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Multi-ion sensing of dipolar noise sources in ion traps
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Trapped-ion quantum platforms are subject to “anomalous” heating due to interactions with electric-field noise
sources of nature not yet completely known. There is ample experimental evidence that this noise originates
at the surfaces of the trap electrodes, and models assuming fluctuating pointlike dipoles are consistent with
observations, but the exact microscopic mechanisms behind anomalous heating remain undetermined. Here we
show how a two-ion probe displays a transition in its dissipation properties, enabling experimental access to the
mean orientation of the dipoles and the spatial extent of dipole-dipole correlations. This information can be used
to test the validity of candidate microscopic models, which predict correlation lengths spanning several orders of
magnitude. Furthermore, we propose an experiment to measure these effects with currently available traps and

techniques.
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Trapped atomic ions constitute prominent candidates for
deployable technologies exploiting the unintuitive properties
of quantum mechanics [1,2]. A number of scalable architec-
tures have been proposed [3-5], but technical constraints limit
the current computational power of high-fidelity trapped-ion
quantum machines to less than ten qubits [6]. One key
aspect of the most well-known scalable schemes is trap
miniaturization. This eases scalability and allows for faster
quantum operations on the computational space (internal
electronic states) [7,8] as well as the quantum bus (ions’
motion) [9,10]. However, trapped-ion experiments suffer from
motional heating due to interactions with noise sources of
origin not yet completely known [11-13]. The measured
effects of this so-called “anomalous” heating scale strongly
with the inverse of the ion-electrode distance, posing a major
obstacle to trap miniaturization.

Systematic experimental studies suggest that the origin of
anomalous heating is due to contaminants on the surfaces of
trap electrodes [12]. In Ref. [14] the NIST ion-storage group
treated electrode surfaces with ion bombardment. The 100-fold
reduction in the observed heating rates points at adsorbates as
probable culprits for the noise. But recent studies show that this
is not the whole picture [15], suggesting that only electrode
surfaces subject to rf drives (as required for ion trapping) are
accountable for the heating. This result has a profound impact
on the search for possible microscopic models since, to our
knowledge, all previous studies considered thermally driven
processes (see Ref. [12] for a review of proposed microscopic
models). In particular, the diffusion of adsorbates [16—19]
is consistent with the most advanced surface-science exper-
iments realized to date on a trap setup [20], appearing to be a
plausible mechanism for anomalous heating.

Up until now studies of the noise origin have focused
exclusively on its scaling for a single trapped ion. This is
usually assumed as S ~ w~%d P T7 with d the ion’s distance
to the electrode, w its motional frequency, and T the trap
electrode’s temperature. For different microscopic models a
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strong distance scaling S > 3 is predicted and is consistent
with experiments [12,13], whereas frequency and temperature
dependencies vary for different models. Here we propose a
way of measuring noise which can give finer details on its
microscopic origin.

We show that for a trap holding two or more ions a noise
crossover effect must take place: there is a point where the
heating rates of the c.m. and relative motions equate. This
previously unknown crossover occurs when ions are separated
by comparable distances from each other (/) and from the trap
electrodes (d, see Fig. 1). We will show that its characteristics
depend not only on the spatial extent of correlations of
dipole-dipole fluctuations & (or the size of patches) but also
on the average orientation of the dipoles. This phenomenon
is in stark contrast to that found for a homogeneous lattice
environment [21], where the properties of the propagator
(anisotropy, resonant manifold, etc.) determine the crossover
characteristics.

We derive estimates of the correlation lengths & of dipole-
dipole fluctuations for different microscopic models in the
literature and show that the one-ion noise level departs from
its typical d—* scaling [12] when d ~ &. Likewise the noise
crossover for two ions is shifted to higher ion-ion distances
[ in this regime. Further, the absence or presence of noise
crossover for different motional degrees of freedom uniquely
determines the mean orientation of dipoles. As a side result,
we show that the effect of dipole orientations can also be
observed with a single ion. This might explain recent results at
NIST, where noise levels were measured to be highest for ion
motion parallel to the surface projection of the sputter beam
at a well-defined angle [22]. Finally, we propose a realistic
experiment to measure and characterize the noise crossover.
This can be carried out with current state-of-the-art Paul traps
and techniques.

I. ELECTRIC-FIELD NOISE

Every dipole source on the surface of an electrode repre-
sents a noisy source of electric potential at the ion position:
¢(F) = i - 7/|F]?, with i the dipole moment of the ion and
7 the position of the dipole relative to the ion. Heating rates
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FIG. 1. Ratio Scross/Sseir for the different motional degrees of
freedom of a two-ion system: x (black, bottom), y (blue, middle), and
z (orange, top). The dipoles are assumed to be uniformly distributed
and pointing along y. The electrode area included in this simulation is
asquare of side 20d, which is enough to avoid finite-size effects. Inset:
Sketch of a surface-electrode Paul trap with segmented electrodes,
similar to Ref. [28]. The ion-ion distance is / and the ion-electrode
distance is d, which is usually similar to the width of the central
(horizontal) electrode.

for two ions along a given motional degree of freedom, say x,
depend on the correlators (E,(7;,7)E.(7;,0)), with E,(7;,7)
the total electric-field component along x at time 7 at the ion’s
position 7;. We derive (Appendix A) the master equation for
two ions in Lindblad form, exhibiting the desired heating rates.

