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Macroscopic effect of plasmon-driven high-order-harmonic generation
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We present a numerical method to calculate the macroscopic harmonic spectrum generated from the gas-
exposed nanostructure. This method includes the propagation of plasmonic and harmonic fields in the macroscopic
medium as well as the response of the single atom exposed to plasmonic field. Based on the simulation, we
demonstrate that the macroscopic harmonic yields drop dramatically in the high-energy region. This result well
interprets the disagreement in the cutoff between the single-atom prediction and the experimental detection.
Moreover, we also show that the harmonic cutoff difference induced by a π shift in carrier-envelope phase (CEP)
of laser pulses depends sensitively on the spatial position. However, when the collective effect of plasmon-driven
high-order-harmonic generation is considered, this cutoff difference is eliminated.
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I. INTRODUCTION

High-order-harmonic generation (HHG) through the in-
teraction of intense laser pulses with atomic or molecular
gases is regarded as an effective way to produce the coherent
extreme ultraviolet, soft x-ray, and attosecond pulses [1–4].
The few-cycle pulses generated by the OPA process [5] is
one of the tools to produce the isolated attosecond pulse [6].
These ultrashort pulses play a key role in probing ultrafast
electronic dynamics inside atoms [7,8], molecules [9–14], and
solids [15–17].

HHG is a highly nonlinear conversion process; the minimal
laser intensity for HHG is on the order of 10 TW/cm2.
To exceed this threshold, the chirped pulse amplification
(CPA) system is usually adopted to raise the peak power
of femtosecond pulses emitting from an oscillator. However,
the CPA system limits the repetition rate of laser pulses to
the low kilohertz region. Recently, the plasmon-driven HHG
in the vicinity of the metallic nanostructure has attracted
wide attention. This way could enhance the intensity of
the incident laser pulse by more than two orders, which
allows one to attain laser intensities needed for HHG directly
from a moderate-power femtosecond oscillator [18–21]. It
not only removes the bulky CPA system, but also gives a
way to generate attosecond pulses at high repetition rates
[22,23]. By using an array of bow-tie nanostructures, Kim
et al. [18] first experimentally demonstrated that the high
harmonics with wavelengths from the 7th (114 nm) to 17th
(47 nm) can be generated. However, due to the inefficient
harmonic emissions, the plasma atomic lines can overpower
the harmonic signals [24]. Therefore, the outcome of Kim’s
experiment has been subject to an intense controversy since
it was reported [25,26]. Fortunately, alternative approaches to
realize efficient plasmon-driven HHG have been explored by
employing different kinds of nanostructures [22] or using a
solid tip as the HHG emitter instead of gas atoms [20]. Due to
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the promising applications of plasmon-driven HHG, a number
of researches have been carried out [27–30].

For plasmon-driven HHG, the laser fields in the interaction
region where the high harmonics are generated are spatially
inhomogeneous. By using the linearly spatial-dependent laser
fields, researchers have discovered some novel characteristics
of the plasmon-driven HHG, for instance, the selection of
quantum paths [31–33], the extension of the cutoff [34–36],
and the cutoff difference induced by a π shift in CEP of laser
pulses [37,38], etc. It’s worth noting that due to the narrow
interaction region in the nanogap, most previous studies on
plasmon-driven HHG mainly focus on the response of the
single atom exposed to the laser field, while the HHG process
includes both the single-atom response and also the coprop-
agation of the laser and harmonic fields in the macroscopic
medium. Even though the single-atom harmonic spectrum has
revealed some attractive phenomena of plasmon-driven HHG,
it is still obviously different from the experiment [18]. For a
better comparison with the experiment, Yavuz [39] has investi-
gated the single-atom harmonic spectra at the different spatial
points and presented that for a given population distribution,
the harmonic cutoff at a certain spatial point is in qualitative
agreement with the experiment. Yet, the harmonic emission in
the vicinity of the nanostructure is the coherent superposition
of contributions from different spatial points. It’s still crude to
describe the collective effect with the harmonic emission only
at one point. However, a comprehensive description including
the single-atom and macroscopic responses of HHG from the
nanostructure has scarcely been reported.

