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Ab initio calculation of electron-capture cross sections in H+ + BeH collisions
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We present calculations of electron-capture cross sections in collisions of H+ with BeH molecules in the
energy range 25 eV < E < 10 keV. We discuss the validity of the models employed to describe nonadiabatic
ion-molecule collisions, specifically the eikonal approximation, the Franck-Condon approximation, and the
isotropic approximation to obtain orientation-averaged cross sections, which is based on the infinite-order sudden
approximation. The calculation using the Franck-Condon approximation leads to a total electron-capture cross

section that is practically independent of the collision energy with a value of around 25 Å
2
. The calculations

using the more accurate sudden vibrational approximation indicate that the Franck-Condon approximation
overestimates the electron-capture cross section by at most 20%. At E < 1 keV, the main product of the electron-
capture process is the formation of BeH+(2 1�+)+H(1s). At higher energies, the cross sections for formation of
BeH+(2 1�+)+H(1s) and BeH+(1 3�+)+H(1s) are practically identical. The Coriolis couplings are particularly
relevant to the mechanism of this reaction, which precludes the merging of semiclassical (including Coriolis
couplings) and quantal results (neglecting Coriolis couplings) in the energy range of the present calculation.

DOI: 10.1103/PhysRevA.96.032714

I. INTRODUCTION

A key issue in the design of future fusion tokamaks is
the choice of plasma-facing materials. In this respect, carbon-
containing components, previously used in tokamaks, present
high erosion and cause high tritium retention. These important
drawbacks have motivated that carbon will not be used in
the first wall of ITER [1], which will contain beryllium in
the main chamber and tungsten in the divertor. In particular,
beryllium has been selected as the plasma-facing component
of the ITER main chamber because it leads to relatively low
impurity concentration and low fuel retention. An ITER-like-
wall (ILW) is currently installed in the Joint European Torus
(JET) [2] and several experiments have already been carried
out in order to understand the erosion of the first wall and the
material migration (see Ref. [3] and references therein).

The erosion of Be surfaces by D plasmas have been
studied in PISCES-B experiments and molecular dynamics
simulations [4,5], which showed that the erosion of the
Be wall takes place by physical sputtering, and there is
also a chemical-assisted physical sputtering mechanism that
leads to the release of molecular species, in particular BeD.
The importance of this mechanism has been pointed out in
JET-ILW experiments [6,7]. The BeD molecules formed in
the plasma-wall interaction are ionized and dissociated by
collision with the main plasma components, and the rate
coefficients for these processes are required in transport
modeling codes, such as the Monte Carlo code ERO [8].
However, while the rate coefficients for electron collisions are
currently incorporated in the simulations, the heavy-particle
collisions are not considered. In particular, we are interested
in the electron-capture (EC) reaction

H+ + BeH(X 2�+) → H + BeH+ (1)

that takes place in the collision of BeH with protons
(deuterons). Given that the cross sections for this reaction have

not been measured yet in beam experiments, their values are
only accessible theoretically, and no previous calculations have
been carried out hitherto because of the difficulties associated
to the treatment of the vibrorotational molecular degrees of
freedom.

Several well-established theoretical methods are currently
employed for describing EC in ion-atom collisions (see, e.g.,
Ref. [9]). For instance, at low impact energies it is appropriate
to apply a quantal formalism with a molecular basis. As
the energy increases, semiclassical treatments with molecular
or atomic bases are used and, at high energies, classical
trajectory Monte Carlo (CTMC) and continuum-distorted-
wave treatments. In the past ten years, the computational power
has made it possible to solve numerically the time-dependent
Schrödinger equation. The range of applicability of these
methods is known; they have been applied to systems with
one active electron to provide accurate total cross sections,
compared to the available experimental values. For instance,
in the benchmark system He2++ H(1s), Minami et al. [10]
reported total and n-partial cross sections in overall good
agreement with the experiments. By comparing different
methods, they reported an estimated uncertainty smaller 10%
in the energy range 1 < E < 1000 keV, and uncertainties
between 1% and 30% for the n-partial cross sections, with the
largest uncertainties associated to the smallest cross sections.
Recently, Jorge et al. [11] estimated uncertainties of about
15% in n-partial cross sections in Be4++ H(1s) collisions.
Obviously, it is difficult to obtain similar accuracies for many-
electron systems. At high energy, the independent electron
approximation is in general applied, which limits the accuracy
of the theoretical predictions. At low energies, the calculations
for many-electron systems employ molecular wave functions,
obtained by means of quantum chemistry calculations. An
example of the merging of different methods can be found
in Ref. [12], but there is not an estimate of the uncertainties
associated to the calculated values.