Let us consider two coupled identical ions aligned along
the x axis (see Fig. 1), separated by / from each other and
d from the trap electrodes. We will assume in what follows
that all relevant modes of motion have been cooled close to
their respective ground states. It is convenient to move to a
normal-mode picture x4+ = (x; &£ x5)/ /2, where X1, are the
ions’ positions with respect to a laboratory reference frame.
Here, the (+) mode corresponds to the c.m. motion and the
(—) mode corresponds to relative motion (stretch mode), with
eigenfrequencies 21. The heating rates of the normal modes
are given by

62
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with e and m the ions’ charge and mass, respectively, 7 the
reduced Planck constant, €2; the normal-mode frequencies,
and

oo
Sy =2 / dre =T (EB () EX(0)) )
—00
the electric-field fluctuations’ spectral densities. The fields
acting on the normal modes are a linear combination of
the fields seen by the individual ions: E® = [E,(F)) £
E,(F2)]/+/2. Defining s; ;(t) := (E)(j)(t)E,(/)(O)), we can write
Sy = [ dte =[5 4 55 & (512 + 52.1)]. Although en-
vironmental noise can lead to coupling between both normal
modes if the ions are weakly coupled [23], a sufficiently
homogeneous electrode guarantees that this coupling is negli-
gible (see discussion in Appendix A), leading to independent
decay channels for the normal modes. For the two ions, this
translates into a self-noise for each ion (S1;, S22) and a
cross-noise (S 2, S2.1). The cross-noise governs the transition
from common bath (CB) to separate bath (SB) [23], two
emblematic dissipation scenarios in open quantum systems.
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The former dissipates only the coordinate x, and leaves x_
unaffected, whereas the latter yields equal-rate dissipation for
both. Regrouping Seeir = (S1.1 + 52.2)/2 and Seross = (S1.2 +
S>.1)/2, normal modes (£) dissipate as S+ = Sgeir £ Scross- SB
occurs (no frozen mode) when S =0, and CB occurs
(frozen x_) when Scoss = Sserr. We will later show that
the counterintuitive “anticommon” bath (aCB) case where
Scross = —Sserf (frozen x) is also possible.

The x component of the electric field at a position 7
is given by E(F,t) = —0,¢(F) = Y, (1/4meo) i (1)g(F,F1),
where g,(F,7;) are geometric functions (Appendix B) which
depend on the orientation of dipoles, and pu;=|i;|. Thus, the
cross- and self-noise are given by expressions

0 - .
sy =Y OO G e GR), B

n (4meg)

where (1;(¢)1x(0)) is a correlation function between dipoles /
and k. This dipole-dipole correlator features separated tempo-
ral and spatial terms for proposed microscopic models [12], so
we can approximate it by (u;(t)px(0)) = s5,,(2) f (71, 7%) [24].
Here, f is a spatial correlation profile (it can be a phononic
correlation decay in the electrode, a domain function for
dipoles in the same patch, etc.) and the approximation
is valid if time fluctuations are similar across the whole
surface. Thus, after Fourier integration (F) we will have
two main ingredients: the dipole fluctuation spectrum at
the eigenfrequencies, S, (2+) = F[s,](2+), and geometric
contributions (from f and g). For ions in separate wells the
Coulomb coupling is small compared to the eigenfrequencies
and S, (£24) >~ S,,(£2_). The focus of our paper will therefore
be on the geometric part.

II. NOISE CROSSOVER

We start by considering the noise characteristics of an
electrode containing dipoles which point normal to the surface.
This is a typical assumption even in cases where microscopic
details are calculated to a large extent [20]. In order to give a
clear picture of the origin of the crossover, let us consider the
simplest case: all dipoles are pointing normal to the surface
i = wilty Vi, they are uncorrelated, and we focus on the
motional mode along x as a function of /. In this case, the
cross-noise is proportional to the sum Yy, g (¥1,7:)gx(2,7;). In
the simplest scenario we can assume the dipoles to be almost
homogeneously distributed on the surface and replace the sum
by an integral. Noting that (see, e.g., Ref. [25])

d(x; — x1)
[ = x1)? + 27 + d?

§:(r1,77) = ]5/2,
one can see that the integral with respect to z is always
finite and positive. However, the integral with respect to
the dipole coordinate x has an M shape, meaning that for
particular parameters the area enclosed by this shape will
vanish (Appendix C). The crossover originates precisely due
to the fact that for a given combination {d,/} the cross-noise
integral will be zero and the cross-noise changes sign. In Fig. 1
we see the ratio Scposs/Sseif for all three degrees of freedom.
Whend > [ we have 4+1 (CB), and around d = [ we have zero
(SB). When d < I we have negative values, which means that
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the stretch mode dissipates at a rate S_ = Sgeif — Scross higher
than S; = Seeir + Scross- The crossover is absent for z motion
(in agreement with Fig. 27 of Ref. [12]), however for x and y
motion it is present, leading to an aCB regime.

One could wonder whether a pure aCB regime is at all
possible. We show in Appendix D that for a stylus-trap config-
uration [26] one can reach Scross/Sserr ratios approaching —1.
However, in such a trap at least one of the ions will be
necessarily driven by micromotion [27], which could make
the aCB regime hard to observe.

