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Robust two-level system control by a detuned and chirped laser pulse
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We propose and demonstrate a robust control scheme by an ultrafast nonadiabatic chirped laser pulse, designed
for targeting coherent superpositions of two-level systems. Robustness against power fluctuation is proved by
our numerical study and a proof-of-principle experiment performed with femtosecond laser interaction on cold
atoms. They exhibit for the final driven dynamics a cusp on the Bloch sphere, corresponding to a zero curvature
of fidelity. This solution is particularly simple and thus applicable to a wide range of potential applications.
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I. INTRODUCTION

Quantum information technologies are expected to play
an important role in the near future [1–7]. A key point
will be our ability to manipulate and control the fragile
quantum systems, which requires high-fidelity fault-tolerant
controls [6–8]. Quantum error correction, for example, needs
computational infidelity below one part per ten thousand [9].
It is necessary to develop robust quantum control methods that
tolerate fluctuations coming not only from the environment but
also from control parameters themselves. When a two-level
quantum system is controlled with coherent radiation, control
errors are due to power fluctuation and frequency flickering.

In recent years, various techniques such as composite
pulse sequences [10–12], pulse-shape programming [13,14],
and optimization techniques [15–17] have been proposed to
achieve robust quantum controls, mainly addressing popu-
lation inversion; these require either a train of well-phase-
maintained pulses or a complicated pulse shape, and/or reverse
engineering. Some of these techniques have been demonstrated
in a microsecond radio-frequency regime when the pulses can
be shaped directly in the time domain [18].

In this paper, we demonstrate robust quantum control in the
ultrafast femtosecond time-scale regime, when the shaping
is operated in the frequency domain. In such systems, the
frequency is relatively well stabilized [19], therefore power
fluctuation is the main source of error. The control scheme is
designed to target a robust coherent superposition, i.e., with
both the amplitude and the relative phase of the superposition
made robust with respect to the power fluctuation. A quantum
system driven by a femtosecond chirped pulse is known
to produce state selectivity [20,21] and robust population
inversion [22–24] by rapid adiabatic passage [25]. But there
are very limited studies about robust creation of superposition
of states. One can cite for instance the half Stark chirped
rapid adiabatic passage technique [26] in a nanosecond regime,
which requires large pulse areas, and [18] in a microsecond
radio-frequency regime.

We demonstrate the production of a robust superposition
of arbitrary amplitude by deriving a simple and practical
shaping involving only frequency quadratic chirping and static
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detuning from a single Gaussian pulse. With a numerical
investigation of the Schrödinger equation (TDSE) and, as a
proof-of-principle demonstration, a femtosecond laser-atom
interaction experiment, we show the occurrence of a cusp in
the final dynamics, which validates the existence of a robust
control condition. The physics behind this robust control
may be understood in the context of a dynamical balance
between the competing effects of chirping and detuning, where
the former induces an adiabatic inversion and the latter its
attenuation.

II. THEORETICAL CONSIDERATION

The problem under consideration is the evolution of a two-
level system driven by a chirped and detuned Gaussian pulse.
The electric field of the given pulse is defined in the frequency
domain as

E(ω) = E0 exp

[
− (ω − ωc)2

�ω2
+ i

c2

2
(ω − ωc)2

]
, (1)

where ωc is the center frequency of the pulse, �ω the
frequency bandwidth, and c2 the frequency-domain chirp rate.
The corresponding time-domain electric field of this pulse
features a Gaussian envelope with a linear chirp: E(t) =
E(t) exp [−i(ωct + αt2 + φ)]/2 + c.c..

For a two-level system {|0〉,|1〉} (of energies 0 and h̄ω0,
respectively), the Hamiltonian reads after the rotating frame
transformation and the rotating wave approximation

H (t) = h̄

2

(
0 �(t)e−i

∫
�(t)dt+iφ

�(t)ei
∫

�(t)dt−iφ 0

)
, (2)

where �(t) = δ − 2αt is the instantaneous detuning with the
static detuning δ = ω0 − ωc and �(t) = μE(t)/h̄ is the Rabi
frequency with transition dipole moment μ.