2469-9926/2017/96(3)/032714(11) 032714-1 ©2017 American Physical Society

https://doi.org/10.1103/PhysRevA.96.032714


RABADÁN, MÉNDEZ, GAO, WU, AND WANG PHYSICAL REVIEW A 96, 032714 (2017)

The theoretical description of ion-molecule collisions does
not simply involve an extension of the ion-atom techniques to
more complex systems. The main difference is the presence
of the vibrorotational degrees of freedom. However, at not-
too-low collision energies (E � 0.25 keV/u), the vibrational
motion is slow compared to the ion-molecule relative motion,
and one can assume that the molecule internal coordinates are
fixed during the collision, which is the basis of the sudden
approximation for rotation and vibration (see Ref. [13]).
Within this approximation, the solution of the ion-molecule
problem reduces to a set of calculations for each nuclear
configuration, and each of them is similar to an ion-atom
collision calculation, which permits one to modify the ion-
atom codes and to apply them to study ion-molecule collisions.
However, even within the sudden approximation, there are
two additional characteristics of ion-molecule collisions. First,
the experiments are usually carried out with gas-phase targets
where the molecules are randomly oriented and, accordingly,
the calculation must yield orientation-averaged cross sections.
Second, in systems with three nuclei or more, the electronic
potential energies display conical intersections, which yield
singular dynamical couplings between the corresponding
adiabatic molecular wave functions. Since the description of
the collision system at low energies is generally performed in
a molecular basis, it is necessary to construct an alternative
(diabatic) set without singularities; this is the so-called
regularization process.

In this work we have calculated the cross sections for
reaction (1) in the energy range 25 eV < E < 10 keV,
employing a basis set of electronic functions of the BeH2

+
molecule. Our treatment is based on the application of the
sudden approximation for molecular vibration and rotation.
The use of sudden approximations for molecular rotation,
within a quantum-mechanical framework, has been discussed
in detail in several reviews (e.g., Refs. [14,15]) and the
so-called infinite order sudden (IOS) approximation has been
applied to calculate EC cross sections [16–18]. At collision
energies above 200 keV/u, the quantum-mechanical treatment
of inelastic ion-molecule collisions becomes cumbersome and
a semiclassical approximation is appropriate. In this respect,
the pioneering work of Schinke [19] applied the sudden
approximation for rotation in the semiclassical treatment of
vibrational excitation in H+ + H2 collisions. The application
of the sudden approximation for vibration and rotation in
the semiclassical framework was implemented in Ref. [20].
Most of the previous works on ion-diatomic collisions have
been carried out for the benchmark system H+ + H2. Besides
the works already mentioned [16–19], the EC reaction has
been studied in the works of Refs. [21–23], at impact
energies of a few keV/u, and in the CTMC calculations of
Refs. [24,25] at higher energies (10 keV � E � 1 MeV).
The calculations at high energy (1 MeV) [26] predicted an
interference effect, observed in measurements [27] of EC
cross section as a function of the molecular orientation. All
these calculations assumed that the molecule remains at the
equilibrium distance during the collision. Ionization of H2

in proton collisions has been extensively studied at E =
75 keV. Namely, cold-target-ion-momentum-spectroscopy ex-
periments and continuum-distorted-wave eikonal-initial-state
calculations [28,29] showed the presence of interference

structures in the double-differential cross sections as functions
of the projectile scattering angle, and, more recently, triple-
differential cross sections have been considered [30–32].