III. DIPOLE ORIENTATION

Before dealing with possible spatial correlations among
dipoles, let us consider what happens when dipoles are not
normal to the surface. Since the effective dipole of the ion
is given by its displacement from the rf null and along its
motion, different dipole orientations can cause different noise
levels along different directions. These can vary by a factor of
6 depending on dipole orientation (see Appendix E), would be
detectable with a one-ion probe, and might be behind recent
observations with a single ion at NIST [22]. After treating the
electrode surfaces with ion-beam sputtering, they observed
that two orthogonal motional degrees of freedom were subject
to different noise levels, suggesting a preferential orientation
of surface dipoles which could be caused by the generation of
gold nanochannels on the treated surfaces.

In order to sense anomalous heating with two ions, it
is convenient to have both ions at rf null zones. This can
be achieved in segmented linear Paul traps (Fig. 1), where
trap heights are typically d >~ L, with L, the width of the
central axial electrode. The ions can be placed at arbitrary
positions along the extent of the linear section L,, allowing
for a tunable inter-ion separation /. In the coming analysis we
will use as a reference the setup in Ref. [28]. Note that this
does not compromise the generality of our results. We will
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FIG. 2. Ratio of cross- to self-noise for uncorrelated dipoles
homogeneously covering the surface of (1f driven) electrodes in the
segmented planar trap of Ref. [28] (two rf electrodes of length L,,
one of them at positive z with width L, >~ L, /10, the other starting
at negative z = —L, of width 2L_; see Fig. 1). We set d >~ L, and
plot (top) the noise experienced by the axial motion (x) and (bottom)
by radial motion along the y (solid) and z (dashed) axes. Note that
the dashed blue line and the solid orange line overlap in this plot.
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TABLE 1. Truth table indicating the presence /) or absence

()( ) of noise crossover for radial motion along the y and z axes for
a given dipole orientation. This information together with the results
of heating-rate measurements of the radial normal modes allow for
discrimination of surface-dipole orientations.

Crossover y motion Crossover z motion Dipole orientation

\/ \/ Mx
% X "
X X 224

further assume that only rf electrodes are sources of noise,
corresponding to the upper and lower (long) electrodes in
Fig. 1.

Different dipole orientations result in different dependen-
cies on [ of the self- and cross-noise terms (Fig. 2). Therefore,
experimental measurements of the S¢oss/Sserf ratio can reveal
the mean orientation of the dipole fluctuators. Note that the
increased sensitivity of the radial modes as compared to the
axial motion renders the former as most suitable for this
analysis. Table I can be used to gain qualitative insight about
the mean orientation of the dipoles. For arbitrary orientations
the resulting curves lie between those plotted for the three
principal axes, but the structure of crossovers in the table is
still valid. For example, any orientation p, will keep the {v/,

X signature for any direction  # z in the yz plane, even if the
crossover for y motion is less steep [29].

IV. SPATIAL DIPOLE-DIPOLE CORRELATIONS

Different microscopic models of dipolar fluctuations re-
sult in different two-point spatiotemporal correlation func-
tions (u;(1)r(0)) =~ s,,(¢) f (F1,7¢), so it is natural to wonder
whether we can measure its spatial dependence f with our
scheme, and thus falsify given models. For one trapped ion
we find that the consequence of spatial correlations is the
breakdown of the typical d* scaling for the spectral noise
density whend < &, tending towards d—!. A simple mean-field
argument (Appendix F) explains the saturation and value of
this scaling. For two trapped ions, spatial correlations translate
into a shift of the crossover point to higher / /L ,, except for the
case of y motion with u, pointing dipoles, where the crossover
can even disappear. Importantly, however, these effects are also
appreciable only for £ ~ L. (Appendix G).

We derive next the size & of correlations for several
proposed models and discuss the possibility to probe them.
For patch models the dipoles are electronic cloud deformations
at the surface due to different crystallographic orientations of
domains in the electrode metal, so the function f satisfies
f =1 whenever two dipoles lie on the same domain and
f = 0 otherwise. Patch sizes in the range [10 nm, 10 xm] have
been measured [30], so ions at distances of tens of microns
could potentially feel effects of big enough patches. Another
proposed model is based on adatoms (or molecules) stuck
to the electrode surface with their induced dipole fluctuating
through phononic thermal noise [31]. In such a model the
dipoles of two adatoms would be spatially correlated through
a phonon manifold resonant with their motional bound states
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(a) Cooling

o,

(b) Heating
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FIG. 3. Experimental sequence. The four radial normal modes
of motion of a two-ion system are first cooled close to the ground
state [33]. After being exposed to interactions with the environment,
the ions are combined in a common potential well. There the motional
states of all four modes are read by coupling to the internal electronic
states [34], giving access to the desired normal modes’ heating
rates 'y

¢) Combination

v

(d) Readout

(=300 GHz for neon on gold) [31]. Taking the dispersion
relation of gold (=5 THz at A &~ 21 pm [32]), such frequency
would correspond to wavelengths ~1nm. This indicates
that correlations would decay at distances & on the order
of nanometers, possibly of ~100nm for heavier adsorbed
molecules, still far away from the scale of tens of microns.
If we assume that dipole fluctuations are rf driven [15], then
a drive at ~100 MHz would correspond to wavelengths of
~1 pum (provided a viable mechanism relating rf and phonon
excitations exists). For the model of adatoms diffusing on
the surface, the spatial scale for dipole-dipole correlations is
D/ 24, with D the diffusion constant. Considering a range
D € [107'4,1071°1m? Hz, and frequencies of megahertz order,
we obtain & < 1 nm.

