

Fourier transform of Eq. (16) yields a frequency-domain
optical susceptibility,

χ̂
(i)
ij (ω) = δij |N |2 D

	

[
F0

D(E+) + F0
D(E−)

]
, (17)

where E± = Eg+	±ω

	
, and

Fn
D(x) =

∫ ∞

0
ie−ixzJ0

( z

D

)D−n

J1

( z

D

)n dz

zn
. (18)

The functions F0
1 and F0

2 can be found in an analytical form,

F0
1 (x) = (x2 − 1)−1/2, (19)

and

F0
2 (x) = 2

π

K(x−2)

x
, (20)

where K(x) is the complete elliptic integral of the first kind.
As an important example, we consider zinc oxide (Eg =

3.3 eV, 	/D = 2.5 eV, and di = 2.8 A) irradiated by pulses
with a central wavelength λ0 = 3.25 μm, which corresponds to
a frequency ω0 = 0.12Eg . Electron-hole pairs gain an energy
equal to the band gap over one lattice period when driven by
the field E0 = Eg

edi
≈ 1.14 V/A. At λ0 = 3.25 μm, a linearly

polarized field with such an amplitude corresponds to a field

intensity I 0 = (E0)2

2n(λ0)

√
μ0

ε0
= 9 TW/cm2, where n(λ0) ≈ 1.9

is the refractive index, μ0 = (4π )−1 × 10−7 H/m and ε0 =
8.85 × 10−12 F/m are, respectively, the vacuum permeability
and the vacuum permittivity.

To find the normalization factor |N |2, we compare the
results of Eqs. (11)– (20) with the available experimental data

[34] for the dielectric function ε(ω) = 1 + 4πχ̂ (ω) (Fig. 1).
Remarkably, when the normalization factor |N |2 defined from
this comparison is plugged into Eq. (7), we achieve a very
close agreement between the predictions of our model and
the Keldysh theory of photoionization [21] within its region
of applicability (Fig. 2). Thus, with a single value of |N |2,
Eqs. (11)–(20) provide a reasonably accurate fit for both
the available experimental data for the dielectric function
of a representative semiconductor and the predictions of the
Keldysh theory of photoionization.

III. NUMERICAL ANALYSIS

Analytical expressions for the polarization and current
density of a rapidly ionizing solid derived in the previous
section are central to a numerical analysis of spatiotemporal
dynamics of ultrashort pulses in such materials, because
they provide closed-form expressions that can be used to
define source terms in numerical schemes integrating Maxwell
equations. Below in the paper, we show how this analytical
model can be integrated into a finite-difference time-domain
(FDTD) analysis [35,36], enabling a depth-resolved study
of ultrafast photoionization in solids. The FDTD method
provides a powerful tool for a direct numerical integration
of Maxwell equations for electric and magnetic fields, helping
to analyze a broad class of analytically unsolvable problems,
including those dealing with complex scenarios of radar
signal propagation [37–39], properties of optical fields on the
nanoscale [40–43], plasmonic field enhancement [44–47], and
subcycle pulse generation in resonant media [48,49].

In our version, the standard FDTD scheme is modified
to include the polarization and current density of a fast-
ionizing solid, as derived in Sec. II. We consider a laser
pulse that propagates along the z axis, in the direction of
positive for z, along the normal to the interface between a
solid and a vacuum, located at z = 0. Polarization of the
electric field is chosen along one of the crystallographic
directions, with the field-induced photocurrents driven in the
same direction. Propagation of such a pulse inside a solid is
analyzed by numerically integrating the coupled equations for

033415-3



P. A. ZHOKHOV AND A. M. ZHELTIKOV PHYSICAL REVIEW A 96, 033415 (2017)

FIG. 1. (a) Real and (b) imaginary parts of the dielectric function ε(ω) calculated as a function of the photon energy using Eq. (17) for
parameters of ZnO with D = 1 (solid blue line), D = 2 (dashed green line), and D = 3 (dash-dotted red line). The available experimental data
[34] are shown by cyan triangles.

the x component of the electric displacement Dx and the y

component of the magnetic field Hy ,

1

c

∂Dx

∂t
= ∂Hy

∂z
− 4πJx, (21)

1

c

∂Hy

∂t
= ∂Dx

∂z
− 4π

∂Px

∂z
. (22)

Here Dx = Ex + 4πPx , Ex is the x component of the electric
field, Px is the x component of polarization, Jx is the x

component of the current, and c is the speed of light in vacuum.
The vacuum-dielectric interface lies in the xy plane.