The validity of the sudden approximation for rotation
and vibration has been discussed for the benchmark system
H+ + H2 in Ref. [33], where it was shown that it is not
appropriate at low collision energies (E � 200 eV), because
the transitions leading to the EC process take place between
quasidegenerate vibronic levels, as suggested in Ref. [34], and
a method beyond the sudden approximation must be applied
as in the calculations of Ref. [35]. In order to compare with
beam experiments with gas-phase targets, the cross section
must be averaged with respect to the molecule orientation
(see Ref. [20]). Similar averaging procedures were applied
in Ref. [36] and extended to collisions with three-center
molecules in Refs. [37,38].

In order to gauge the accuracy of the calculation, we have
combined several computational techniques. In particular, at
relatively low energies, the accuracy of the cross sections
is determined by that of the molecular calculation, and we
have compared the potential energy surfaces and dynamical
couplings obtained with two quantum chemistry packages.
First is the package MELDF (see, e.g., Ref. [39]), which
allows us to calculate potential energy surfaces (PESs) and
wave functions with a multireference configuration-interaction
method. This code was modified to calculate numerically the
dynamical couplings in Ref. [40]. A numerical differentiation
technique was also incorporated into the MRDCI code [41], and
the results of applying both packages are compared.

The paper is organized as follows: In Sec. II, we summarize
the theoretical models employed. In Sec. III, we present
the molecular calculations for the BeH2

+ ion and show the
energies and nonadiabatic couplings required to perform the
dynamical calculation. The EC cross sections are displayed in
Sec. IV, and a brief summary is presented in Sec. V. Atomic
units are used unless otherwise stated.

II. THEORETICAL METHOD

A. Quantum-mechanical treatment

In the quantum-mechanical formalism, the collision wave
function is a solution of the stationary Schrödinger equation,

H (r,R,ρ)�(r,R,ρ) = E�(r,R,ρ), (2)

with H = TR + Hint, and the internal Hamiltonian has the form

Hint(r,R,ρ) = Tρ + Hel(r,R,ρ), (3)

where R and ρ are the Jacobi coordinates of a three-nuclei
system (Fig. 1), and r is the set of electronic coordinates. TR

and Tρ are the kinetic energy operators associated to R and
ρ, respectively. Hel is the clamped-nuclei Born-Oppenheimer
electronic Hamiltonian of the three-center system:

Hel(r,R,ρ) = Tr + V (r,R,ρ). (4)

In order to introduce the sudden approximation, it is useful to
define the internal Hamiltonian for the nuclear motion of the
molecular target:

HBeH = Tρ + VBeH(ρ) (5)
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FIG. 1. Internal coordinates (R,ρ,θ ) for the p + BeH system.
CM is the position of the BeH center of mass.

and we assume that the initial vibrorotational state of the
molecule is ρ−1Yjm(ρ̂)χ0(ρ), with energy ε0j . At not-too-low
collision energies, the vibrorotational motion is slow compared
to the projectile motion and we introduce a sudden approxima-
tion for rotation and vibration, where the approximate solution
of Eq. (2) is written in the form

�
jm

0 = ρ−1Yjm(ρ̂)χ0(ρ)ψ(r,R; ρ). (6)

The function ψ(r,R; ρ) is a solution of the stationary
Schrödinger equation:

Hsud(r,R; ρ)ψ(r,R; ρ) = (E − ε0j )ψ(r,R; ρ) (7)

with

Hsud(r,R; ρ) = TR + Hel − VBeH, (8)

where we have neglected the terms ∇ρψ ; this is the gen-
eralization to the vibrational motion of the energy sudden
approximation, commonly employed for molecular rotation.
In order to solve Eq. (7), one can introduce the centrifugal
sudden approximation, which, together with the energy sudden
one, yields the IOS approximation. In practice, working in the
body-fixed frame (BFF), X̃Ỹ Z̃ with ̂̃Z = R̂, and substituting
the angular momentum operator L2 by L(L + 1), we obtain