We can thus conclude that within the reach of current
distance scales in trap setups it will be hard to observe the
predicted effects of correlations, unless patch noise is the
correct origin of anomalous heating.

V. EXPERIMENTAL PROPOSAL

In what follows we present an experimental routine de-
signed to measure the noise crossover from radiative sources
on the surfaces of ion-trap electrodes (Fig. 3). With two ions,
a straightforward approach is to measure the heating rate "1
of the different normal modes as a function of the distance /
between the ions, while keeping the ion-electrode separation
d constant. From Eq. (1) we obtain the noise spectral densities
S, and S_, and from them we calculate Sgr = (S, + S_)/2
and Scross = (S+ — S-)/2. As explained earlier, for the pure
CB case the noise ratio Scross/Sseif = 1, and only the c.m.
mode will heat up; for pure aCB Scross/ Sseif = —1, only the
relative motion heats up; for SB Scross/Ssetr = 0, they will both
get excited according to the spectral noise density present at
the modes’ frequencies. Such an experiment can be carried
out in a linear trap, where radial modes are orthogonal to the
trap axis. In our scheme, the heating rates of the radial c.m.
and rocking modes are measured for different ion separations.
The plots in Fig. 2 show that an interesting range for the ratio
1/d goes from 0.5 to 10—throughout this range the noise ratio
varies strongly in all the cases we have simulated. For an
ion-trap height d = 50 um we should therefore be able to vary
[ from 25 to 500 um. With realistic experimental parameters
the coupling rates between the motional modes of two ions
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spaced by 500 um cannot be expected to exceed ~1 Hz [35],
making it impossible to spectrally resolve the normal modes at
megahertz frequencies. One way of overcoming this limitation
is to let the ions heat up while separated and then bring
them together to the same potential well to determine the
normal-mode states, as in Fig. 3. Ion-chain splitting and
recombination operations have been successfully carried out
with negligible effects on the radial degrees of freedom [36].
When the ions crystallize in the same trap, the normal modes
are easily resolvable [27].

In order to resolve the relevant features in Fig. 2 an absolute
uncertainty of the Scross/Sserr ratio 8Smio < 0.1 suffices.
Assuming a relative uncertainty [/ Ty =6_/T'_ =€
on the determination of the normal-mode heating rates, as
well as no correlations between 6I'y and 6T, we find

/12 2
that § S;i0 = €/ 1 + Sr2 VAR < €+/2. With uncertainties

atio [, 4T _
€ < 5%, which are experimentally feasible, we expect the
crossovers predicted in Table I to be clearly resolvable.

As mentioned before, directionality effects have been ob-
served after treating electrode surfaces with ion bombardment
with a well-defined angle, and might be indicative of the
microscopic origin of the noise sources [22]. Our scheme is
sensitive to such anisotropy, which would lead to measurable
differences in the spectral noise densities for the different radial
axes.

VI. CONCLUSION AND OUTLOOK

Microscopic models for anomalous heating are based
on dipolar sources with different characteristics: frequency
scalings have been a major concern to distinguish among
them, but insufficient attention has been paid to their geometric
characteristics. Here we find that the normal-mode heating
rates of two ions experience a previously unknown crossover
that can be used to distinguish mean dipole orientations
and dipole-dipole correlations (or patch sizes). We provide
estimates of the latter for well-known models in the literature
and show their effect for one- and two-ion configurations. We
also propose an experiment which is feasible with current state-
of-the-art setups. The idea of exploring spatial characteristics
of the noise with more than one ion is left as a new tool
for future investigations, and has interesting consequences.
For example, in a coupled chain of N ions (Appendix H) the
most noise-resistant normal modes are odd ones, and should
be the ones used as quantum information buffers. Further,
the availability of many normal modes could potentially give
finer details on geometric features of dipole arrangements and
correlations.
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APPENDIX A: LINDBLAD EQUATION
FOR TWO AND N IONS

Expanding the interaction Hamiltonian qu(lé) as in
Appendix B around 7 = {0,d,0} (with the ion quantum
ﬂuctuagiogs around that position §7) yields H = 8r - Vo (¥) =
—&7 - E(R). Letus concentrate for simplicity on the interaction
(and resultant noise) along x and drop the §; thus the interaction
energy for two ions is H; = —xE.(F1) — x2 E((r2), and
similarly for N ions we have ZlN: 1 X E(F;). We assume that
in general the ions are coupled by direct Coulomb interaction,
so they will form a set of N normal modes Q; = Zj fijxj
with eigenfrequencies €2;. Any perturbative noise calculation
that we do must be referred to that eigenset (see Ref. [23]). Let
us rewrite the interaction Hamiltonian

N N N
Hy ==Y xEF) ==Y Y (fi;jQ;E(F)
i=1

i= i=1 j=1
N
=-) EV0;, (A1)
j=1

with the new “electric noises” EY) = ZZNZI fiiEx(7;), and
where we have used the fact that the transformation matrix f
to normal modes is orthogonal (the inverse is its transpose). In
the interaction picture the system variables Q; rotate as

| h , L
W(Ajeflﬁjt_FA;elQﬁ) (AZ)
J

and we can already calculate heating rates in two ways: either
we use the usual argument of obtaining the probability to jump
from |0) to |1) in the Fock basis of a given eigenmode, or we
obtain a master equation for the set of eigenmodes. The first
one assumes ground-state cooling, while the second is generic.