At the nth step of the FDTD procedure along the time
variable, the values of Dx and Hy found at the previous step,
Dn

j and Hn
j+1/2, are used to define the current values of these

fields, Dn+1
j and H

n+1/2
j+1/2 , according to the following scheme:

Dn+1
j = Dn

j + c	t

	z

(
H

n+1/2
j+1/2 −H

n+1/2
j−1/2

)−4πc	tJ
(c),n
j ,

(23)

H
n+1/2
j+1/2 = Hn

j+1/2+
c	t

	z

[
Dn

j+1−Dn
j − 4π

(
P n

j+1 − P
(t),n
j

)]
.

(24)

Here, j is the number of the step in space along the z

coordinate, with Cartesian indices x and y suppressed for
brevity. Outside the solid, that is, for z < 0, we set J (c)(t) =
P (i)(t) = 0. Inside the solid, for z > 0, Jx and Px are calculated
using the analytical expressions presented in Sec. II. Intraband
transitions are included through the current density term in
Eq. (21), while interband transitions are included through the
polarization term in Eq. (22).

IV. RESULTS AND DISCUSSION

Numerical analysis reveals a complex, intensity-dependent
picture of nonlinear-optical interaction of an ultrashort laser
pulse with a rapidly ionizing solid (Figs. 3–5), in which
photoionization is strongly coupled to propagation effects.
Unlike the canonical, Keldysh-type models of photoion-
ization, which enable calculation of only cycle-averaged

units of 

FIG. 2. (a) Ionization probability as a function of the laser intensity and (b) time for a peak intensity of 9 TW/cm2 calculated for parameters
of ZnO with the use of 1D FCRPI (solid blue line), 2D FCRPI (dashed green line), 3D FCRPI (dash-dotted red line), and the Keldysh model
[21] (thin solid black line). The central wavelength of the laser pulse is 3.25 μm and the FWHM pulse width is 5 field cycles.
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FIG. 3. (a, c) The field as a function of time t (in field cycles) and propagation coordinate z (in units of λ0) near the vacuum-solid interface.
The laser pulse propagates toward positive z. The vacuum-solid interface is located at z = 0. The dashed black line shows the electron density
at the surface as a function of time. The solid black line is the plasma density in the wake of the laser pulse. (b) The maximum field amplitude
(blue curve), the electron density in the wake of the pulse (dashed green curve), and the third-harmonic intensity (red dash-dotted curve) as
functions of z. (d) The spectrum of the field as a function of z and the harmonic number. The black dash-dotted line shows the band-gap
frequency. The input laser intensity is 1 TW/cm2 (a, b) and 12 TW/cm2 (c, d). The central wavelength of the laser pulse is 3.25 μm. Material
parameters are those of ZnO.

photoionization rates, our model of photoionization resolves
the ultrafast dynamics of photoelectron currents within the
field cycle. This dynamics, as our analysis shows (Figs. 3–5),
gives rise to other, often unexpected, ultrafast laser-matter
interaction effects in a rapidly ionizing solid.

While the Keldysh-type models of photoionization predict
a monotonic buildup of the electron density from the lead-
ing edge of the pulse to its trailing edge [Fig. 2(b)], the
cycle-resolved model of photoionization used in this paper
reveals an oscillatory dynamics of the photoionization rate
and photoelectron currents, in which oscillations of ρ(t) and
J (t) follow the cycles of the driver field. This oscillatory
dynamics translates into a subcycle modulation of the re-
flection, refraction, and ionization-induced loss, giving rise to
complex patterns of reflected and transmitted fields [Figs. 3(f),
3(c) 4(a), and 4(b)] and providing a source for optical
harmonic generation both in reflection [z < 0 in Figs. 3(d),
4(c) and 4(d)] and transmission [z > 0 in Figs. 3(d), 4(c)
and 4(d)].

