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Relativistic light-shift theory of few-electron systems: Heliumlike highly charged ions
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The light-shift theory of many-electron systems in a laser field is described using the projection operators
technique. In heavy ions, the electrons are tightly bound by the Coulomb potential of the nucleus, which prohibits
ionization even by strong lasers. However, interaction with the monofrequent laser field leads to dynamic shifts
of the electronic energy levels, and the process is treated by second-order time-dependent perturbation theory.
In order to treat heliumlike systems, one decomposes the corresponding matrix elements into hydrogenlike
matrix elements using the independent particle model. We are applying a fully relativistic description of the
electronic states by means of the Dirac equation. Our formalism goes beyond the Stark long-wavelength dipole
approximation and takes into account nondipole effects of retardation and interaction with the magnetic field
components of the laser beam.
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I. INTRODUCTION

The dynamic light-shift (ac Stark shift) is a second-order
perturbative effect [1] that shifts atomic energy levels in a
laser field; ac Stark shift is quadratic in the field strength and
can be understood as a time-averaged dc Stark shift [2,3]. It
is the most important source of spectral line broadening and
is an intrinsic undesirable effect in optical spectroscopy. A
good experimentally determined absorption or fluorescence
spectrum would show the ac Stark shift signature.

In the first part of this paper, we are focusing on the
general presentation of the light-shift theory. It is an ordinary
description of a ne electron system in an electromagnetic
field, which takes into account radiative corrections to the
intermediate energies and the ionization rates. To solve this
problem, we are using the so-called T -matrix formalism,
a theory which is quite different to the common S-matrix
expansion [4]. It has been applied to a wide range of processes,
including dielectronic recombination [5,6] and resonance
fluorescence [7]. The projection theorem [8] is the main tool we
have used in order to solve our problem. In Fig. 1 is represented
one of the situations that can occur in the light-ion interaction,
technically speaking, one should sum over all possible bound
intermediate states and integrate over all continuum ones.

Going beyond the electric-dipole approximation is impor-
tant whenever studying electric-dipole-forbidden transitions,
such as magnetic-dipole transitions, and in general, nondipo-
lar effects become increasingly important when addressing
higher-energy photons. We show that the magnetic contribu-
tions are insignificant, but the interaction operator allows us to
include in our results the retardation effects, which are sizable
in heavy ions.

In the second part of this paper we are studying heliumlike
(He-like) systems in the independent particle model (IPM). In
this model the electrons are assumed to move independently
of each other in the average field generated by the nucleus and
the other electrons.
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The biggest advantage of working with He-like systems
is their simple electronic structure, which gives us accurate
results using standard theoretical methods, e.g., multicon-
figuration Dirac-Fock or relativistic many-body perturbation
theory. In contrast with the neutral atoms, in highly charged
ions (HCI) the electron correlation effects are suppressed
by a factor 1/Z, which allows us to solve the problem
perturbatively, to a high accuracy.

In order to test the standard model in the low-energy regime,
parity nonconservation (PNC) effects using few-electron ions
can provide new opportunities. There are many new and old
theoretical investigations for PNC using HCI [9,10]. Helium-
like uranium seems to be the ideal candidate in order to observe
interference effects between weak matrix elements and Stark
matrix elements in two-photon [1s2s]J=0 → [1s2p1/2]J=0

transitions in the high-Z domain [11]; we are expecting the off-
resonant Stark-shift theory to have an important contribution to
the experimental setup. This optical transition can be addressed
experimentally by using, e.g., POLARIS-Jena [12]. Due to
very significant progress in the x-ray laser development, e.g.,
PHELIX-GSI [13], now experimentalists can even induce
transitions in the x-ray range for highly charged, heavy He-like
ions.

The independent particle model allows us to decompose the
He-like theory into the H-like theory, and the last one is known
from literature (see, e.g., [14]). Computations are beyond
dipole approximation, taking into account the retardation
effect and the interaction with magnetic components of the
laser field, allowing us to extend the field of investigations to
stronger laser fields and higher frequencies. The level shifts
calculated in the current article are important in experiments
on the two-photon absorption of heliumlike ions planned at
the GSI facility in Darmstadt and the Helmholtz Institute in
Jena [15].

II. THEORY

The rigorous description of the HCI problem can be
achieved only with quantum electrodynamics (QED). Dif-
ferent procedures have been developed during the last years
to account for combined relativistic and QED effects as
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FIG. 1. The diagram schematically shows the two steps of the
light-shift process (ion excitation-deexcitation in laser field). In the
initial state, identical to the final one, the ion is in a bound state and
a photon is present |i〉 = |q〉 ⊗ |1; kλ〉. The intermediate state |d〉 =∑

q |q〉 is a collection of all possible bound and continuous states.

well as electron correlations. One may distinguish between
two classes of many-body approaches: variational and non-
variational procedures. Schemes based on the variational
principle were introduced a long time ago. In the multi-
configuration Hartree-Fock (MCHF) and multiconfiguration
Dirac-Fock (MCDF) methods one varies the orbitals and in
the conventional self-consistent field (SCF) techniques, the
mixing coefficients are varied, and the orbitals are kept fixed.
The nonvariational method could be either perturbative or
nonperturbative. The many-body perturbation theory (MBPT)
is a frequently used scheme, based on diagrammatic technique.
However, a closer analysis of these perturbative schemes
reveals that application of expressions of higher order than
fourth order for energies is more or less prohibited. In many
problems one should go beyond that order, and this has led to
various nonperturbative approaches such as the coupled cluster
expansion (CCE).

The SCF and MBPT methods are by now also established
in the relativistic framework. The resulting Hamiltonian is
known as the Dirac-Coulomb Hamiltonian; however, its energy
spectrum is not bounded from below with the consequence that
eigenstates may dissolve into the negative energy continuum
(continuum dissolution). Accordingly, this Hamiltonian does
not represent a satisfactory basis for relativistic many-body
calculations, and these difficulties can be avoided by per-
forming a more rigorous and useful approximation based
on the projected Dirac-Coulomb-Breit Hamiltonian, known
as the no-virtual-pair approximation (NVPA), since virtual
electron-positron pairs are explicitly excluded as intermediate
states.

This also implies neglect of any radiative corrections (Lamb
shift) up to this level of approximation. It is in fact a major
challenge to be able to evaluate these energy shifts by ab initio
methods. The potential approach is based on the derivation
of effective electron-electron interaction potentials which, if
incorporated in an iterative scheme, in principle accounts for
the many-body and QED effects up to any desired accuracy
[16]. The effective potential aligns two terms: the first term
corresponds to the exchange of a single, virtual photon and
can be specified to be the Coulomb-Breit interaction, and the
second term corresponds to the irreducible part of the two-
photon exchange that is not included by iterating the first part
and possible higher-order photon-exchange diagrams.