In this paper, we present a numerical method to calculate the
plasmon-driven macroscopic harmonic spectrum. Our method
is based on solving the three-dimensional Maxwell equations
for the propagation of plasmonic and harmonic fields as well
as the time-dependent Schrödinger equation for the single-
atom response of HHG. The results show that the macroscopic
harmonic yields drop dramatically in the high-energy region.
It well clarifies the disagreement in the cutoff between the
single-atom prediction and the experimental detection [18]. On
the other hand, we also find that the cutoff difference induced
by a π shift in the CEP of the laser pulse depends sensitively
on the spatial position and this cutoff difference is eliminated

2469-9926/2017/96(3)/033407(8) 033407-1 ©2017 American Physical Society

https://doi.org/10.1103/PhysRevA.96.033407


WANG, LIU, HE, LI, WANG, ZHU, LAN, AND LU PHYSICAL REVIEW A 96, 033407 (2017)

by considering the macroscopic response of plasmon-driven
HHG.

II. THEORETICAL MODEL

A. Finite-difference time-domain simulation of plasmonic fields

In our calculation, we first solve the three-dimensional
Maxwell equations for the propagation of plasmonic field in
the nanostructure. The Maxwell curl equations are given by

∇ × −→
H (x,y,z,t) = ∂

−→
D (x,y,z,t)

∂t
+ −→

J (x,y,z,t), (1)

∇ × −→
E (x,y,z,t) = −∂

−→
B (x,y,z,t)

∂t
− −→

J m(x,y,z,t), (2)

where
−→
E and

−→
H are the electric and magnetic vectors,

−→
D

and
−→
B are the electric displacement and magnetic inductive.−→

J and
−→
J m are electric and magnetic current densities. The

constitutive relations in the linear and isotropic materials are−→
D = ε

−→
E ,

−→
B = μ

−→
H ,

−→
J = σ

−→
E , and

−→
J m = σm

−→
H . The ε

and μ are the permittivity and permeability. The σ and σm are
electric and magnetic conductivities.

In Cartesian coordinates, Eqs. (1) and (2) are written as

∂Hz(x,y,z,t)

∂y
− ∂Hy(x,y,z,t)

∂z

= ε
∂Ex(x,y,z,t)

∂t
+ σEx(x,y,z,t),

∂Hx(x,y,z,t)

∂z
− ∂Hz(x,y,z,t)

∂x

= ε
∂Ey(x,y,z,t)

∂t
+ σEy(x,y,z,t),

∂Hy(x,y,z,t)

∂x
− ∂Hx(x,y,z,t)

∂y

= ε
∂Ez(x,y,z,t)

∂t
+ σEz(x,y,z,t), (3)

and

∂Ez(x,y,z,t)

∂y
− ∂Ey(x,y,z,t)

∂z

= −μ
∂Hx(x,y,z,t)

∂t
− σmHx(x,y,z,t),

∂Ex(x,y,z,t)

∂z
− ∂Ez(x,y,z,t)

∂x

= −μ
∂Hy(x,y,z,t)

∂t
− σmHy(x,y,z,t),

∂Ey(x,y,z,t)

∂x
− ∂Ex(x,y,z,t)

∂y

= −μ
∂Hz(x,y,z,t)

∂t
− σmHz(x,y,z,t). (4)

Equations (3) and (4) are solved by the finite-difference time-
domain (FDTD) method. In this paper, we use the proprietary
software LUMERICAL FDTD SOLUTIONS that implements the
FDTD method to obtain the plasmonic field

−→
E [40–42]. As

illustrated in Fig. 1, the bow-tie nanostructure is characterized
by four geometrical parameters: height (h), angle (θ ), thickness

FIG. 1. Geometry of a single bow-tie nanostructure. The incident
pulse linearly polarizes along the x direction.