A first approach which (naively) applies single heating rates
(see, e.g., a derivation in Appendix A of Ref. [12]) to each
eigenmode yields

2

Y =T = ———S5x(Q)).
0—1 J 4mh§2] J
with
o0 . ~ . ~ .
Se(R2)) = 2/ dre T (ED(0)EV(0)).
—00
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The correlator can be expanded

(ED@EPO) =Y fiafiil Exr D E()).
k,l

In the case of two ions the matrix f is

1 /1 1
/= E(l )
or simply E® = [E, (7)) £ E.(¥))]/~/2, with +/— corre-
sponding to c.m. and stretch modes, and also to Qi, as
intuition tells. Finally, the noise kernels suffered by c.m. and
stretch modes are

(EX()EE(0))
= JUEx(F1, D) EL(71,0)) + (Ex(F2,T)E((#2,0))
H(E (F1,0) Ex(72,0)) £ (Ex (72, T)E(71,0))],  (A3)

which can seen to consist of a self-damping part (first two
terms) and a cross-damping part (last two terms).

A generically correct second approach is to derive the full
dissipator in the Lindblad equation [23]

1
Dip)=)_Y" ya,ﬂ(w(A,spAI, - E{ALAﬂ,p}) (A4)

o of

with @ spanning 24 and where A, = A+,A,,A1,AT_ are the
c.m. and stretch modes’ ladder operators. The basic difference
with the previous approach is that, in addition to the (correctly
predicted) heating rates I'; written above, there appear now
cooling rates too, but also cross-heating and cross-cooling rates
which are neglected in the previous approach. The appearance
of cooling is obvious from the time symmetry of the evolution,
but we need not care about it since we are interested in an
experimental routine where we cool the normal modes at the
beginning of each experimental run.

Interestingly, and sometimes overlooked in the literature,
there are cross-terms in the dissipator which couple the normal
modes, with kernels of the type

(EX(D)EL(0))
= M(E.(F1. D E(71.,0)) — (Ex(F5,7)Ex(75,0))
+(E (72, T)EL(71,0)) — (E (F1, 1) E((72,0))].  (A5)

Typically these terms can be neglected because the normal
modes have different frequencies and thus these terms rotate
fast[Q24 — Q_ > y(Q24)]. However, when the coupling to the
environment is strong enough, or the normal modes’ frequen-
cies are small enough (our case here because ions are heated
when they are far apart and feel almost no Coulomb coupling),
these terms become important [2, — Q_ ~ y(Q24)].
Luckily enough, for a sufficiently homogeneous sample
the first two terms will cancel out (through similar noise
conditions in the two ions’ positions) as will the last two
terms. If this is fulfilled, the Lindblad dissipator separates into
two independent dissipation channels, one for each normal
mode. Thus, finally, the first approach seems to be sufficient
if we consider ground-state cooled normal modes, and that
the electrode is more or less homogeneously (though random
microscopically) populated by adsorbed atoms.
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1. Uncoupled ions

In the proposed experimental implementation we cool the
motion of two ions separated by /, where they can be only very
weakly coupled. If we consider the ion-ion coupling to be
negligible [2; — Q_ < y(R21)], the Lindblad equation [23]
is

1
D(p) = Z Z Va,ﬁ(w)(aﬂpal - E{alaﬁ,p}>

o of

with o,8 = al,az,aI,azT the usual creation-annihilation op-
erators for the axial ions’ motion. This dissipator can be
diagonalized in the basis ay = (a; £ a»)/2, if we have y; | =
V2.0 = Vserr- It yields independent dissipation for the c.m.
and stretch modes, as was expected by symmetry (i.e., as
before but the Lindbladian does not couple c.m. and stretch
modes). Respectively, they dissipate with Yy = Vser & 1.2
These coefficients are again the Fourier transform of the
time-correlation functions:

Vo p(0) = F(Ex(Fo,1) Ex(Fp)))- (A6)

2. Summary

All this discussion was intended to show all the pitfalls
that exist when considering the generic problem of a coupled
two-body dissipative system: there is a regime where cross-
coupling between normal modes exists. This regime, however,
is not of significance if we assume enough homogeneity of the
noise sources, which leads to independent heating rates for the
normal modes.

We thus arrive to an intuitive picture: when-
ever we have that “cross”~(E.(r|,t)E.(#,,0)) is similar
to “self”~(E,(r1,0)E,(71,0)) = (E,(F2,1) E,(72,0)), we will
have what is normally called a common bath or a spatially
correlated environment, and the stretch mode will not dissi-
pate. Note also that the sign of the cross term is very important:
if it is positive it will induce higher dissipation for the c.m.,
while when negative the stretch will suffer more.