Robustness of a dynamics, typically considered at the end of
the pulse, is characterized by the second-order derivative, or the
negative curvature, of the fidelity with respect to the considered
fluctuation. Such a quantity has been used for characterizing
the composite sequences [10–12] or for single-shot robust
pulses [13]. Robustness corresponds to a flat profile of the
dynamics at the end of the pulse as a function of the fluctuation,
i.e., to a very small absolute value of the curvature. Technically,
it can be defined by a quantum geometric tensor [27,28]. In our
case, we consider the power fluctuation via the dimensionless
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FIG. 1. Robustness map g(�,c′
2) for �′ = 0.637. The negative

curvature g is plotted as a function of the pulse area � and the chirp
rate c′

2. The most robust point is located at B, while gA = 0.11, gC =
0.05, and gRabi = 0.62. (b) Fidelity curves F(γ ): The fidelity curve
is calculated at B as a function of the fluctuation γ (see text for
definition) and compared with cases A and C and also with the
Rabi-type evolution for the same excited-state probability Pe = 0.5.

error γ = δ�/� in Rabi frequency. The fidelity is defined by
F = |〈ψ(�)|ψ(� + γ�)〉| and the curvature g is given by

g = −∂2F(γ )

∂γ 2

∣∣∣
γ=0

. (3)

For a fluctuating Hamiltonian H ′ = (1 + γ )H , the state
vector initially at |ψ(t = −∞)〉 = |0〉 evolves perturbatively
as U (t) � U0(t) − i

h̄
U0(t)

∫ t

−∞ γV (t ′) dt ′, where U0 is the

time-evolution matrix for H and V (t) = U
†
0HU0. We obtain

g = 〈0|
(

− i

h̄

∫ ∞

−∞
V dt

)†
|1〉〈1|

(
− i

h̄

∫ ∞

−∞
V dt

)
|0〉 (4)

up to the second order of the fluctuation γ [13].
Figure 1 shows the numerical calculation of the robustness

using the curvature g and the fidelity F for the two-level
system dynamics driven by detuned and chirped pulses.
To make the comparison easier, we use the dimensionless
parameters �′ = δ/�ω and c′

2 = c2�ω2, and the pulse area
(after shaping) � = ∫ ∞

−∞ �(t) dt . The curvature g(�,c′
2) is

plotted for a particular value �′ = 0.637 in Fig. 1(a), which
has been chosen such that the dynamics reaches at the end
of the pulse a coherent superposition with equal weights
Pe = 0.5. Optimal robustness (g ≈ 0) occurs at point B:
(�,c′

2,�
′) = (1.78π,2.52,0.637). Less robust pulses with a

smaller or larger chirp rates are also shown in Fig. 1(a),
respectively denoted by A and C, which have small but not

10.5-0.5 0-1-1

-0.5

0

0.5

1
A
B (robust)
C

A

B
C

FIG. 2. �-parametrized trajectories on Bloch sphere. The final
state after a chirped- and detuned-pulse interaction is plotted with
a Bloch vector. The trajectories through A, B, and C in Fig. 1 are
plotted.

nonzero curvatures. We remark that g = 0 points for smaller
or larger chirp rates may also be found at different �’s and
�’s, but occurring for larger pulse areas. Therefore, as shown
in Fig. 1(b), the optimal robust pulse B exhibits a significantly
flattened fidelity curve, or more robust evolution, than other
pulses and the Rabi-type evolution. The optimal pulse B shows
a 3.5 times wider range of robust evolution than the Rabi
oscillation.