(t), and gap (d). The nanostructure is made of gold, whose
wavelength-dependent complex dielectric constants are taken
from Palik data [43]. We choose a 5.3-fs, 800-nm laser pulse
with the intensity of 6.0×1011 W/cm2 as the incident pulse.
The incident pulse is linearly polarized along the x direction.
The spatial range Vn in our simulation is 500×400×100 nm
with a spatial step of 1 nm. The total simulation time is 100 fs
with a time step of 2.9 as. Based on our simulation, we find that
in our case, the y component and z component of plasmonic
field Ey(x,y,z,t) and Ez(x,y,z,t) are equal to 0. Therefore the
x component of plasmonic field Ex(x,y,z,t) is extracted for
driving the HHG process.

B. Single-atom response

Second, we solve the time-dependent Schrödinger equation
(TDSE) to model the single-atom response of the plasmon-
driven HHG [39,44]. The TDSE in one spatial dimension is
expressed as

i
∂ψ(x,t)

∂t
= H (t)ψ(x,t)

=
[
−1

2

∂2

∂x2
+ Vatom(x) + V (x,t)

]
, (5)

where H (t) and ψ(t) are the Hamiltonian and the electron
wave function, respectively. The Coulomb potential Vatom(x)
is described by

Vatom(x) = − 1√
x2 + ε

, (6)

where the soft core parameter ε is equal to 1.415 for the gas
medium argon that is injected into the nanogap. The potential
V (x,t) represents the interaction of the atomic electron and
laser field. It is given by

V (x,t) = Ex(x + x0,y0,z0,t)x, (7)

where Ex(x + x0,y0,z0,t) is the x component of plasmonic
field. (x0,y0,z0) represents the coordinate of any spatial point.
For comparison, we also calculate the single-atom harmonic

033407-2



MACROSCOPIC EFFECT OF PLASMON-DRIVEN HIGH- . . . PHYSICAL REVIEW A 96, 033407 (2017)

spectrum in the spatially homogeneous field. In this case, the
potential is given by V (t) = Ex(x0,y0,z0,t)x.

Equation (5) is solved by the split-operator method [45].
In order to prevent spurious reflections and guarantee that
the wave-packet components near the metallic surface can be
absorbed, the time-dependent wave function at each time step
times a smooth sin

1
8 function. This function changes from 1 to

0 from the spatial point (x0,y0,z0) to the edge of the metallic
surface (x0 = ±10 nm) [39].

Then, the generated harmonics can be calculated by the
time-dependent dipole acceleration a(t), which is given by

a(t) = d2〈x〉
dt2

= −〈ψ(t)|[H (t),[H (t),x]]|ψ(t)〉. (8)

The harmonic spectrum is then obtained by Fourier transform-
ing the dipole acceleration a(t):

aq =
∣∣∣∣1

τ

∫ τ

0
a(t)exp(−iqωt)

∣∣∣∣
2

, (9)

where q is the harmonic order.

C. The propagation of high harmonics

Finally, we solve the propagation equation for the harmonic
field Eh in Cartesian coordinates [46,47], which is expressed
as

∇2Eh(x,y,z,t) − 1

c2

∂2Eh(x,y,z,t)

∂t2

= ω2
p(x,y,z,t)

c2
Eh(x,y,z,t) + μ0

∂2P (x,y,z,t)

∂t2
, (10)

where, ∇2 = ∇2
⊥ + ∂2/∂z2, ∇2

⊥ = ∂2/∂x2 + ∂2/∂y2, and c

is the speed of light. ωp = e[4πne(t)/me]1/2 is the plasma
frequency, me and e are the mass and charge of an electron.
ne(t) = n0[1 − exp(− ∫ t