Hence, we call for short (in analogy with common-use
nomenclature)

Seross = 3(Ex(F1,1) Ex(F2,0)) + (Ex(F2,0) Ex(¥1,0))),
Ssetf = F(Ex(F1 D) Ex(F1,0)) 4 (Ey(72,1)E(72,0)))

and compare their magnitudes and relative sign in the main
text.

APPENDIX B: DIPOLE GEOMETRIC FUNCTIONS

The spatial functions describing the interaction of one
dipole /i with the ion motion in a given axis are given here.
Noting that the ion is at 7 = {x,y,z} (fluctuating close to the
point {0,d,0}), the dipole is at 74 = {x4,0,z4}, the distance is
defined as R = ¥ — 74, and the electric potential between both
is

1 @-R
ey |RP

we can easily obtain the total electric field in any direction
E = —V¢. To obtain the noise felt by the ion in one of
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its eigenmotions, axial or radial, we need to calculate the
corresponding component of that electric field; we will also
write down the expressions when assuming that the dipoles
are pointing only along a given direction. We define the dipole
functions as g,(¥) = —(4mwey/|[|)0,¢(F), after expanding the
potential around 7 =~ {0,d,0}. The noise along x motion is

- d*> —2x3+722 . .
gx(r)z 2d 2‘;/27 Mzﬂ«uxa
(d* + x3 + 23)
(_.) 3dxd N A
8x\r) = ) M= Uiy,
' (d® + x5+ z§)5/2 ’
. 3X424 - R
gx(r) = — f= ui.

(@ +x2+23)°"

The noise along y motion is

. 3dxq - R
8y(”)=m, n = AUy,
gy(?) — _M;ﬁ_zé/z’ ﬁ — Mﬁ},,

(d*+x3+22)
- 3dz4 N .
gy(r)=m, n= i,
The noise along z motion is
g:(r) = i, [ = pily,
(@ +x2+22)"?

- 3dzy - .
gz(”)ZW, n = iy,
o) = d*+x3 — 212/2, i = i,

(d2 + x5+ 23)

In the case of two ions, their positions will now be 7} =
{=1/2,d,0} and 7, = {l/2,d,0} and we can use the former
expressions by substituting x; — x; £ /2, respectively.

APPENDIX C: ORIGIN OF CROSS-NOISE VANISHING

We have argued that the cross-noise vanishes for some ion
motions and dipole orientations. Let us take, for example,
motion along x and dipoles pointing normal to the electrode
(t = pity). Considering for the moment a collection of
uncorrelated homogeneously distributed dipoles, we have that
the cross-noise of two ions sitting at {—//2,d,0} and {//2,d,0}
is proportional to

(xg = 1/2)0ca +1/2)
[d2 + 23+ (xg — 1/27] 7 [d? + 23 + (xa +1/2)7]

Integrating this function along z, yields always a finite value,
however the behavior along x; is like an M, as seen in Fig. 4
(top). The area enclosed by this curve can be positive, negative,
or zero depending on the ratio d/I, with the change of sign
occurring near d = [. For other directions of motion and dipole
orientations, using the functions g,(¥) given in Appendix B,
it is easy to deduce the properties that we have summed up in
Fig. 2 and Table L.

5/2°
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0.10¢

-0.2

FIG. 4. Top: Spatial dependence of cross-noise for x motion and
dipoles oriented along y. Bottom: Same plot for monopolar sources.
Depending on the ratio //d = 2,1,0.5 (black, blue, red) the shape
encloses a negative, null, or positive area, from which the noise
crossover behavior emerges.

What about monopolar charges? In that case, the electric
potential ¢ o< 1/|R| is even (instead of odd) under reflection
R — —R. Still in this case, we have a crossover [see Fig. 4
(bottom)]. Take as before x motion and dipoles along y, the
cross-noise is here proportional to

(xa —1/2)(xqg +1/2)
[d2 + 22 + (xa — 1/2°]*[d? + 22 + (xa + 1/2)7]

3/2°

which is the same as above only that instead of 5/2 we have 3/2
exponents. The difference in crossover is that for monopoles
itoccurs at//d =~ 2.

APPENDIX D: PURE ANTICOMMON BATH REGIME

It is intuitive that when two coupled units are close to
each other and far away from a noisy environment they will
experience a common bath, and this is what has been predicted
in the main text. But, what about the opposite: is there a
regime where the stretch mode is the only dissipative degree
of freedom? In the main text figures we have seen that the
minimum Seposs/ Sseif Was around —0.4. We investigate this in
Fig. 5 for two geometries: a square finite electrode and a stylus
trap as in Ref. [15]. For the square electrode a value of almost
—1 is reached around {d,l/} = {1.2L,,1.4L,}. A value lower
than —0.9 is reached {d,l} >~ {L,,L.}. For the stylus trap a
lowest value of ~—0.95 is reached at reasonable distances
{d,l} = {1.5R,2R}, although the absence of a common rf
null for two ions in this configuration might require active
stabilization of the rf-drive amplitude, the noise of which could
otherwise mask anomalous heating.

PHYSICAL REVIEW A 96, 033409 (2017)

FIG. 5. Noise ratios S.;oss/ Sseir for the x motion of two ions above
two different geometries, with homogeneous distribution of dipoles
pointing normal to the surface. Top: Square electrode L, = L, when
the rest of the y = 0 plane is dielectric (or empty). Bottom: A stylus
trap as in Ref. [15] with an inner disk electrode of radius R and an
outer ring from 3R to SR; further apart there are four disks, but for
the distances considered here they do not affect the ions; the spaces
between electrodes act as empty spaces.