The horizontal line segment in Fig. 1 corresponds to a �

trajectory on the Bloch sphere. Figure 2 shows such trajectories
passing through respectively A, B, and C points, which are
plotted as a function of �, while c′

2 and �′ are fixed in each
trajectory. As clearly shown in Fig. 2(a), the trajectory shape
changes, as c′

2 increases, from a looped curve (case A) to an
unlooped one (case C), and, as a result, a cusp is formed in
between (case B). The trajectory with a cusp is particularly
interesting in topology, because the singular nature of the cusp
allows both derivatives of any pair of mutually orthogonal
coordinates, on the Bloch sphere, with respect to � being
always zero [29], i.e., d|ψ〉

d�
= ∂|ψ〉

∂θ
dθ
d�

+ ∂|ψ〉
∂φ

dφ

d�
= 0 at the cusp

point. This occurrence ensures the curvature to be zero (the
optimal robustness). For higher pulse areas (and different chirp
rates), other similar cusps occur associated with other robust
points (not shown).

III. EXPERIMENTAL VERIFICATION

To demonstrate the robustness experimentally, we per-
formed femtosecond laser-atom interaction experiments. The
experimental setup and procedure are similar to those in our
previous experimental work [21,30–32]. In brief, a magneto-
optical trap (MOT) was used to confine rubidium atoms (85Rb)
in a small volume for uniform laser interaction. The diameter
of the atomic vapor inside the MOT was 300 μm, about 43% of
the laser diameter. The laser setup consisted of a femtosecond
laser amplifier and, as a pulse-shaping device, an acousto-optic
programmable dispersive filter (AOPDF) [33]. Femtosecond
laser pulses were initially produced from a mode-locked
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FIG. 3. Probability Pe(�,c2) of the excited state (5P1/2 of rubidium) after the detuned and chirped Gaussian pulse excitation as a function
of the pulse area � and the chirp rate c2, while the detuning and laser bandwidth are fixed at δ = 3.5 nm and �ωFWHM = 3.1 × 1013

rad/s, respectively. (a) Experimentally obtained probability map P expt
e (�,c2), to which the measured atom population was converted using

Rabi-oscillation calibration measurements (see text for detail). (b) Theoretical result P TDSE
e (�,c2), obtained using the TDSE calculation for

an atom cloud of a Gaussian profile with a diameter 47% of the Gaussian laser beam diameter. (c) The behavior of the population Pe(�)
for selected chirp rates c2 = 4000, 8 000, and 16 000 fs2 shows good agreement with the TDSE calculation (solid lines). The star and arrow
symbols represent the robust condition.

titanium-sapphire laser oscillator and amplified up to 0.85 mJ
of single-pulse energy at a repetition rate of 1 kHz. Each laser
pulse was then shaped with four experimental parameters:
center frequency, chirp rate, bandwidth, and pulse intensity.
The first three were programed with the AOPDF and the last,
the laser intensity, was fine controlled with a half-wave plate
sandwiched between a pair of cross polarizers. The center
wavelength of the laser pulse was tunable from λc = 792 to
802 nm, which corresponded to the detuning range between
δ = −8.38 × 1012 and 2.13 × 1013 rad/s. The laser bandwidth
was fixed at �λFWHM = 10.4 nm (�ωFWHM = 3.1 × 1013

rad/s), and the frequency chirp rate c2 was changed from
−40 000 to 40 000 fs2 for various experiments. The two-level
system was formed with 5S1/2 and 5P1/2, the ground and the
first-excited states of atomic rubidium (85Rb). The population
leakage to other states, including 5P3/2, 5D, and ionization
levels, was less than 2% within the experimental parameter
range. After the atoms were controlled by the as-shaped laser
pulse, those in the excited state were ionized by a probe
laser pulse, which was the frequency-doubled split-off from
the unshaped laser pulse, and measured with a microchannel
plate detector. The total sequence of the experiment was
tuned at 2 Hz cycle to maintain the MOT density by using
mechanical shutters for femtosecond laser pulses and acousto-
optic modulators for MOT lasers. The MOT lasers were turned
off before the arrival of the control pulse to initialize the atomic
state in the ground state and turned on after the interaction to
restore the MOT.