For the QED description of the interelectron interaction in
many-electron systems it is convenient to employ the Coulomb
gauge. The general solution of the problem of how to account
for the reducible graphs of S-matrix expansion actually implies
the construction of the many-electron bound-state QED exact
in all orders in nuclear charge Z (Furry picture) [17]. Unlike
the case of light atoms, in heavy many-electron atoms the
theoretical methods that avoid the use of Zα expansion become
preferable (α is the fine-structure constant). Not only the
innermost K-shell electrons, but also the valence (especially
ns) electrons should be described exact to all orders in Zα,
since these electrons actually penetrate rather deeply into the
electron core up to the regions where the screening is small
and the effective charge Zeff of the nucleus is nearly equal to
the bare nuclear charge Z.

There is another rigorous QED perturbation theory ap-
proach which allows for exact QED description of ions
based on the evaluation of the poles of the exact Green
function for many-electron systems. The so-called two-time
Green’s function (TTGF) method [18] has proven to be a very
powerful tool regarding higher-order QED calculations for the
few-electron systems. Also, the adiabatic approach encounters
problems with the treatment of degenerate states and with
renormalization; such problems do not arise in TTGF.

The covariant evolution operator (CEO) approach [19]
descends from the S-matrix approach, but it is similar to
the two-time Green’s function method in many features and
possesses the same advantages. Instead of the S-matrix, the
time-dependent evolution operator is employed as the main
object within the covariant evolution operator approach. The
CEO approach as well as the TTGF method allows for the
QED calculations for the quasidegenerate states.

In this work, the atomic electrons are described within
relativistic MBPT (RMBPT), but the electromagnetic field
and its interaction with electrons are treated with the use
of second quantization, i.e., within QED. We are developing
a theory based on the T -matrix expansion instead of a
standard QED perturbation theory. The T -matrix method
is one of the most powerful and widely used theoretical
techniques for the computation of electromagnetic scattering
[20]. For application to processes involving multiple electron
continua and multiple photon continua, it is advantageous
to develop the T -matrix description by taking advantage of
the projection-operator techniques (POT). POT allows us to
present a general recipe for constructing matrix elements of
the T operator for the light-shift effect for particular model
systems of interest, featuring a limited number of discrete
states and continua. We present an expression for T which
separates naturally into two terms, one of which describes
the direct radiative recombination process in the absence of
autoionizing resonances, and the other which incorporates all
effects of the autoionizing resonances (see Fig. 4).

The transition operator T is related to the scattering operator
S by formula [21]

T = 1 − iS, (1)

and provides a complete description of the light-shift pro-
cess. The RMBPT follows as a direct generalization of
the nonrelativistic MBPT, and like the QED theory, is a
perturbative assumption. We note that for RMBPT one could
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draw Feynman-like diagrams for the various terms in the
infinite perturbation series.

In the relativistic many-body problem, the Dirac-Coulomb
Hamiltonian encounters serious problems with continuum
dissolution. The difficulties can be avoided by performing an
useful approximation based on the projected Dirac-Coulomb-
Breit Hamiltonian. As we have already mentioned, the radia-
tive corrections are omitted within the NVPA. However, we
know that Lamb shifts are quite significant in spectroscopic
data for heavy ions, and it is a challenge to be able to
evaluate these energy shifts by ab initio methods. A relativistic
treatment of many-body interactions consistent to order (Zα)2

has been developed by using the frequency-independent part
of the Coulomb-Breit interaction in the Coulomb gauge [16].
Beside the fact that using the Coulomb gauge one has to
deal with complicated expressions for the effective potentials,
there are certain inconveniences that arise from NVPA, such
as problems with the treatment of degenerate states and
renormalization.

To increase the precision and to solve the existent problems
in literature, it becomes necessary to go beyond the standard
NVPA scheme and to include retardation effects. In our model
we are neglecting the first-order electron-electron interaction
and applying the independent particle approximation, we are
able to reduce the He-like problem to the H-like theory,
which does not encounter any problem with the continuum
dissolution. The theory is treated in the Babushkin gauge,
taking into account the retardation effects. Another advantage
presented by our model is that the radiative corrections are
introduced by hand and the H-like Lamb shifts are well
known [22].

A. Ion-laser interaction Hamiltonian

The Hamiltonian of a relativistic ne-electron system in an
electromagnetic field may be written as

H = He + Hr + Her , (2)

where the Hamiltonian He is defined as [2,23]

He =
ne∑

i=1

hi +
ne∑

i<j

e2

4πε0|ri − rj | (3)

and describes the Coulomb interaction between the electrons
and the nucleus, together with the interaction between different
electrons; the second term in Eq. (3) illustrates the Coulomb
repulsion between electrons. The Hamiltonian hi is represent-
ing the interaction of the ith electron with the nucleus and is
given by the expression

hi = cαi · pi + (β i − 1)m0c
2 + Vnuc;i(r),

(4)

Vnuc;i(r) = − Ze2

4πε0|ri | ,

where e is the elementary charge, ε0 vacuum permittivity,
m0 electron mass, and c the speed of light. The 4 × 4 Dirac
matrices αi and β have the representation [24]

αi =
(

0 σi

σi 0

)
, β =

(
1 0
0 −1

)
, (5)

where σ i , i ∈ 1,3, are the 2 × 2 Pauli matrices.

The Hamiltonian of a free electromagnetic field is given in
the second-quantized form as

Hr =
∑

k

2∑
λ=1

h̄ωka
†
kλakλ, (6)

where a
†
kλ and akλ are called the creation and the annihilation

operators, respectively. An operator a
†
kλ acting on the vacuum

state is creating a photon with momentum k and transverse
polarization λ, (λ ∈ 1,2). h̄ is the reduced Planck constant.

The third term in Eq. (2) represents the interaction between
the bound electrons and the radiation field,

Her =
ne∑

i=1

∑
k

2∑
λ=1

√
h̄e2c2

2ε0ωkV

×αi · (ε̂kλe
ik·ri akλ + ε̂∗

kλe
−ik·ri a

†
kλ), (7)

where ε̂kλ is the polarization vector of the photon field.

B. Projection operator technique

The light-shift is a two-step process (ion excitation-
deexcitation in a laser field) in which are involved two different
configuration types of many-particle states: the initial state,
which is identical with the final one, is made up of a bound
state and a photon, and the intermediate state contains only
bound and continuous electrons in all possible configurations
(see Fig. 1).