For low field intensities [Figs. 3(a) and 3(b)], the harmonic
spectrum of the nonlinear-optical response is dominated by
the third harmonic. Since the third harmonic is strongly
phase-mismatched relative to the driver field, third-harmonic
generation is confined to a short length on the order of the driver
wavelength [Fig. 3(b)]. Beyond this length, the energy of the
third harmonic transfers back to the driver field. As a result, the
intensity of the driver field displays a well-resolved minimum
within ∼λ0 from the surface, followed by a local maximum,
giving rise to a nonmonotonic behavior of the electron density
as a function of z [Figs. 3(a) and 3(b)].

Laser pulses with higher field intensities tend to generate
much higher electron densities and much stronger photoelec-
tron currents [Fig. 3(c)], which radically enhances ionization-
induced reflection and refraction [Figs. 3(c), 4(a) and 4(b)].
Laser pulses with higher intensities also give rise to more
efficient high-order harmonic generation [Figs. 3(d), 4(c) 4(d),
and 5(a)]. Reflected harmonics are clearly seen in Figs. 4(c)
and 4(d) as well-resolved horizontal stripes, reflecting their
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FIG. 4. (a, b) The field as a function of time t (in field cycles) and propagation coordinate z (in units of λ0) near the vacuum-solid interface
with the plasma density in the wake of the laser pulse shown by the solid black line. (c, d) The spectra of the field as a function of z and the
harmonic number. The input laser intensity is 20 TW/cm2 (a, c) and 25 TW/cm2 (b, d). The central wavelength of the laser pulse is 3.25 μm.
Material parameters are those of ZnO.

purely linear propagation in the regime of z < 0, that is, in
vacuum. Optical harmonics generated in transmission [z > 0 in
Figs. 3(d), 4(c) and 4(d)] continue to exchange energy with the
driver field, as well as with each other as they propagate inside
the solid. This entire cascade of energy transfer processes is

largely controlled by phase matching. However, because of a
rapidly varying refraction and dispersion induced by ultrafast
ionization, the buildup of each individual harmonic is drasti-
cally different from the canonical fringe patterns, observed for
optical harmonics generated in a stationary, uniform medium.

units of 

FIG. 5. (a) The spectra of the reflected field (solid blue line), the intraband current (dashed green line), and the interband current (dash-dotted
red line). (b) The total field (dashed blue line) and the field of high harmonics with frequencies above the band gap (solid green line) at z = 0.1λ0.
The input laser intensity is 20 TW/cm2. The central wavelength of the laser pulse is 3.25 μm. Material parameters are those of ZnO.
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Thus, the propagation effects combined with an ultrafast
ionization-induced modulation of dielectric properties of a
solid heavily distort the spectra of high-order harmonics
[Figs. 3(d), 4(c) 4(d), and 5(a)]. The map between harmonic
spectra and the electron band structure of a solid, which is often
the goal that high-harmonic generation experiments in solids
pursue [8,17,18], is very hard to decipher in this regime. Still,
even in this parameter space, the analysis of harmonic spectra
[Fig. 5(a)] and the temporal structure of the harmonic field
[Fig. 5(b)] reveals an important relation between the intra- and
interband mechanisms of optical harmonic generation. The
intraband dynamics of electron wave packets driven by the
laser field is seen to dominate low-order harmonic generation
[the third and fifth harmonics in Fig. 5(a)]. Around the
seventh harmonic, the contributions of the intra- and interband
mechanisms are comparable.

For harmonics lying above the band gap of the material
[shown by the dashed vertical line in Figs. 3(d), 4(c) and 4(d)],
the interband mechanism dominates over the intraband pro-
cesses. At the first stage of interband harmonic generation, an
electron is transferred from the valence band to the conduction
band through nonlinear photoionization, leaving behind a hole
in the conduction band. This electron then recombines with
the hole, emitting a high-frequency photon. Since this process
involves a transition of an electron from the valence to the
conduction band as its first stage, interband harmonics become
especially intense between the central part of the few-cycle
laser driver and its trailing edge [Fig. 5(b)]. Moreover, as can
be readily seen from Fig. 5(b), the interband harmonics are
mainly emitted within extremely short, subfemtosecond time
intervals around the instants of time when the field is zero and
the magnitude of the vector potential is at its maximum. Such
attosecond bursts of high-harmonic emission are clearly seen
in Fig. 5(b) for t ≈ 5.5T0, 6.0T0, 6.5T0, 7.0T0, and 7.5T0, T0

being the field cycle.