−∞ γ (t ′)dt ′)] is the free-electron den-
sity in the gas. n0(m−3) is the density of the gas medium, which
is given by 3.5×1022×p(torr). p is the gas pressure, which is
set to 10 torr in our calculation. γ (t) is the ionization rate,
which is calculated by the Ammosov-Delone-Krainov (ADK)
theory [48]. By using a moving coordinate frame z′ = z and
t ′ = t − z/c, Eq. (10) becomes

∇2
⊥Eh(x,y,z′,t ′) − 2

c

∂2Eh(x,y,z′,t ′)
∂z′∂t ′

= ω2
p(x,y,z′,t ′)

c2
Eh(x,y,z′,t ′) + μ0

∂2P (x,y,z′,t ′)
∂t ′2

, (11)

the temporal derivative in Eq. (11) can be eliminated by Fourier
transform, yielding the equation,

∇2
⊥Ẽh(x,y,z′,ω) − 2iω

c

∂Ẽh(x,y,z′,ω)

∂z′

= F̂

[
ω2

p(x,y,z′,t ′)

c2
Eh(x,y,z′,t ′)

]
− ω2μ0P̃ (x,y,z′,ω),

(12)

Ẽh(x,y,z′,ω) = F̂ [Eh(x,y,z′,t ′)], P̃ (x,y,z′,ω) = F̂ [P (x,y,

z′,t ′)]. F̂ is the Fourier transform operator acting on
the temporal coordinate. The polarization P̃ (x,y,z′,ω) =

P̃nl(x,y,z′,ω) + χ (1)Ẽh(x,y,z′,ω), where the nonlinear
polarization P̃nl(x,y,z′,ω) = F̂ {[n0 − ne(x,y,z′,t ′)]
D(x,y,z′,t ′)}. The single-atom-induced dipole moment
D(x,y,z′,t ′) can be obtained by the dipole acceleration
a(t). a(t) is calculated at each grid point by using the
corresponding spatially dependent plasmonic field Ex

that is extracted from LUMERICAL FDTD SOLUTIONS.
The linear susceptibility χ (1) [49] can be obtained by
the refractive index n(ω) =

√
(1 + χ (1)(ω)/ε0), n(ω) =

1 − δh(ω) − iβh(ω) = 1 − 1
2π

n0r0λ
2(f1 + f2), and n0 is

again the gas density. r0 is the classical electron radius, λ

is the input pulse wavelength, and f1 and f2 are atomic
scattering factors which can be obtained from Refs. [50,51].
δh(ω) and βh(ω) account for the dispersion and absorption of
the gas medium on the harmonics, respectively.

Equation (12) is solved by using the Crank-Nicholson
method. In our simulation of macroscopic HHG, we assume
that the gas atoms are evenly distributed in the spatial range
20×20×30 nm and the spatial range is split evenly with a spa-
tial step of 1 nm. We first calculate 400 (20×20) single-atom
dipole acceleration a(t) via Eq. (5) and the ionization probabil-
ity via the ADK theory on the initial plane (z′ = 0 nm). In this
calculation, the spatially dependent plasmonic fields Ex are
extracted from LUMERICAL FDTD SOLUTIONS. Then, we insert
the 400 single-atom dipole acceleration a(t) and the ionization
probability into Eq. (12) to obtain the high-order harmonics
on the next plane (z1 = z′ + 
z′). Repeating this procedure,
we obtain the final high harmonics at the exit face of the
single bow-tie nanostructure (z′ = 30 nm). Finally, by spatially
integrating the final high harmonics at the exit face of the single
bow-tie nanostructure, we can gain the macroscopic harmonic
spectrum from gas-exposed single bow-tie nanostructure.