In order to treat the problem perturbatively, the total Hilbert
space of states with ne electrons and any number of photons
is divided into several subspaces. This formalism, called
Feshbach theory [25,26], is a consequence of the spectral
theorem [27]. Let Q(n) be the subspace containing the states
with n photons and all electrons in bound states, and the
subspace P (n) the orthogonal complement of Q(n) within
the space of states with n photons; it includes those states
in which at least one electron is found in a continuum. Since
the subspaces defined here span the entire Hilbert space, the
identity operator can be decomposed as [28]

1 =
∞∑

n=0

(Q(n) + P (n)), (8)

where Q(n) and P (n) are orthogonal projection operators onto
the subspaces Q(n) and P (n), respectively.

The operators fulfill the following relations of
orthogonality:

Q(n)Q(m) = δnmQ(n),

P (n)P (m) = δnmP (n), (9)

Q(n)P (m) = P (n)Q(m) = 0.

In the next, one considers the following approximation:

1 ≈
1∑

n=0

(Q(n) + P (n)). (10)

This assumption is a consequence of the fact that we are
neglecting all multiphoton cascade transitions. In fact, as one
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can see later, even the M1 transitions (magnetic dipole) have
negligible contribution to the light-shift.

The projector Q(0) can be written as

Q(0) =
∑

d

|d〉〈d|, (11)

where |d〉 are the discrete eigenstates of the He Hamiltonian.
Further, one may define Q(1) with the help of creation and
annihilation operators:

Q(1) =
∑

d

∑
kλ

a
†
kλ|d〉〈d|akλ. (12)

In a similar way, one may construct P (0) and P (1) projectors:

P (0) =
∑

α

∫
dE|αE〉〈αE|,

(13)
P (1) =

∑
α

∫
dE

∑
kλ

a
†
kλ|αE〉〈αE|akλ,

where E is the energy of the continuum state, and α stays for
other relevant quantum numbers.

C. T -matrix expansion

We try the following ansatz for the light-shift of the state
|i〉:

�Ecs(i) ≡ A0� lim
ε→0+

〈i|T (Eop + iε)|i〉, (14)

where A0 = E 2c2

ω2
k

, with E the electric mean-field strength

created by the laser and ωk the laser frequency. The energy
Eop is the energy of the one-photon excited-state absorption,
i.e., Eop = Ei + h̄ωk, and cs stands for the cs-like analyzed
ion. For H-like ions, the above definition gives the same
light-shift formula as the S-matrix expansion [29,30]. The
formula (14) is not limited to the H-like ions; it has successfully
been used in other many-body problems, for example, in
the intershell trielectronic recombination [6], showing very
good agreement with the experimental results. Moreover, the
T -operator technique has also recently been applied to the
scattering-theory analysis of laser-assisted electron impact
ionization of He [31].

In this section, we are focusing on the computation of the
transition operator T . By definition, one may write [5]

T (z) = V + V G(z)V , (15)

where

G(z) = [z − H ]−1 (16)

is the Green operator of the total Hamiltonian,

V = H − H0, (17)

and z is a complex energy variable. The perturbative expression
of G(z) is based on the Lippmann-Schwinger equation

G(z) = G0(z) + G0(z)V G(z), (18)

with G0(z) = [z − H0]−1 being the Green operator of the un-
perturbed Hamiltonian. An equivalent form of the Lippmann-
Schwinger equation is

G(z) = G0(z) + G(z)V G0(z). (19)

FIG. 2. The diagrams are representing the lowest-order perturba-
tive light-shift correction. The Coulomb-dressed electron is depicted
by a double line and the wavy lines represent photons.

Calling the iterative solution of the Lippmann-Schwinger
equation together with Eq. (15) gives

T (n) = V + V G0V + V G0V G0V + · · · . (20)

Using Eq. (10), one can write

H → 1H 1 ≡ H0 + V , (21)

where H0 is defined as

H0 = Q(0)H Q(0)+Q(1)H Q(1)+P (0)H P (0)+P (1)H P (1),

(22)

and V is given by

V = Q(0)H Q(1) + Q(0)H P (0) + Q(0)H P (1)

+Q(1)H Q(0) + Q(1)H P (0) + Q(1)H P (1)

+P (0)H Q(0) + P (0)H Q(1) + P (0)H P (1)

+P (1)H Q(0) + P (1)H Q(1) + P (1)H P (0). (23)

In the process of laser-ion interaction, one expects to
see a photoexcitation followed almost simultaneously by a
photodeexcitation. However, one may have a counterintuitive
process: first a photodeexcitation and then a photoexcitation
as was depicted in Fig. 2. In the second-order of perturbation
theory, the projection of the transition matrix (20) on the
relevant subspace Q(1) gives

Q(1)T Q(1) ≈ Q(1)V Q(0)G0Q
(0)V Q(1)

+Q(1)V P (0)G0P
(0)V Q(1), (24)

or more precisely,

Q(1)T Q(1) ≈ Q(1)HerQ
(0)G0Q

(0)HerQ
(1)

+Q(1)HerP
(0)G0P

(0)HerQ
(1). (25)

One should mention that in Eqs. (24) and (25) we have
kept just the conservative terms. Further, in the third order of
perturbation theory we have

Q(1)T Q(1) ≈ Q(1)V G0V G0V Q(1)

≈ Q(1)V Q(0)G0Q
(0)V Q(0)G0Q

(0)V Q(1)

+Q(1)V P (0)G0P
(0)V P (0)G0P

(0)V Q(1)

= 0, (26)

because Q(0)V Q(0) = 0 and P (0)V P (0) = 0.
In the fourth order of perturbation theory, one can write

Q(1)T Q(1) ≈ Q(1)HerQ
(0)G0Q

(0)HeP
(0)G0

×P (0)HeQ
(0)G0Q

(0)HerQ
(1) (a)

+Q(1)HerQ
(0)G0Q

(0)HerQ
(1)G0

×Q(1)HerQ
(0)G0Q

(0)HerQ
(1) (b)
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+Q(1)HerQ
(0)G0Q

(0)HerP
(1)G0

×P (1)HerQ
(0)G0Q

(0)HerQ
(1) (c)

+Q(1)HerP
(0)G0P

(0)HeQ
(0)G0

×Q(0)HeP
(0)G0P

(0)HerQ
(1) (d)

+Q(1)HerP
(0)G0P

(0)HerQ
(1)G0

×Q(1)HerP
(0)G0P

(0)HerQ
(1) (e)

+Q(1)HerP
(0)G0P

(0)HerP
(1)G0

×P (1)HerP
(0)G0P

(0)HerQ
(1). (f ) (27)

It is worth mentioning that all components of Eq. (27)
correspond to virtual physical processes, represented and
named in Fig. 4.