APPENDIX E: ONE-ION NOISE LEVEL FOR DIFFERENT
DIPOLE ORIENTATIONS

Dipole-dipole interactions, as that caused by a surface
dipole and the displaced charged ion from its equilibrium
position, have a preferred direction. It is hence to be expected
that different orientations of dipole sources will yield different
noise levels even for a one-ion configuration. In Fig. 6
we plot the simplest situation in which a uniform planar
infinite electrode is filled with dipoles oriented along the three
possible directions: an ion’s motion along x feels highest
noise levels when dipoles are along ii,, while for in-plane
dipole orientations i, produces a noise four times higher
than #,. The asymmetry between the three directions is
a direct consequence of the dipole-dipole interaction form
3(my - #)(my - ) — my - my, with m; the ion displacement
(along i), 7 the ion-dipole unit vector (along # ), and m, the
dipole moments on the surface. In a similar spirit, Schindler
et al. [37] showed (although assuming dipoles perpendicular
to the electrode) that one can use the asymmetry in noise levels
to distinguish between technical noise and anomalous heating
sources. Also, the idea of one-ion noise sensing for studying
stray fields is used in Ref. [38].
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FIG. 6. Noise felt by a single ion in its motion along x when
dipoles are pointing in different directions, with an electrode of
infinite size arranged as in Fig. 1. The noise has been normalized
by the usual scaling d~* for clarity. The electrode is of infinite size.
Noise along the trap axis is clearly dominant.

APPENDIX F: MEAN-FIELD DIPOLE

The blurring out into a mean-field dipole in the presence of
spatial dipole-dipole correlations can be understood as follows.
We can rewrite the noise spectral density seen by one ion as
the Fourier transform of

S = (Ex(D)Ex(0))

—Z( ) (i (D1(0) g2 (F)ge(F)  (F1)

where 7; is the distance between dipole i and the ion.
As explained in the main text, the spatial-temporal sep-
arability of (u;(#)ux(0)) allows us to approximate it by
(i 0) f(7:,7;) = S,.(¢) f(F;,F ;) where we have assumed
that temporal dipole fluctuations are similar for different
spatial regions of the electrode, something rather reasonable.
Hence, we can write

S = (Ex(1)Ex(0))

1 -
~ ( = )S (r)ng(r,)gx(r,-)fm,r,). (F2)

ij

Further, we can assume that the spatial dipole-dipole correla-
tion profile f(-) is sufficiently translationally invariant in the
regimes of interest (e.g., ions do not approach too close the
borders of electrodes) and thus only depends on the absolute
distance between dipoles: f(7;,7;) >~ f(|F; — F;|). We can sum
up the situation by writing the spatial dependence of the
spectral noise as

> &g P f(IF; = Fi.

ij
If the function f decays significantly for distances greater than
€ as,e.g., if f(F;,r;))=e ~Ii=7;1/5  we can define an effective,
or “mean-field,” function gx(r,,g) = Z gx(rj)f(|r, -7l
centered at 7; and averaged over a size “§ The noise sum
then becomes ), g:(F)g.(Fi; &), to be compared with the
case of uncorrelated dipoles ) ; g (7:)?. Now recall that the
g functions are meaningful only in an area of order A ~ O(d)
around the ion position, so contributions g, of dipoles far
from this spot can be neglected. This allows us to compare
the region A, of ion-dipoles influence, to the region size A

PHYSICAL REVIEW A 96, 033409 (2017)

defining the averages for the mean-field dipoles. We thus have
the following situations.

(1) &£ «d (Ag > Ag): the mean-field dipole is seen as an
effectively individual dipole and so g, (;; &) — g.(7;). This is
the uncorrelated dipoles case, which is known to scale as d -,

(2) £ > d : when § increases, we reach a point where the
averaging region A; becomes bigger than A, but every dipole
lying out of it has a negligible influence on the ion. This means
that making & bigger yet will not modify the value of the
mean-dipole function, which at this & saturates.

This argument explains why the scaling drops from d—*
when & ~ d is reached, however it does not explain the
new scaling d=!' for d <&. We can, however, give an
argument why the exponent is less than 4: when A > Ay
the sum for the mean-field dipole includes the full region
of influence see by the ion. If we do the utmost simplifi-
cation f(|r; — ;) = L [Vi,j € Aal, 3=, ; gx(Fi)gx(Fj) f(IFi —
Fil) = D ien 8 X jen 8x(F) = [X;c.4 8x(7)]?, this sum,
for dipoles pointing normal to the surface, would yield simply
zero (a constant, i.e., d°). However, if instead of taking
f(7; = F;]) = 1 we use a linear expansion of the exponential
function f ~ 1 — |F; — ¥;|/& the sum yields a scalingd ' asis
observed in the next Appendix and is consistent with correlated
patch models [39]. It is not obvious that in general the exact
resulting exponent should be —1, but it seems intuitive that the
strength of the scaling is tamed.