V. CONCLUSION

To summarize, we have developed a theoretical framework
for the analysis of ultrafast dynamics of photoionization
in solids that treats the field-cycle-resolved buildup of the
electron density as a result of photoionization jointly with the
propagation dynamics of the laser driver, which probes an
ultrafast ionization-induced modulation of optical properties
of the material. Analysis performed with the use of this model
reveals often unexpected ultrafast laser-matter interaction
effects in a rapidly ionizing solid. At high field intensities,
refraction and loss induced by ultrafast ionization are shown
to strongly couple the dynamics of photoionization to the
propagation of the laser driver. We show that while the
standard, cycle-averaging photoionization models predict a
monotonic buildup of the electron density within the driver
pulse, the cycle-resolved photoionization model used in this
work reveals a subcycle modulation of optical properties
of a solid, giving rise to complex patterns of reflected and
transmitted fields and providing a source for optical harmonic
generation. Propagation effects are shown to heavily distort
the spectra of high-order harmonics. Still, the analysis of
harmonic spectra and the temporal structure of the harmonic
field reveals physically significant properties of the nonlinear-

optical response, suggesting the existence of attosecond bursts
of interband optical-harmonic emission.
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APPENDIX: OPTICAL RESPONSE
OF A PHOTOIONIZED SOLID

We start with a field-free Hamiltonian of an electron in a
solid semiconductor treated in a two-band approximation:

H0 =
∑

�k
Ev(�k)|v,�k〉〈v,�k| + Ec(�k)|c,�k〉〈c,�k|. (A1)

Here, |v,�k〉 and |v,�k〉 are the electron states in the valence and
conduction bands with a quasimomentum �k, Ev(�k) and Ec(�k)
are the energies of electron states with a momentum �k in the
valence and conduction bands, the sum is over all �k in the first
Brillouin zone (BZ), and the system of units uses h̄ = |e| = 1,
e being the electron charge.

To identify the inter- and intraband parts of the optical
response, we isolate two terms in the electron position operator
�R. The first, intraband term is related to the motion of an

electron within a band, i ∂

∂ �k . For the second, interband term,
momentum conservation dictates

�R =
∑

�k

�X(k)(|c,�k〉〈v,�k| + |v,�k〉〈c,�k|) + i
∂

∂ �k . (A2)

The time-dependent Hamiltonian of an electron in the presence
of the field in the dipole approximation is then given by

H (t) =
∑

�k
Ev(�k)|v,�k〉〈v,�k| + Ec(�k)|c,�k〉〈c,�k| + �E(t) · �R.

(A3)

The single-electron wave function can be written as

|ψ(t)〉 =
∑

�k
V (�k,t)|v,�k〉 + C(�k,t)|c,�k〉. (A4)

The time-dependent Schrödinger equation leads to the partial
differential equations (PDEs) for the coefficients C(�k,t) and
V (�k,t) (we omit �k,t arguments for brevity).

i
∂V

∂t
= Ev(�k)V + �E(t) ·

(
�X(�k)C + i

∂V

∂ �k

)
,

i
∂C

∂t
= Ec(�k)C + �E(t) ·

(
�X(�k)V + i

∂C

∂ �k

)
. (A5)

Since the PDEs are linear in derivatives both over time and
momentum, it is possible to turn them into ordinary differential
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equations (ODEs) by the method of characteristics. Namely,
we introduce variable transformation

�p = �k + �A(t),

t̃ = t,
(A6)

where �A(t) = ∫ t

−∞ �E(t ′)dt ′ is the vector potential. The deriva-
tive transformation is then

∂

∂ �k = ∂

∂ �p ,

∂

∂t
= ∂

∂t̃
+ �E(t) · ∂

∂ �p . (A7)

Equation (A5) can be thus rewritten as

i
dV

dt̃
= Ev( �p − �A(t̃))V + �E(t̃) · �X( �p − �A(t̃))C,

i
dC

dt̃
= Ec( �p − �A(t̃))C + �E(t̃) · �X( �p − �A(t̃))V. (A8)