Experimental results are compared with numerical calcula-
tions in Fig. 3. The excitation probability Pe(�,c2) of atoms
after the shaped laser pulses was probed as a function of the
pulse area � and the chirp rate c2, while the detuning was
fixed at δ = 3.5 nm (�′ = 0.56). This detuning corresponds
to a coherent superposition with Pe = 0.6. The results are
shown in Fig. 3(a). We note that to retrieve P

expt
e (�,c2) from

the measured counts of the ionized electrons, we used the
Rabi-oscillation calibration method [31]. The ideal robust
control point, marked with stars in the figures is located

at (�,c′
2,�

′) = (1.9π,2.79,0.56) or (�,c2,�) = (1.9π,8.1 ×
103 fs2,1.04 × 1013 rad/s). In addition, we assumed the minor
discrepancy at the high-laser-power region (� > 2.5π ) was
attributed to the effect of a possible pre-pulse with 0.4% energy
and small relative phase. The result of TDSE simulation for
the two-state system dynamics is shown in Fig. 3(b), where
the spatial inhomogeneity [31] of the laser-atom interaction is
taken into account. Figure 3(c) shows that the overall behavior
of the two-level system dynamics is in good agreement with
the experimental data.

IV. DISCUSSION

We now turn our attention to the generalization of our robust
control method to arbitrary target states. We experimentally
probed the two-dimensional section at �′ = 0.56 of the
three-dimensional parameter space of (�′, c′

2,�) as illustrated
in Fig. 4, where the targeted robust point is marked with a
star. Further numerical investigations show that robust control
conditions occur along a line (the solid line with circles)
in the parameter space, where each value corresponds to a
specific value of Pe. Along the line, the control parameters
are numerically fitted to a function of Pe in the range from
0.08 to 0.98 as given in Table I. The result indicates that the
robust control can be made to arbitrary target probabilities.
By considering the fact that the azimuth angle of the Bloch
vector, or the relative phase of the superposition, can be easily
set with the carrier-envelope phase of the laser pulse [30], our

TABLE I. Robust control conditions numerically fitted to Pe =
A + B/(1 + C e−Dx), a steplike function of Pe, where x = �′, c′

2, or
�/π .

x A B C D

�′ − 0.055 1.19 0.079 − 4.20
c′

2 − 0.097 1.076 22.5 1.32
�/π − 0.0033 1.019 264 3.14
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FIG. 4. Robust control conditions in the parameter space
(�′, c′

2,�): Red circles represent the parameters for detuned and
chirped pulses that induce robust control to various target probabili-
ties; the solid and dashed lines are the numerical fit and its projections
to each plane, respectively. The inset shows the � trajectories on the
Bloch sphere, corresponding to the robust control red circles, each
featuring a cusp.

method can be thus generalized to any target state, of arbitrary
amplitude and phase, on the Bloch sphere.

Our strategy produces robust coherent superpositions,
far from the inversion, such as the typical half coherent
superposition, and it can be achieved in an ultrafast pulse
duration. The large pulse area limit in Fig. 4 shows that
the population inversion is recovered in the adiabatic limit
(however, without modification of the energy of the initial
pulse). For more complicated systems, we expect more

parameters for the shaping to achieve robustness, which will
result in a nonlinear chirp and non-Gaussian pulse in general
(see for instance [34–38]). If other states come into play
and perturb our two-level system, the strategy will consist
in treating them by adiabatic elimination. This will result in a
dynamical Stark shift, corresponding to an additional detuning
that can be incorporated in the Hamiltonian and compensated
for by the chirping. Further work will consist of adapting the
shaping in order to produce a robust qubit gate such as the
Hadamard gate.

V. CONCLUSION

In summary, we have shown that detuned and chirped
pulses can implement robust transfer of a ground state to
a chosen coherent superposition of arbitrary amplitude and
phase. Our numerical study proves that robustness is associated
with a cusp in the final dynamics as a function of the power
fluctuation. As a proof-of-principle experiment, we performed
ultrafast optical control of cold rubidium atoms, which vali-
dates the numerical simulations. Our robust control solution
is particularly simple, requiring only frequency quadratic
chirping (i.e., temporal linear chirping) and static detuning
from a Gaussian-shape pulse. Producing such robust coherent
superpositions at the femtosecond time scale is anticipated to
become useful in a wide range of applications.
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