In order to compute the transition matrix element in
Eq. (14), one should define both states involved in the
process (see Fig. 1): the the initial state, identical to the
final one, is made up by a bound state and a photon, i.e.,
|i〉 = |q〉 ⊗ |1; kλ〉, and the intermediate state is a bound |q〉
or a continuum |αE〉 state; and the notation |1; kλ〉 stands for
a uniphotonic state. It is easy to check that

Q(1)|i〉 = |i〉. (28)

It is not difficult to compute the following useful relations:

Q(0)G0(z)Q(0) =
∑

q

|q〉〈q|
z − Eq

,

Q(1)G0(z)Q(1) =
∑
λq

∫
k2dkd
k

a
†
kλ|q〉〈q|akλ

z − Eq − h̄ωk
,

(29)
P (0)G0(z)P (0) =

∑
α

∫
dE

|αE〉〈αE|
z − E

,

P (1)G0(z)P (1) =
∑
λα

∫
k2dkd
kdE

a
†
kλ|αE〉〈αE|akλ

z − E − h̄ωk
,

and inserting them into Eq. (25), we find out that the light-shift
is proportional to

∑
q

〈i|Her |q〉〈q|Her |i〉
z − Eq

, (30)

with the mention that for continuous intermediate states the
sum changes into an integral. This second-order contribution
was represented in Fig. 2(a). Further, in the fourth order of
perturbation theory (see Fig. 3), from Eq. (27) (a) one may see
that the light-shift is proportional to

∑
q

|〈i|Her |q〉|2
(z − Eq)2

∑
α

∫
dE

|〈q|He|αE〉|2
z − E

, (31)

and from Eq. (27) (b) and Eq. (27) (c) one should have two
other contributions:

∑
q

|〈i|Her |q〉|2
(z − Eq)2

∑
λ

∫
k2dkd
k

|〈q|Hera
†
kλ|q〉|2

z − Eq − h̄ωk
(32)

FIG. 3. The diagrams are representing the fourth-order pertur-
bative light-shift correction, where the Coulomb-dressed electron is
depicted by a double line and the wavy lines represent photons:
(a) electron excitation, (b) self-energy correction, and (c) electron
correction via Coulomb field.

and

∑
q

|〈i|Her |q〉|2
(z − Eq)2

∑
λ

∫
k2dkd
k

|〈q|Hera
†
kλ|αE〉|2

z − E − h̄ωk
, (33)

respectively; for continuous states, the sum transforms into an
integral. Using the same procedure, one may write the terms
(27) (d), (e), and (f) in a more suitable form, i.e.,

∑
α

∫
dE

|〈i|Her |αE〉|2
(z − E)2

∑
q

|〈αE|He|q〉|2
z − Eq

, (34)

∑
α

∫
dE

|〈i|Her |αE〉|2
(z − E)2

×
∑
λq

∫
k2dkd
k

|〈αE|Hera
†
kλ|q〉|2

z − Eq − h̄ωk
, (35)

and

∑
α

∫
dE

|〈i|Her |αE〉|2
(z − E)2

×
∑
λα

∫
k2dkd
kdE

〈αE|Hera
†
kλ|αE〉|2

z − E − h̄ωk
. (36)

At this point, we have all the contributions we need in our
theory. In order to get the above expressions, we have used
an approximation called isolated resonances (whereby one
neglects the off-diagonal matrix elements of the propagators).

In order to compute the light-shift energy levels, in the
main formula (14) one should take the limit ε → 0+. Using
the formula [4]

lim
ε→0+

1

x + iε
= P

(
1

x

)
− iπδ(x), (37)

where P is the principal part, one may transform the Eqs. (31)
and (34) into

lim
ε→0+

∑
α

∫
dE

|〈q|He|αE〉|2
z − E

= �EC
q − i�C

q /2, (38)

033412-5



O. POSTAVARU AND A. C. SCAFES PHYSICAL REVIEW A 96, 033412 (2017)

(a) (c)(b)

(f)

(d)

(e) (g) (h)

FIG. 4. In this figure we are scathing some elementary processes,
those module square are giving sens to the diagrams represented
in Fig 3; (a) dielectronic recombination via Coulomb interaction
Q(0)HeP

(0), (b) Auger process via Coulomb interaction P (0)HeQ
(0),

(c) radiative recombination Q(1)HerP
(0), (d) photoeffect P (0)HerQ

(1),
(e) photon de-excitation Q(1)HerQ

(0), (f) photon absorption (ex-
citation) Q(0)HerQ

(1), (g) Bremsstrahlung P (1)HerP
(0), and (h)

excitation (inverse of Bremsstrahlung) P (0)HerP
(1).

where the Coulomb energy correction �EC
q and the Auger

width �C
q have the expressions

�EC
q ≡ P

∑
α

∫
dE

|〈q|He|αE〉|2
z − E

,

(39)
�C

q ≡ 2π
∑

α

|〈q|He|αEq〉|2,

and where we have used in the second equation z = E.
Furthermore, if one makes the definitions

�ER
q = P

∑
λ

∫
k2dkd
k

∑
q

|〈q|Hera
†
kλ|q〉|2

z − Eq − h̄ωk
,

(40)
�R

q = 2π
∑

λ

∫
k2dkd
k|〈q|Hera

†
kλ|q〉|2,

with z = Eq + h̄ωk, one find that the middle part of the
expressions (32), (33), (35), and (36) is

lim
ε→0+

∑
λ

∫
k2dkd
k

∑
q

|〈q|Hera
†
kλ|q〉|2

z − Eq − h̄ωk

= �ER
q −i�R

q /2. (41)

In the above expressions, we have denoted by �ER
q the

self-energy and one-photon exchange corrections for the inter-
mediate state |q〉, and by �R

q the radiative width of the state.
In Fig. 4 we are describing the elementary processes corre-

sponding to transitions described by the different nondiagonal
matrix elements. The fourth-order processes in Eq. (27) are
shown by the diagrams in Fig. 3. The Feynman diagrams for
virtual two-photon exchange between bound electrons involv-
ing two different time orderings are known as the “ladder”
and the “crossed-photon” diagrams [16]. It is easy to put the
expressions (34)–(36) into the form of the definitions (40) and
(41) by replacing the bound states with the continuous ones.

As we have seen, using the quantum mechanics formalism
one may describe the situations (a), (b), and (c), represented in
Fig. 3. In order to complete our theory, one should introduce
by hand the radiative corrections, i.e., screened Lamb shift

diagrams, which are purely QED processes; anyhow, it has
just a real part, and consequently has contributions only to the
energies. So, in the fourth order of perturbation theory, one
may write the level-shift expression as

�Ecs(i) = A0

∑
q

〈i|Her |q〉
(

1 + �Eq − i�q/2

z − Eq

)

× 〈q|Her |i〉
z − Eq

, (42)

where we made the notations �Eq = �EC
q + �ER

q + �EV P
q

and �q = �C
q + �R

q , and where �EV P
q represents the vacuum

polarization correction to the energies. It is not difficult to
see that, in higher order of perturbation theory, one gets the
following contributions:

1 + �Eq − i�q/2

z − Eq

+
(

�Eq − i�q/2

z − Eq

)2

· · · , (43)

and using the formula [8]
∞∑

n=0

xn = 1

1 − x
if |x| < 1, (44)

we get from (14) the expression

�Ecs(i) = A0

∑
q

〈i|Her |q〉〈q|Her |i〉
Ei + h̄ωk − Eq − �Eq − i�q/2

. (45)

It should be noted that arriving to the formula (43), the
resonance approximation is made again.