Further, for the specific case of the next Appendix (ion
motion along x and dipoles pointing along y) we can
approximate the dipoles integration as follows: let us take
the dipole geometric function from Appendix B, which reads

3dx
(d* +x? + 22
and approximate its biggest contribution which occurs for

{x,d} < d (this approximation usually gives a good estimate
of scalings with respect to d):

gx(;:) =

g (F) ~ 3x/d*.

From now on we will drop numerical factors since we are
interested only in the scalings. The noise felt by one ion is
then

> e Fg P fFF) ~d™8 Y xix; f (T,
i,j i,j

Transforming into integrals we have

—S/dx/dx’/dz/dz’XX'f(7if.i)-

If dipoles are uncorrelated, f(r;,r;) = 8(7;,F;), and we have
d=8 [ dx [ dzx?, which gives (recall that the important con-
tribution from dipoles comes from an area of size ~d) d~* as
expected.

For the case of very big correlation length &, we can expand
the exponential

_8/dx/dx’/dz/dz’xx/

x exply/(x — 2 + (z — 22 /£]
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FIG. 7. Noise felt by one ion oscillating along x when dipoles in
the surface are pointing along y, with spatial dipole-dipole correlation
distance &. The typical scaling d~* is broken for ion-electrode
distances d < &, where it becomes d~!. Distance is given in arbitrary
units.

~—d78 f dxdx'dzd7' xx'

x[1— \/(x —x)2 +(z — 7)*/€).

The part with the 1 gives zero by symmetry, and the rest can
be integrated by performing the change of variables Q1 =

(x £x)/v2and Zy = (z £2)/+/2, s0

~a [d0-d0.dz.az.(0% - 00?1 2.

A final change of variables for the area enclosed by Z_ and
Q_ (of order d) to polar Q_ = rcos¢, Z_ = rsin¢, gives

~d / dQ.dZ, / drd¢ r(Q5 — r*cosg)r

Scross/ Sself Scross/ Sself
1.0 1.0
0.8 0.0
0.6 0.6
04 04
0.2 0.2
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which after simple integration yields 4. This highlights the
power of approximating the dipole functions in this way.

APPENDIX G: MODIFIED NOISE DUE
TO CORRELATED DIPOLES

Here we study what is the effect of a finite extent &
of spatial dipole-dipole correlations on the characteristics
of the noise crossover. For simplicity we take a profile
function

FGo7y) = e Ve

although for phononic-induced dipole vibrations of adatoms
we should use the more realistic sinc(|r; — 7;|/€), and for
diffusion of adatoms the Kelvin function Kery(|r; — 7;|/£). In
the case of one ion the noise follows, as is well known in
the literature [12], a d~* behavior. However, for correlated
dipoles, this scaling is modified for d < &, becoming d~! as
can be seen in Fig. 7.

We plot in Fig. 8 the crossover equivalents of Fig. 2 with
correlated dipoles, taking the electrode configuration described
in its caption.

APPENDIX H: CHAINS OF COUPLED IONS

We briefly investigate what happens in a configuration
where ten ions are forming a Coulomb crystal. When they are
strongly coupled we expect that normal modes of the chain can
divide into sinusoidal waves with two kinds of parities: even or
odd (under reflection in the center of the chain). It is intuitively

1 L,
B 10

7 5 . 0I/LZ
i ’ -0.2
-04 -04

Scrcss/sself Scross/sself
1.0 1.
0.8 0.8
0.6 0.6
0.4 0.4
0.2 0.2
o T B o B
-0.4 -04
Scross/ Sself Scross/ S self
1.0 1.
0.8
0.6
o 0.4
0.2

Scross/ S self
—&=51,
05 &=L,
£=01L,
@2%0"“ ~ 0
-0.5
Scross/ Sself
0.8 — ¢é=51L,
0.6
0.4 - &=k
02 £=0.1L,
IIL, L, — &=0
8 10 2 4 6 8 10 7
-0.2
-0.4
Scross/ S self
1.0¢

i,
@2@0 —02 2 4 8
05 -04

-04;

FIG. 8. Noise ratios S¢;oss/ Sseir for two ions oscillating along x (top), y (middle), and z (bottom), when dipoles in the surface are pointing
along x,y,z (left, middle, right). Influence of spatial correlations is noticeable for £ > 0.1L,.
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i

FIG. 9. Cross-noise (arbitrary units) along x motion for a chain
of ten strongly coupled ions when dipoles in the surface are pointing
along x, as a function of the inter-ion distance [ € [107°L,,Lz].
The electrode has dimensions L, = 10L, and the ions are above
the electrode at d = L. The black line is the mode with the longest
wavelength.

PHYSICAL REVIEW A 96, 033409 (2017)

expected that even modes will couple strongly to a CB type of
bath, while odd ones will do so for aCB types of baths. This
is precisely what we observe in Fig. 9: when ions get closer
and closer to each other [d = L, | < L) they begin to see a
pure CB configuration, and the noise suffered by odd modes
vanishes while for even modes it stays high. Further notice
that when / >~ L,, i.e., when the ion chain almost occupies
the full length L, of the electrode, the mode with the longest
wavelength (black line) sees the least noise. This is caused by
ions being at the point nearest to the aCB regime, and thus
the even symmetry of this mode makes it most isolated to
noise. These features are of importance for the use of normal
modes as buses for quantum information and for quantum
simulations where they provide effective spin-spin interactions
among different ions [40].
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