Here, once again, we omit the �p and t̃ arguments of V and C

for brevity.
We now introduce the probability amplitudes

v( �p,t̃) = V ( �p,t̃)ei
∫ t̃

−∞ Ev ( �p−A(t ′))dt ′ ,

c( �p,t̃) = C( �p,t̃)ei
∫ t̃

−∞ Ec( �p−A(t ′))dt ′ , (A9)

which remain time independent in the absence of the field.
These probability amplitudes can be found from the ODEs

i
dv

dt̃
= �E(t̃) · �X( �p − �A(t̃))ce−i

∫ t̃

−∞ E( �p−A(t ′))dt ′ ,

i
dc

dt̃
= �E(t̃) · �X( �p − �A(t̃))vei

∫ t̃

−∞ E( �p−A(t ′))dt ′ , (A10)

where E( �p) = Ec( �p) − Ev( �p) is the electron-hole dispersion
relation. The exact solution of Eq. (A10) can be written as an
unwieldy time-ordered product of unitary evolution operators.
Before making any further approximations, let us express
the photoionization probability and the photocurrent density
through c( �p,t̃) and v( �p,t̃). In what follows we omit the tilde
above the time argument since t̃ = t .

The quantum-mechanical expectation value of the projec-
tion operator,

ρ̂ =
∑

k

|c,�k〉〈c,�k|, (A11)

gives the time-dependent photoionization probability

ρ(t) = 〈ρ̂〉 =
∑

�k
|�c(�k + �A(t),t)|2. (A12)

Since the dispersion relation in the first Brillouin zone is
periodic, summation in Eq. (A12) can be performed either
in �k or �p:

ρ(t) =
∑

�p
|�c( �p,t)|2. (A13)

Polarization per unit volume is then found by averaging the
coordinate operator,

�P (t) = −〈 �R〉, (A14)

where the minus sign reflects the negative electron charge.
Equation (A14) yields

�P (t) =
∑

�k

�X(k)[C(�k,t)∗V (�k,t) + V (�k,t)∗C(�k,t)]

+ i
∑

�k

(
C(�k,t)∗

∂

∂ �kC(�k,t) + V (�k,t)∗
∂

∂ �kV (�k,t)

)

=
∑

�p
2Re �X( �p − �A(t))c( �p,t)∗v( �p,t)ei

∫ t

−∞ E( �p− �A(t ′))dt ′

+
∑

�p

(
c( �p,t)∗

∂c( �p,t)

∂ �p + v( �p,t)∗
∂v( �p,t)

∂ �p
)

+
∑

�p

(
|c( �p,t)|2

∫ t

−∞

∂Ec( �p − �A(t ′))
∂ �p dt ′ + |v( �p,t)|2

×
∫ t

−∞

∂Ev( �p − �A(t ′))
∂ �p dt ′

)
. (A15)

Since |v( �p,t)|2 = 1 − |c( �p,t)|2 and the energy-momentum
dispersion relations are periodic, we find

∑
p

∂Ev

∂ �p = 0.
Equation (A15) then leads to

�P (t) =
∑

�p
2Re �X( �p − �A(t))c( �p,t)∗v( �p,t)ei

∫ t

−∞ E( �p− �A(t ′))dt ′

+
∑

�p

(
c( �p,t)∗

∂c( �p,t)

∂ �p + v( �p,t)∗
∂v( �p,t)

∂ �p

+ |c( �p,t)|2
∫ t

−∞

∂E( �p − �A(t ′))
∂ �p dt ′

)
. (A16)

The photocurrent density is

�J (t) = d �P (t)

dt
. (A17)

Since the expectation values of Hermitian quantum-
mechanical operators, representing observable physical pa-
rameters, are independent of whether time evolution is
described in the Schrödinger or the Heisenberg picture,
we have

�J = −d〈R〉
dt

= −
〈
dR

dt

〉
= i〈[H (t), �R]〉 = i〈[H0, �R]〉.