The formula (14) describes the so-called rotating-wave
approximation, a situation represented in Fig. 2(a). In order
to include in our computations the counterintuitive process
represented in Fig. 2(b), the parameter Eop in Eq. (14) should
be redefined to Eop = Ei − h̄ωk. Applying a similar treatment
to Fig. 2(b), one gets

�E′
cs(i) = A0

∑
q

〈i|Her |q〉〈q|Her |i〉
Ei − h̄ωk − Eq − �Eq − i�q/2

, (46)

and finally, we are able to write down the total light-shift,
which is the sum of the above two expressions (45) and (46).

The dynamic level-shift energy levels in a classical frame-
work with an adiabatically damped laser-atom interaction and
a treatment based on time-independent perturbation theory,
with a second-quantized laser-atom dipole interaction Hamil-
tonian, are equivalent [30]. Therefore, our further calculations
are based on the semiclassical approach.

D. The theory of He-like light-shift

The hydrogenlike relativistic light-shift of a given atomic
state i ′ ≡ |niκi〉 is given by [14]

�EH(i ′) = A0

∑
nνκν

( 〈niκi |V JM
2 |nνκν〉〈nνκν |V JM

1 |niκi〉
Ei − Eν − h̄ωk

+ 〈niκi |V JM
1 |nνκν〉〈nνκν |V JM

2 |niκi〉
Ei − Eν + h̄ωk

)
, (47)

with V JM
1 = −α · ε̂νe

ik·r and V JM
2 = −α∗ · ε̂∗

ν e
−ik·r. A0 is

given by A0 = E 2c2

ω2
k

, with E being the electric field strength,

|niκi〉 and |nνκν〉 are eigenfunctions of the unperturbed
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Hamiltonian H0 with the corresponding energies Ei and Eν ,
respectively, and ωk is the laser frequency. Note that the sum
over the intermediate states is a generalized sum, as continuum
states are included into it. The quantum numbers J and M

appear due to the spherical expansion of the exponential [23]

eik·r = 4π
∑
JM

iJ jJ (kr)Y ∗
JM (k̂)YJM (r̂), (48)

where jJ (kr) is the spherical Bessel function [32]. The vector
k ≡ kk̂ is called the propagation vector, and we consider
the electromagnetic plane waves always propagating in the
k̂ direction.

In order to describe He-like systems, we introduce some
useful notations: in the independent particle model, the initial
state, identical with the final one, is i ≡ |(niκi,n0κ0)JiMi〉,
while the intermediate (virtual) states are denoted by
|(nνκν,n0κ0)JνMν〉. With this notation, Eqs. (45) and (46)
become

�EHe(i)

= A0

∑
nνκνJνMν

(〈(n0κ0,niκi)JiMi |V JM
2 |(n0κ0,nνκν)JνMν〉

Ei − Eν − h̄ωk

×〈(n0κ0,nνκν)JνMν |V JM
1 |(n0κ0,niκi)JiMi〉

+ 〈(n0κ0,niκi)JiMi |V JM
1 |(n0κ0,nνκν)JνMν〉

Ei − Eν + h̄ωk

×〈(n0κ0,nνκν)JνMν |V JM
2 |(n0κ0,niκi)JiMi〉

)
. (49)

The contribution of the Lamb shift [22] to the light-shift
denominator of Eq. (47) for two-photon 1s − 2s transition is
0.02% in Fe and 0.2% in U. As we discuss later, even the
magnetic one-photon transitions give a bigger contribution.
In this paper, we are focusing on the light-shift of two-
photon transitions, and the decay widths are important only
at resonances (when the detuning is comparable to or less
than the decay width). The decay widths [23] of the 2s state
(≈2 × 10−7 eV in Fe and ≈0.1 eV in U) give even smaller
contribution to the light-shift in the 1s − 2s transition than the
Lamb shift of the 1s state. Consequently, in our formula we
are neglecting both Lamb and decay width inputs, which are
important only at resonances.

E. Decomposition into H-like matrix elements

Assuming that we know how to compute Eq. (47), our task
is to express the He-like light-shift (49) in terms of the H-like
light-shift. In order to do this, we are expressing all matrix
elements of the type

〈(n0κ0,niκi)JiMi |V JM
2 |(n0κ0,nνκν)JνMν〉, (50)

as functions of H-like matrix elements.
In the IPM model, the many-fermionic wave function

|(n0κ0,niκi)JiMi〉 is given by the Slater determinant,

|(n0κ0,niκi)JiMi〉 = 1

N

∑
m0mi

C(j0jiJi ; m0miMi)

×
∣∣∣∣|n0κ0m0〉 |niκimi〉
|n0κ0m0〉 |niκimi〉

∣∣∣∣, (51)

(a) (b)

(c)
(d)

FIG. 5. The diagrams of all possible configurations in He-like
systems: (a) |niκi〉 = |n0κ0〉, |nνκν〉 = |niκi〉, and |nνκν〉 = |n0κ0〉;
(b) |niκi〉 = |n0κ0〉, |nνκν〉 = |niκi〉, and |nνκν〉 = |n0κ0〉; (c) |niκi〉 =
|n0κ0〉, |nνκν〉 = |niκi〉, and |nνκν〉 = |n0κ0〉; (d) |niκi〉 = |n0κ0〉,
|nνκν〉 = |niκi〉, and |nνκν〉 = |n0κ0〉.

where N = √
2 if |n0κ0〉 = |niκi〉 and N = 2 if |n0κ0〉 =

|niκi〉. The coefficient C(j1j2J ; m1m2M) is called the
Clebsch-Gordan coefficient [33]; for a given j1 and j2 the
values of J are restricted by the triangular condition j1 + j2 �
J � |j1 − j2|, and J ranges from j1 + j2 down to |j1 − j2| in
integer steps. The coefficient vanishes unless M = m1 + m2.

In the He-like ions, one may have only two distinct
configurations: (1) in which both electrons are on the same
subshell, the situation presented in Figs. 5(a) and 5(b), and (2)
where the two electrons are on different subshells, the situation
presented in Figs. 5(c) and 5(d).