III. RESULTS AND DISCUSSIONS

In Fig. 2(a), we show the enhancement factor of field
intensity as a function of the bow-tie height and angle.
Here, the bow-tie thickness and gap are 30 nm and 20 nm,
respectively. One can see that when the bow-tie height and
angle are 180 nm and 80◦, the field enhancement factor
reaches maximum (∼50). Under this condition, we show the
plasmonic field intensity distributions in the nanogap for three
planes: z = 15 nm [Fig. 2(b)], y = 0 nm [Fig. 2(c)], and x = 0
nm [Fig. 2(d)]. The intensity distributions are plotted at the
peak of the plasmonic field (t = 17.88 fs) [Fig. 2(e)]. The
intensity distributions are symmetric with respect to x = 0
nm, y = 0 nm, and z = 15 nm.

In Fig. 3(a), we show the single-atom harmonic spectrum
in spatially homogeneous field. Here, the electric field is
extracted from the spatial point x0 = 4 nm, y0 = 0 nm, and
z0 = 15 nm. One can see that the harmonic cutoff is around
65th. It is extended to 205th in the spatially inhomogeneous field
[Fig. 3(b)]. The cutoff extension is because the electrons gain
much higher kinetic energy to contribute to the harmonics
around the cutoff in the inhomogeneous field than that in
the homogenous field. Moreover, the harmonic spectrum in
Fig. 3(b) presents a typical plateau structure. The intensities
of harmonics in the plateau and cutoff regions are comparable.
Figure 3(c) shows the plasmon-driven macroscopic harmonic
spectrum. One can see that the harmonic intensities drop
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FIG. 2. (a) Enhancement factor of field intensity as a function of the bow-tie height and angle. (b)–(d) Spatial profile of plasmonic field
in the plane of z = 15 nm, y = 0 nm, and x = 0 nm at t = 17.88 fs. (e) Ex(t) at the point (0, 0, 15). Here, the geometrical parameters are
h = 180 nm, θ = 80◦, t = 30 nm, and d = 20 nm.

dramatically as the harmonic order increases. The intensities
of harmonics with high photon energy (>100th) are nearly 10
orders of magnitude smaller than that with low photon energy

FIG. 3. (a) Single-atom harmonic spectrum in the spatially
homogeneous field. (b) Single-atom harmonic spectrum in the spatial
inhomogeneity field. (c) Plasmon-driven macroscopic harmonic
spectrum. In Figs. 3(a) and 3(b), the spatial point is x0 = 4 nm,
y0 = 0 nm, and z0 = 15 nm.

(<30th). It is the reason why the harmonic cutoff observed
in the experiment is much smaller than that calculated on the
single-atom level.

To clarify the dramatic decline of high-energy harmonics
in Fig. 3(c), we next calculate the plasmon-driven single-
atom harmonic spectra at different spatial points in Fig. 4.
In Fig. 4(a), we show the results along the positive-x direction.
Here, y0 and z0 are equal to 0 nm and 15 nm. From Fig. 2(b),
one can see that the field intensity gradually increases from
x0 = 0 nm to x0 = 4 nm. Therefore, the harmonic cutoff at
x0 = 4 nm is extended compared with that at x0 = 0 nm [Fig.
4(a)]. As the x0 increases to 8 nm, the field intensity further in-
creases [Fig. 2(b)], while the harmonic cutoff is shortened [Fig.
4(a)]. This is because the high-energy electrons ionized from
the point x0 = 8 nm are strongly absorbed by metallic surfaces.
Figures 4(b) and 4(c) present the single-atom harmonic spectra
at different spatial points along the positive-y (x0 = 0 nm, z0 =
15 nm) and z (x0 = 0 nm, y0 = 0 nm) directions. As shown
in Fig. 2(d), the plasmonic field intensity gradually decreases
along the positive-y direction. Therefore, the harmonic cutoff
is gradually reduced as y0 increases [Fig. 4(b)] Besides,
the plasmonic field intensity presents the inverted U-shaped
distribution along the z direction. As a consequence, the
harmonic cutoffs at z0 = 0 and 30 nm are the same, which are
smaller than that at z0 = 15 nm [Fig. 4(c)]. In short, the cutoff
position of the plasmon-driven single-atom harmonic spectrum
depends sensitively on the spatial position. Furthermore, we
note that only a few spatial points in the vicinity of nanostruc-
ture contribute to the harmonic emission with high energy.
Therefore, the intensities of macroscopic harmonics fall
dramatically in the high-energy region as shown in Fig. 3(c).
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FIG. 4. (a) Plasmon-driven single-atom harmonic spectra at the
spatial points (0, 0, 15), (4, 0, 15), and (8, 0, 15). (b) and (c) Same as
(a), but at the spatial points (0, 0, 15), (0, 4, 15) (0, 8, 15) and (0, 0, 0),
(0, 0, 15), (0, 0, 30). For easier comparison, the harmonic intensity
is multiplied by a factor 10(10n−10) with n changes from 1 to 3 from
bottom to top in Figs. 4(a)–4(c).