(A18)

Here, the last equality reflects the fact that �R commutes with
the �E(t) · �R term in the Hamiltonian H (t). The photocurrent
density is thus given by

�J (t) = i

〈∑
�k

E(�k) �X(�k)(|c,�k〉〈v,�k| − |v,�k〉〈c,�k|)
〉

+ i

〈[
H0,i

∂

∂ �k

]〉
. (A19)
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The second term in this expression,

〈[
H0,i

∂

∂ �k

]〉
=

∑
�k

〈ψ(t)|[Ev(�k)|v,�k〉〈v,�k| + Ec(�k)|c,�k〉〈c,�k|]

×i
∂

∂ �k |ψ(t)〉−
∑

�k
〈ψ(t)|i ∂

∂ �k [Ev(�k)|v,�k〉〈v,�k|

+ Ec(�k)|c,�k〉〈c,�k|]|ψ(t)〉, (A20)

can be calculated with the use of Eq. (A4):

〈[
H0,i

∂

∂ �k

]〉
=

∑
�k

[Ev(�k)V ∗(�k,t)〈v,�k| + Ec(�k)C∗(�k,t)〈c,�k|]

× i
∂

∂ �k [C(�k,t)|c,�k〉 + V (�k,t)|v,�k〉]

−
∑

�k
[C∗(�k,t)〈c,�k| + V ∗(�k,t)〈v,�k′|]

× i

[
Ev(�k)

∂

∂ �kV (�k,t)|v,�k〉

+ Ec(�k)
∂

∂ �kC(�k,t)|c,�k〉
]

+
∑

�k
|C(�k,t)|2 ∂Ec(�k)

∂ �k + |V (�k,t)|2 ∂Ev(�k)

∂ �k .

(A21)

With 〈v,�k| ∂

∂ �k |c,�k〉 = 〈c,�k| ∂

∂ �k |v,�k〉 = 0, the first two terms in

Eq. (A21) cancel out. Since |V (�k,t)|2 = 1 − |C(�k,t)|2, we find
that 〈[

H0,i
∂

∂ �k

]〉
= i

∑
�k

|C(�k,t)|2 ∂E(�k)

∂ �k

= i
∑

�p
|c( �p,t)|2 ∂E( �p − �A(t))

∂ �p .

(A22)

The expression for the photocurrent density then becomes

�J (t) =
∑

�p
2 �X( �p − �A(t))E( �p − �A(t))

× Im c( �p,t)v∗( �p,t)e−i
∫ t

−∞ E( �p− �A(t ′))dt ′

−
∑

�p
|c( �p,t)|2 ∂E( �p − �A(t))

∂ �p . (A23)

Both the polarization and the current density can be
represented as a sum of inter- and intraband components,

�P (t) = �P (i)(t) + �P (c)(t), (A24)

�J (t) = �J (i)(t) + �J (c)(t), (A25)

�J (i)(t) = dP (i)

dt
, (A26)

�J (c)(t) = dP (c)

dt
, (A27)

where the superscripts (i) and (c) denote inter- and intraband
parts, respectively, and

P (i)(t) =
∑

�p
2Re �X( �p − �A(t))c( �p,t)∗v( �p,t)ei

∫ t

−∞ E( �p− �A(t ′))dt ′ ,

(A28)

P (c)(t) =
∑

�p

(
c( �p,t)∗

∂c( �p,t)

∂ �p + v( �p,t)∗
∂v( �p,t)

∂ �p

+ |c( �p,t)|2
∫ t

−∞

∂E( �p − �A(t ′))
∂ �p dt ′

)
, (A29)

�J (i)(t) =
∑

�p
2 �X( �p − �A(t))E( �p − �A(t))Im c( �p,t)v∗( �p,t)

× e−i
∫ t

−∞ E( �p− �A(t ′))dt ′ , (A30)

�J (c)(t) = −
∑

�p
|c( �p,t)|2 ∂E( �p − A(t))

∂ �p . (A31)

Equation (A31) is very transparent and physically insight-
ful. It describes the total intraband current as a sum over
all electron momenta �p, with each term in this sum being

a product of the electron velocity ∂E( �p− �A(t))
∂ �p , conduction-band

population, and the electron charge (the minus sign in front of
the sum).

To verify energy conservation, we represent the ohmic
loss of the field energy per unit volume at the moment of
time t as

w(t) =
∫ t

−∞
�E(t ′) · �J (t ′)dt ′ = −

∫ t

−∞

〈
�E(t ′) · d �R(t ′)

dt ′

〉
dt ′.

(A32)

The Heisenberg equation of motion for �R,

i
d �R
dt

= [H, �R], (A33)

gives

w(t) = i

∫ t

−∞
〈[H (t ′), �E(t ′) · �R]〉dt ′. (A34)

Using Eqs. (A1) and (A3), we find that

w(t) = i

∫ t

−∞
〈[H0, �E(t ′) · �R]〉dt ′

= i

∫ t

−∞
〈[H0,H (t)]〉dt ′

=
∫ t

−∞

d〈H0〉
dt ′

dt ′

= 〈H0〉|t − 〈H0〉|−∞.