(1) Let us consider first the case drawn in Fig. 5(a), i.e.,
|niκi〉 = |n0κ0〉, |nνκν〉 = |niκi〉, and |nνκν〉 = |n0κ0〉. The
expression of the initial wave function |(n0κ0,niκi)JiMi〉 is
given by Eq. (51) with N = 2, and the expression of the
intermediate wave function |(n0κ0,nνκν)JνMν〉 is given by

|(n0κ0,nνκν)JνMν〉 = 1√
2

∑
m′

0mν

C(j0jνJν ; m′
0mνMν)

×
∣∣∣∣|n0κ0m

′
0〉 |nνκνmν〉

|n0κ0m
′
0〉 |nνκνmν〉

∣∣∣∣. (52)

Farther, by using Eqs. (51) and (52) one may compute the
matrix element (50); it is not difficult to find that

〈(n0κ0,niκi)JiMi |V JM
2 |(n0κ0,nνκν)JνMν〉

= 1√
2

∑
m0mim

′
0mν

C(j0jiJi ; m0miMi)

×C(j0jνJν ; m′
0mνMν)

(
δm0m

′
0
〈niκimi |V JM

2 |nνκνmν〉
− δmim

′
0
〈n0κ0m0|V JM

2 |nνκνmν〉
)
. (53)

In this result, we have used the orthogonality prop-
erty of the wave functions, i.e., 〈niκimi |nνκνmν〉 = 0,
〈n0κ0m0|nνκνmν〉 = 0 and 〈n0κ0m0|n0κ0m

′
0〉 = δm0m

′
0
.

To simplify Eq. (53), one should use the Wigner-Eckart
theorem [33]

〈αajama|T JM |αbjbmb〉
= 1√

2ja + 1
C(jbJja; mbMma)〈αaja||T J ||αbjb〉, (54)
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where T JM is a tensor operator of rank J , and α stands for any other quantum number (for example, the parity). The reduced
matrix element 〈αaja||TL||αbjb〉 is independent of M , ma , and mb.

In order to perform the summation over all magnetic quantum numbers, one should use the relation [33]∑
αβδ

C(abc; αβγ )C(af d; αξδ)C(dbe; δβε) = (−1)b+c+d+f
√

1 + 2c
√

1 + 2d

{
a b c

e f d

}
C(cf e; γ ξε), (55)

where {...} is a 6-j symbol.
After long but straightforward computations, one obtains the final expression of Eq. (53):

〈(n0κ0,niκi)JiMi |V JM
2 |(n0κ0,nνκν)JνMν〉

= 1√
2
(−1)3ji+jν+J [(−1)2ji+J i − 1]

√
2Jν + 1〈niκi ||V J

2 ||nνκν〉
{
jν ji Jν

Ji J ji

}
C(JνJJi ; MνMMi). (56)

To get Eq. (56), we have to use the Clebsch-Gordan coefficients property [33]

C(abc; αβγ ) = (−1)a+b−cC(bac; βαγ ). (57)

To compute the matrix element (49), one should apply the same method. The result is given by

〈(n0κ0,nνκν)JνMν |V JM
1 |(n0κ0,niκi)JiMi〉

= 1√
2
(−1)2ji+2jν−Jν+Ji+J [(−1)2ji−J i − 1]

√
2Ji + 1〈nνκν ||V J

1 ||niκi〉
{

ji ji Ji

Jν J jν

}
C(JiJJν ; MiMMν). (58)

It is enough to introduce Eqs. (56) and (58) into Eq. (49) in order to get

�EHe(i)=−A0

∑
nν =ni κνJνMν

(−1)5ji+3jν−Jν+Ji+2J [(−1)2ji−J i − 1]
√

2Jν + 1
√

2Ji + 1

{
jν ji Jν

Ji J ji

}{
ji ji Ji

Jν J jν

}

×C(JνJJi ; MνMMi)C(JiJJν ; MiMMν)

(〈niκi ||V J
2 ||nνκν〉〈nνκν ||V J

1 ||niκi〉
Ei − Eν − h̄ωk

+ 〈niκi ||V J
1 ||nνκν〉〈nνκν ||V J

2 ||niκi〉
Ei − Eν + h̄ωk

)
.

(59)

Now let us consider the situation of Fig. 5(b), i.e., |niκi〉 = |n0κ0〉 = |nνκν〉. Following the same method as in the previous
case, we are able to put the light-shift in the form

�EHe(i)= 1

4
A0�

⎧⎨
⎩

∑
JνMν

(−1)Ji+Jν

√
2Jν + 1

√
2Ji + 1 {[(−1)Ji + 1][(−1)Jν + 1]}2

{
ji ji Ji

Jν J ji

}{
ji ji Jν

Ji J ji

}

×C(JνJJi ; MνMMi)C(JiJJν ; MiMMν)

( 〈niκi ||V J
2 ||niκi〉〈niκi ||V J

1 ||niκi〉
Ei − Ei − h̄ωk − i�i/2

+ 〈niκi ||V J
1 ||niκi〉〈niκi ||V J

2 ||niκi〉
Ei − Ei + h̄ωk − i�i/2

)⎫⎬
⎭.

(60)

Due to the expression in the last parenthesis, this contribution is always zero; the reduced matrix elements are real, and the
contribution is

�
[

1

−h̄ωk − i�i/2
+ 1

h̄ωk − i�i/2

]
= 0. (61)

In conclusion, in case we have both electrons in the same subshell, the light-shift is given by Eq. (59).
(2) For the situation depicted in Fig. 5(c), i.e., |niκi〉 = |n0κ0〉, |nνκν〉 = |niκi〉, and |nνκν〉 = |n0κ0〉, the light-shift is

�EHe(i) = A0

∑
nν κνJνMν

(−1)6j0+3ji+3jν−Ji−Jν+2J
√

2Jν + 1
√

2Ji + 1

{
jν j0 Jν

Ji J ji

}{
ji j0 Ji

Jν J jν

}
C(JνJJi ; MνMMi)

×C(JiJJν ; MiMMν)

( 〈niκi ||V J
2 ||nνκν〉〈nνκν ||V J

1 ||niκi〉
Ei − Eν − h̄ωk

+ 〈niκi ||V J
1 ||nνκν〉〈nνκν ||V J

2 ||niκi〉
Ei − Eν + h̄ωk

)
, (62)

and for the case illustrated in Fig. 5(d), i.e., |niκi〉 = |n0κ0〉, |nνκν〉 = |niκi〉, and |nνκν〉 = |n0κ0〉, is

�EHe(i) = −A0

∑
JνMν

(−1)7j0+3ji−Ji+2J (1 + (−1)Jν )
√

2Jν + 1
√

2Ji + 1

{
ji j0 Ji

Jν J j0

}{
j0 j0 Jν

Ji J ji

}
C(JνJJi ; MνMMi)

×C(JiJJν ; MiMMν)

( 〈niκi ||V J
2 ||n0κ0〉〈n0κ0||V J

1 ||niκi〉
Ei − E0 − h̄ωk

+ 〈niκi ||V J
1 ||n0κ0〉〈n0κ0||V J

2 ||niκi〉
Ei − E0 + h̄ωk

)
. (63)
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We conclude that in case we have the two electrons in different
subshells, the light-shift is given by the sum of Eqs. (62) and
(63).