Except for the cutoff extension, the previous work about
plasmon-driven single-atom HHG also present that the har-
monic cutoff with the CEP of 0 is larger than that of π [37,38].
While in the following, we will demonstrate that the cutoff
difference with the CEP of 0 and π depends sensitively on
the spatial position when considering the spatial distribution
of plasmonic field in the nanogap.

In Fig. 5(a), we show the plasmon-driven harmonic spec-
trum at the point x0 = 5 nm with the CEP of 0. Here, y0 = 0
nm and z0 = 15 nm. The harmonic cutoff is around 185th,
which is a little larger than that (169th) with the CEP of π

[Fig. 5(d)]. It is consistent with that in the previous reports
[37,38]. This phenomenon can be well understood by ana-
lyzing the time-frequency properties and classical electron
trajectories of HHG. As shown in Fig. 5(b), with the CEP
of 0, the harmonic cutoff is determined by the highest
photon-energy peak Pd . Figure 5(c) shows the corresponding
electron trajectories. The electron trajectories that contribute
to the peaks Pa , Pb, and Pd are marked as Ea , Eb, and Ed ,
respectively. One can see that the electron of Ed is ionized
around 6T0 (T0 is the optical cycle of the laser pulse) and then
accelerated toward the positive-x direction where Ex gradually
increases. In contrast, the electrons of Ea and Eb are accel-
erated toward the negative-x direction where Ex gradually
decreases. Therefore, the peaks Pa and Pb are suppressed while
the peak Pd is extended as shown in Fig. 5(b). When the laser
field is reversed (CEP = π ), the harmonic cutoff is determined
by the peaks Pa and Pb [Fig. 5(e)]. From Fig. 5(f), one can

FIG. 5. (a)–(c) Plasmon-driven single-atom harmonic spectrum,
time-frequency image and classical electron trajectories (black lines)
of HHG at the spatial point (5, 0, 15) with the CEP of 0. (d)–(f).
Same as (a)–(c), but with the CEP of π . The background color in
Figs. 5(c) and 5(f) represents the distribution of the the plasmonic
field amplitude Ex as a function of x and t .

see that the electrons of Ea and Eb are accelerated toward the
positive-x direction. The electron of Ed is accelerated toward
the negative-x direction. Therefore, the peak Pd is suppressed
while the peaks Pa and Pb are extended as shown in Fig. 5(e).
Since the electron of Ed is accelerated around the peak of laser
field (t = 6T0 = 17.88 fs), the harmonic cutoff with the CEP
of 0 in Fig. 5(a) is larger than that with the CEP of π in Fig. 5(d).