(A35)

We now assume that the ionization probability is low,
|c( �p,t̃)| � |v( �p,t̃)|, which is a standard approximation for the
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analysis of photoionization in solids and gases [13,21,50–54].
In this regime, v( �p,t̃) ≈ 1 and the solution of Eq. (A10)
gives

c( �p,t̃) ≈ −i

∫ t̃

−∞
�E(t ′) · �X( �p − �A(t ′))ei

∫ t ′
−∞ E( �p− �A(t ′′))dt ′′dt ′.

(A36)

A standard textbook approach [55,56] is to treat �E · X( �p) as
a quantity independent of �p. Since �X( �p) is defined by intrinsic
properties of a solid, it should be field independent. Three
simple vector covariant and contravariant functions [57] that
can be composed out of the crystal momentum and a scalar
momentum-dependent dispersion relation are

�X( �p) = N �x0 = const, (A37)

�X( �p) = N �p, (A38)

�X( �p) = N ∂E( �p)

∂ �p = N �v( �p). (A39)

Here, N is a normalization factor and the velocity �v( �p) is
defined as �v( �p) = ∂E( �p)

∂ �p with an effective electron mass as
dictated by the dispersion relation E( �p).

Equation (A39) allows a closed-form integration over the
momentum space. Introducing I ( �p,t,t ′) = I ( �p,t) − I ( �p,t ′)
with

I ( �p,t) =
∫ t

−∞
E( �p − �A(t ′))dt ′ (A40)

and using Eq. (A36) for c( �p,t), we can write the ionization
probability of Eq. (A12) and photocurrents [Eqs. (A31) and
(A30)] as

ρ(t) =
∫ t

−∞

∫ t

−∞
Ej (t1)Ek(t2)G(ρ)

jk (t1,t2) dt1 dt2, (A41)

where

G
(ρ)
jk (t1,t2) = |N |2

∑
�p

vj ( �p − �A(t1))vk( �p − �A(t2))

× eiI ( �p,t1)−iI ( �p,t2) (A42)

is the photoionization cross-section tensor, vs is the sth
component of the velocity �v( �p) = ∂E( �p)

∂ �p , and summation over
repeated subscripts is implied.

It is straightforward to see that

G
(ρ)
jk (t1,t2) = (G(ρ)

kj (t2,t1))∗. (A43)

This leads us to

ρ(t) = 2
∫ t

−∞
dt1

∫ t1

−∞
dt2Ej (t1)Ek(t2) Re G

(ρ)
jk (t1,t2). (A44)

In a similar manner, we find that

J
(c)
l (t) = −2

∫ t

−∞
dt1

∫ t1

−∞
dt2Ej (t1)Ek(t2) Re G

(c)
jkl(t1,t2,t),

(A45)

and

J
(i)
l (t) = −2

∫ t

−∞
dt1Ej (t1)Re G

(i)
j l (t,t1), (A46)

where

G
(c)
jkl(t1,t2,t) = |N |2

∑
�p

eiI (p,t2,t1)vj ( �p − �A(t1))

× vk( �p − �A(t2))vl( �p − �A(t)), (A47)

and

G
(i)
j l (t,t1) = |N |2

∑
�p

eiI (p,t,t1)E( �p − �A(t))vj ( �p − �A(t1))

× vl( �p − �A(t)), (A48)

with I ( �p,t2,t1) = I ( �p,t2) − I ( �p,t1).
The interband polarization is then given by

P
(i)
l (t) = −2

∫ t

−∞
dt1Ej (t1)Im G

(ρ)
j l (t,t1). (A49)

We choose to work in the nearest-neighbor approximation,
which gives a periodic dispersion of the form

E( �p) = Eg + 	 − 	

D

D∑
j=1

cos(pjdj ), (A50)

where D is the number of spatial dimensions, and dj is the
lattice constant in the direction j .