III. RESULTS

In Eqs. (47) and (49), the generalized series over in-
termediate states include the bound states, the positive-
energy-continuum eigenstates, and also the negative-energy-
continuum eigenstates. In order to evaluate these second-
order expressions, we have used the Green’s function in
the Sturmian representation [34]. In this representation, the
continuous sum over wave functions will be replaced by
discrete summations running over all, positive and negative,
integers. It is possible to transform these expressions into forms
containing only summations over non-negative integers [34].
In all our numerical results, the number of terms included in
the expansion in order to achieve convergence to the number
of figures quoted (five places after the decimal point) varied
from 5 for Z = 26 to 10 for Z = 91.

We are starting our discussion on relativistic He-like light-
shifts with the 1s2 ground state. As one may see in formula
(59), the light-shift is proportional to a product of two 6-j
symbols. For J = 1, the only nonzero results are for Jν = 1
and jν = 1

2 or 3
2 . The products of the two Clebsch-Gordan

coefficients are nonzero only in the special case M = 0, which
implies Mi = Mν = 0. Further, the only unknown quantities
in the Eq. (59) are the reduced matrix elements. We want
to relate these quantities to the H-like light-shift expression
(47), and for this reason one should use the Wigner-Eckart
theorem (54). After some elementary computations, one may
see that the He-like light-shift is 2 times the H-like light-shift
(47), with the extra condition that nν � 2. Furthermore, the
contribution nν = 1 is zero, for the same reason as we have
already discussed in Eq. (61). We conclude that the light-shift
of the 1s2 ground state is 2 �EH(1s).

For a laser beam pointing in an arbitrary direction êz, one
may define the left- and right-handed circular polarizations
[23]

ε∓ = 1√
2

(êx ∓ iêy). (64)

From Eq. (47), one could see that both polarizations give the
same result; hence the light-shift does not depend on the laser’s
polarization.

The independent particle model, where the electron-
electron interaction is neglected, works well for highly charged
ions. In Fig. 6 we have represented the difference between
relativistic and nonrelativistic light-shifts in He-like Fe, for a
laser field intensity of I = 1018 W/cm2. The two plots have
different behavior: in the energy interval 6300–6500 eV, ω2p

(Bohr formula) is a resonant frequency for the nonrelativistic
light-shift, and at the same time ω2p1/2 and ω2p3/2 (Sommerfeld
formula) are resonant frequencies for the relativistic light-shift.
This behavior gives different contributions to the level shifts,
and even for 1s − 2s two-photon excitation frequency there
are situations where the two approaches differ in the first digit
[14]. Also, as one may see in Fig. 6, there are situations where
the two descriptions differ in sign. All of the data presented in
this paper are in a fully relativistic framework.

FIG. 6. Comparison of nonrelativistic (blue, dashed) and rela-
tivistic (opal, continuous) light-shift of the 1s2 state in He-like Fe for
a laser intensity of I = 1018 W/cm2.

In Fig. 7 we have represented the light-shift for the 1s2

energy level in a He-like ion, for a 1s − 2s two-photon
transition frequency, and a laser intensity of I = 1018 W/cm2

as function of the charge number Z. The M1 contribution
is multiplied by 10 000. The light-shift (contribution of the
electric and magnetic components of the laser) is dominated
by the ac Stark shift, and for this reason in all our future
analyses we neglect the magnetic contributions.

The retardation effect for 1s − 2s two photon excitation
frequency has 1% contribution in He-like Xe and 3% con-
tribution in He-like U. It is relevant only when the photon
energy is comparable to the atomic binding energy. Anyhow,
this effect was included in all our data.

For J = 2, the only nonzero results are for Jν = 2 and
jν = 3

2 or 5
2 . In Eq. (59), the product of the two Clebsch-Gordan

coefficients are nonzero in the special case M = Mi = Mν =
0. Note that a product of two Clebsch-Gordan coefficients
is present in all situations presented in Fig. 5 and always
will give the same relation between the magnetic quantum
numbers, i.e., M = Mi = Mν = 0. In all further computations,
one should consider this relation a known property of the
He-like systems. Introducing in Eq. (59) the above quantities,
as in the J = 1 case, one gets a light-shift for He-like ions 2
times the light-shift for H-like ions. However, this contribution
is very small: for a 1s − 2s two-photon transition frequency

Z

EHe[eV]

20 40 60 80

−0.04

−0.03

−0.02

−0.01

0.00

FIG. 7. Light-shift of the 1s2 energy level in a He-like ion, for
a 1s − 2s two-photon transition frequency and a laser intensity of
I = 1018 W/cm2 as function of the charge number Z. The E1 (blue,
dashed) and M1 × 104 (opal, continuous) contributions are shown.
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TABLE I. The β coefficients (66) in [Hz(W/m2)−1] for the He-
like [1s2]Ji=0 state for different two-photon transition frequencies and
for different charge states Z. x[y] stands for x × 10y .

Z 1s − 2s 1s − 3s 1s − 4s

26 −1.11253[−10] −1.25437[−10] −1.32129[−10]
37 −2.56743[−11] −2.89360[−11] −3.04725[−11]
46 −1.01093[−11] −1.13894[−11] −1.19915[−11]
53 −5.41038[−12] −6.09378[−12] −6.41470[−12]
63 −2.44656[−12] −2.75473[−12] −2.89908[−12]
73 −1.19454[−12] −1.34490[−12] −1.41514[−12]
78 −8.50281[−13] −9.57426[−13] −1.00740[−12]
83 −6.10001[−13] −6.87061[−13] −7.22944[−13]
89 −4.11943[−13] −4.64276[−13] −4.88597[−13]
91 −3.61621[−13] −4.07684[−13] −4.29077[−13]

and a laser intensity of 1018 W/cm2, the light-shift for He is
9.269 51 × 10−5 eV and for He-like U is 1.800 32 × 10−8 eV.