In Fig. 6, we investigate the CEP effect on the harmonic
emissions at the spatial point x0 = −5 nm, y0 = 0 nm, and
z0 = 15 nm. In the vicinity of this point [Figs. 6(c) and 6(f)],
the electron that moves toward the positive- or negative-x
direction feels the decreasing or increasing Ex . It is opposite
to that at x0 = 5 nm [Figs. 5(c) and 5(f)]. Therefore, with the
CEP of 0, the peak Pd is suppressed and the peaks Pa and Pb

are extended [Fig. 6(b)]. With the CEP of π , the peak Pd is
extended and the peaks Pa and Pb are suppressed [Fig. 6(e)].
As a consequence, the harmonic cutoff with the CEP of 0 is
smaller than that of π [Figs. 6(a) and 6(d)]. Moreover, since
Ex is symmetric with respect to the x = 0 nm, the harmonic
spectrum of Fig. 6(a) is the same as that with the CEP of π at
x0 = 5 nm in Fig. 5(d). The harmonic spectrum of Fig. 6(d) is
the same as that with the CEP of 0 at x0 = 5 nm in Fig. 5(a).

Figure 7 shows the CEP-dependent harmonic emissions at
the spatial point x0 = 0 nm, y0 = 0 nm, and z0 = 15 nm. Since
Ex is symmetric with respect to x = 0 nm, the electron of Ed is
accelerated along the positive- (negative)-x direction (CEP =
0/π ) and feels the same field distribution [Figs. 7(c) and 7(f)].
Therefore, the harmonic spectra with the CEP of 0 and π are
the same as shown in Figs. 7(a) and 7(d). To sum up, the cutoff
difference induced by a π shift in the CEP of the laser pulse
depends sensitively on the spatial position. For two symmetric
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FIG. 6. Same as Fig. 5, but at the spatial point (−5, 0, 15).

spatial points along the x direction, the CEP dependence
is opposite. Therefore, when spatially integrating the final
harmonics at the exit of the bow-tie nanostructure (Fig. 8),
the macroscopic harmonic spectra obtained by a π shift in the
CEP of the laser pulses keep the same, which is different from
the previous reports on the single-atom level [37,38].

Finally, it must be noted that in our work, we only calculate
the macroscopic harmonic spectrum from gas-exposed single
bow-tie nanostructure rather than an array of bow-tie nanos-
tructures as in Kim’s experiment [18]. For an array of bow-tie
nanostructures placed perpendicular to the propagation axis,
each single bow-tie nanostructure acts as a pointlike source.

FIG. 7. Same as Fig. 5, but at the spatial point (0, 0, 15).
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FIG. 8. Macroscopic harmonic spectra with the CEP of 0 and π .
The harmonic intensity with the CEP of π is multiplied by a factor
103 for easier comparison.

When the size of the array is much smaller than the beam waist
of Guassian laser field, the harmonic radiations coming from
each bow-tie nanostructure will be a coherent superposition.
However, when the size of the array is comparable to the
beam waist of Guassian laser field, the laser intensity quickly
changes along the radial direction (x or y direction) of the
array. Then, the transversal phase mismatching [52] may play
a role in the propagation and it will influence the intensities
of plasmon-driven macroscopic harmonics in the plateau
structure.

IV. CONCLUSION

We report a numerical method to calculate the plasmon-
driven macroscopic harmonic spectrum. This method includes
the propagation of plasmonic and harmonic fields in the
macroscopic medium as well as the single-atom response
of HHG. Based on the simulation, we find that only a few
spatial points in the vicinity of the nanostructure can contribute
to the high-energy harmonics. Therefore, the intensities of
plasmon-driven macroscopic harmonics with high energy
drop dramatically. It well clarifies the discrepancy in the
cutoff between the single-atom harmonic spectrum and the
experiments [18]. Moreover, we show that the cutoff difference
induced by a π shift in the CEP of the laser pulse depends
sensitively on the spatial position. When the spatial point is
located in x0 = 0 nm, the harmonic cutoffs with the CEP of
0 and π are the same. When the spatial point is located in
the positive (negative) x axis, the harmonic cutoff with the
CEP of 0 is larger (smaller) than that with the CEP of π .
Due to the spatial symmetry and time inversion symmetry
of plasmonic field in the nanogap, the macroscopic harmonic
spectra obtained by a π shift in the CEP of the laser pulses keep
the same. Our method provides a tool for better investigating
the HHG process in the nanostructure.
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