The integral in Eq. (A40) can be taken analytically,

I ( �p,t) = (Eg + 	)t −
D∑

j=1

Re 
j (t) cos pjdj

−
D∑

j=1

Im 
j (t) sin pj + const

= (Eg + 	)t −
D∑

j=1

|
j (t)| cos[pjdj

− arg 
j (t)] + const, (A51)

where


j (t) = 	

D

∫ t

−∞
eiAj (t ′)dj dt ′, (A52)

and 
k(t1,t2) = 
k(t1) − 
k(t2). The constant term in
Eq. (A51) depends on the choice of the zero time point and
shows up only in the global phase of the wave function.

For crystals of macroscopic sizes, we have∑
�p

≈ 1

(2π )D

∫
dD �p. (A53)

Since

1

2π

∫ π

−π

eix cos z cos nz dz = inJn(z), (A54)

and

1

2π

∫ π

−π

eix cos z sin nz dz = 0, (A55)
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for integer n, we find

∑
�p

vj ( �p − �A(t1))vk( �p − �A(t2))eiI ( �p,t1)−iI ( �p,t2) = 	2

2
ei(Eg+	)(t1−t2)

∏
l �=j,k

J0(|
l(t1,t2)|)

×
{
J0(|
j (t1,t2)|) cos[Aj (t1) − Aj (t2)] − J2(|
j (t1,t2)|) cos[Aj (t1) + Aj (t2)], j = k,

−J1(|
j (t1,t2)|)J1(|
k(t1,t2)|) sin[Aj (t1)] sin[Ak(t2)], j �= k,
(A56)

where Jn(z) is the Bessel function of the nth order.
Applying a similar procedure, we derive

∑
�p

eiI ( �p,t,t1)E( �p − �A(t)) = ei(Eg+	)(t−t1)
D∏

j=1

J0(|
j (t2,t1)|)(Eg + 	)

− i	

D

D∑
j=1

ei(Eg+	)(t−t1)J1(|
j (t,t1)|) cos[djAj (t) − arg 
j (t,t1)]
∏
i �=j

J0(|
i(t,t1)|), (A57)

and ∑
�p

eiI ( �p,t2,t1) ∂E( �p − �A(t))
∂pj

= −	

D
ei(Eg+ 	

D
)(t2−t1)J1(|
i(t2,t1)|) sin[djAj (t) − arg 
j (t2,t1)]

∏
i �=j

J0(|
i(t2,t1)|). (A58)

We can now write the photoionization probability and the photocurrents as

ρ(t) = |N |2
∫ t

−∞

∫ t

−∞
dt1dt2 �E(t1) · �E(t2)ei(Eg+	)(t2−t1)

D∏
j=1

J0(|
j (t2,t1)|). (A59)

J
(i)
j (t) = 2|N |2

∫ t

−∞
dt1Ej (t1)Re ei(Eg+	)(t−t1)

⎡
⎣ D∏

l=1

J0(|
l(t,t1)|)(Eg + 	)

− i	

D

D∑
k=1

J1(|
k(t,t1)|) cos[dkAk(t) − arg 
k(t,t1)]
∏
l �=k

J0(|
l(t,t1)|)
⎤
⎦,

(A60)

and

J
(c)
j (t) = |N |2

∫ t

−∞

∫ t

−∞
dt1dt2 �E(t1) · �E(t2)ei(Eg+	)(t2−t1)

× i	

D
J1(|
j (t2,t1)|) sin[djAj (t) − arg 
j (t2,t1)]

∏
k �=j

J0(|
k(t2,t1)|).
(A61)

This leads us to

σ
(c)
ij (t,t ′) = 2|N |2

∫ t ′

−∞
dt1Ej (t1) sin[(Eg + 	)(t ′ − t1)]

∏
k �=i

J0(|
k(t ′,t1)|)

× 	

D
J1(|
i(t

′,t1)|) sin[diAi(t) − arg 
i(t
′,t1)],

(A62)

and

σ
(i)
ij (t,t ′) = 2δij |N |2

⎡
⎣ cos[(Eg + 	)(t − t ′)]

D∏
k=1

J0
(|
k(t,t ′)|)(Eg + 	)

−	

D
sin[(Eg + 	)(t − t ′)]

D∑
k=1

J1(|
k(t,t ′)|) cos[dkAk(t) − arg 
k(t,t ′)]
∏
l �=k

J0
(|
l(t,t

′)|)
⎤
⎦.

(A63)
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