Light-shift is quadratic in the field strength and linear in the
laser’s intensity I , i.e.,

�EHe(i) ∝ I = 1
2ε0cE

2, (65)

where c is the speed of light, ε0 is the vacuum permittivity,
and E is the field strength. In order to avoid discussions over
the intensity I , and for a better comparison with existing
nonrelativistic data, in the following we are introducing the
dynamic Stark shift coefficient β [14]:

�EHe(i) ≡ hβI. (66)

The Stark shift contributions for 1s − ns, n ∈ 2,4, two-
photon transition frequency are shown in Table I. It is also
intuitively understandable that external field effects in general
have a smaller effect if the electrons are bound by stronger
central potentials. For measurements with lighter elements, the
effects are more pronounced. Anyhow, in the case of U, where
the binding energies exceed 10 keV, even a photon frequency
of 50 eV is negligible in the description of the dynamic Stark
shift. However, for lighter systems such as Xe (Z = 54), the
difference between the optical and the soft x-ray light field is
noticeable [14], especially for excited states.

TABLE II. The β coefficients (66) in [Hz(W/m2)−1] for the He-
like [2p2

3/2]Ji=0 state for different two-photon transition frequencies
and for different charge states Z. x[y] stands for x × 10y .

Z 2p3/2 − 3s 2p3/2 − 4s 2p3/2 − 3p3/2

26 −4.72485[−9] −6.23940[−9] −4.73734[−9]
37 −1.16221[−9] −1.51013[−9] −1.16773[−9]
46 −4.91971[−10] −6.27594[−10] −4.95047[−10]
53 −2.82666[−10] −3.54089[−10] −2.84594[−10]
63 −1.45398[−10] −1.76052[−10] −1.46204[−10]
73 −8.43263[−11] −9.72769[−11] −8.42404[−11]
78 −6.69466[−11] −7.46866[−11] −6.63897[−11]
83 −5.47799[−11] −5.84738[−11] −5.36454[−11]
89 −4.53062[−11] −4.47161[−11] −4.31147[−11]
91 −4.32609[−11] −4.11545[−11] −4.05292[−11]

TABLE III. The β coefficients (66) in [Hz(W/m2)−1] for the He-
like [1s2p1/2]Ji=0 state for different two-photon transition frequencies
and for different charge states Z. x[y] stands for x × 10y .

Z 1s − 2s 1s − 3s 2p1/2 − 2p3/2

26 −3.66886[−11] −4.14022[−11] −2.89356[−11]
37 −8.35255[−12] −9.41610[−12] −6.61010[−12]
46 −3.23837[−12] −3.64674[−12] −2.57232[−12]
53 −1.70702[−12] −1.92036[−12] −1.36060[−12]
63 −7.50995[−13] −8.43470[−13] −6.02045[−13]
73 −3.53701[−13] −3.96517[−13] −2.85452[−13]
78 −2.46256[−13] −2.75795[−13] −1.99470[−13]
83 −1.72205[−13] −1.92671[−13] −1.40027[−13]
89 −1.12145[−13] −1.25328[−13] −9.16290[−14]
91 −9.71010[−14] −1.08476[−13] −7.94665[−14]

Unfortunately, light-shifts can never be entirely eliminated
in two-photon spectroscopy, because the transition between
level is made by virtual transitions through intermediate states
that are usually far from resonance. In this paper we give
some examples of two-photon transitions for highly charged
ions with an effective nuclear charge bigger than 26. Recently,
the Rayleigh scattering of x rays by heliumlike Ni26+ ions
in their ground state was studied beyond the IPM (identical
particle model) [35]. The obtained results show that, for highly
energetic photons, the effects beyond the IPM do not exceed
2%.

In Table V, we are giving some light-shift formulas for
different electronic configurations in He-like ions. The first
column in the table contains a set of possible electronic
configurations, the second one the He-like light-shift as a
function of H-like light-shift [14], and the last column the
corresponding table with numerical data for different charge
states. The list of light-shifts can be extended straightforwardly
to other transitions of interest.

IV. SUMMARY

This paper is a fully relativistic, semi-QED description
of the light-shifts of energy levels in highly charged ions,
valid for arbitrary values of nuclear charge. We are using the

TABLE IV. The β coefficients (66) in [Hz(W/m2)−1] for the He-
like [1s2p3/2]Ji=1 state for different two-photon transition frequencies
and for different charge states Z. x[y] stands for x × 10y .

Z 1s − 2s 2p3/2 − 3s 2p3/2 − 3p3/2

26 −1.11762[−10] −8.89182[−11] −8.89243[−11]
37 −2.59568[−11] −2.06834[−11] −2.06863[−11]
46 −1.02934[−11] −8.21530[−12] −8.21705[−12]
53 −5.54665[−12] −4.43303[−12] −4.43429[−12]
63 −2.53838[−12] −2.03307[−12] −2.03388[−12]
73 −1.25811[−12] −1.00981[−12] −1.01036[−12]
78 −9.03485[−13] −7.25895[−13] −7.26340[−13]
83 −6.54611[−13] −5.26401[−13] −5.26767[−13]
89 −4.48055[−13] −3.60597[−13] −3.60886[−13]
91 −3.95262[−13] −3.18172[−13] −3.18438[−13]
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TABLE V. The He-like light-shift for different electronic configurations as a function of H-like light-shift. �EH(a → b) stands for the part
of the light-shift corresponding to the a − b transition. The last column gives the corresponding table with data.

i �EHe(i) Table

1s2 2�EH(1s) Table I[
2p2

3/2

]
Ji=0

�EH

(
2p3/2; jν = 1

2

) + 10 �EH

(
2p3/2; jν = 3

2

) + 5
3 �EH

(
2p3/2; jν = 5

2

)
Table II

[1s2s]Ji=0 �EH(1s) 1
2 ×Table I

[1s2p1/2]Ji=0 �EH(1s)-�EH(1s → 2p1/2) Table III
[1s2s]Ji=1 3�EH(1s) 3

2 ×Table I
[1s2p1/2]Ji=1 3�EH(1s)-3�EH(1s → 2p1/2) 3×Table II
[1s2p3/2]Ji=1 3�EH(1s)- 3

2 �EH(1s → 2p3/2) Table IV

T -matrix formalism in order to develop a relativistic many-
body light-shift theory. Furthermore, using the independent
particle model, one may decompose the He-like matrix
elements into H-like matrix elements. This allows us to relate
the He-like light-shift to the H-like light-shift, and the latter is
computed in literature.

In our analysis, we are expanding the electromagnetic
field into multipoles which enables us to study the nondipole
effects of retardation and the interaction with the magnetic
components of the field. Both contributions are significant just
near resonances, so the main addition to the Stark shift comes
from the E1 transitions. One may conclude that the dipole
approximation is good, especially for low charge states where
the retardation effect is small. Also, if one compares Table I
with Table II, one can see that light mainly affects the upper
levels.

The theory presented in this paper is important for
current and future experiments. Doppler-free two-photon
spectroscopy is never free of light-shift effects. Recently,
observations involving two-photon absorption in the x-ray
regime have been reported at SACLA [36,37].
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