TR ≈ − 1

2μ

1

R

d2

dR2
R + L(L + 1)

2μR2
. (9)

For the system H++BeH, μ is the reduced mass,

μ = mH + mBeH

mHmBeH
, (10)

and [
1

R

d2

dR2
R − L(L + 1)

R2
− 2μ(E − Hel − ε0j )

]
×ψL(r,R; ρ,θ ) = 0. (11)

It must be noted that the solution of Eq. (11) depends
parametrically on ρ and θ , and the second-order differential
equation must be solved for a set of fixed values of these
parameters. The sudden-vibration-IOS wave function ψL

is now expanded in terms of a set of Born-Oppenheimer
electronic wave functions:

ψL(r,R; ρ,θ ) =
∑

k

FL
k (R; ρ,θ )φk(r; R,ρ,θ ) (12)

with

Hel(r,R,ρ,θ )φj (r; R,ρ,θ ) = εj (R,ρ,θ )φj (r; R,ρ,θ ). (13)

Substitution of Eq. (12) into Eq. (11) leads to a set of second-
order differential equations for the functions FL

k (R; ρ,θ ),
from which one can calculate the corresponding scattering
amplitudes fif (E,R̂; ρ,θ ). It can be shown [42] that the
degeneracy-averaged differential cross section for the i0j →
f νj ′ transition is given by

Q
f νj ′
i0j (E,R̂) = 1

2j + 1

kf νj ′

ki0j

∑
mj

|〈νj ′mj |fif |0jmj 〉|2, (14)

where k2
f νj ′ = 2μ(E − εf − ενj ′ ) and the integrals are evalu-

ated in the BFF and, since the scattering amplitudes fif do
not depend on the azimuthal angle of ρ, they vanish unless
m′

j = mj . Using closure [42,43], the cross section summed
over all final rotational states has a very simple expression:

Q
f ν

i0 (E,R̂) =
∑
j ′

Q
f νj ′
i0j = kf νj

ki0j

1

2

∫ 1

−1
d(cos θ )|〈ν|fif |0〉|2,

(15)

and the corresponding total cross section is expressed as

σ
f ν

i0 (E) =
∫

d R̂ Q
f ν

i0 (E,R̂) = 1

2

∫ 1

−1
d(cos θ )σf ν

i0 (E; θ ).

(16)

Assuming that the collision energy is large compared to the
separations between the vibrational states, we can take

kf νj

ki0j

≈ kf

ki

, (17)

which allows us to use the closure relation for the vibrational
wave functions to obtain the differential and total cross sections
for transitions to all vibrational states:

Qf (E,R̂) =
∑

ν

Q
f ν

i0 = 1

2

∫ 1

−1
d(cos θ )

∫
dρ|fif |2χ2

0 , (18)

σ
Q
f (E) = 1

2

∫ 1

−1
d(cos θ )

∫
dρ σ

Q
f (E,ρ,θ )χ2

0 . (19)

In expansion (12), we have not taken into account the cor-
rections due to the translation factors, which in the quantum-
mechanical treatment are commonly introduced through a
reaction coordinate formalism (see Ref. [44]). In particular,
the substitution of the coordinate R by a common reaction
coordinate ξ (R,r), in the appropriate way, ensures that the
finite expansion (12) satisfies the correct boundary conditions.

B. Semiclassical treatment

Our semiclassical method has been applied in previous
publications (see Ref. [45] and references therein). At impact
energies E � 200 eV/u, it is appropriate to employ the
eikonal semiclassical approximation (e.g., Ref. [9]), where
the projectile follows straight-line trajectories:

R = b + vt (20)

with impact parameter b and velocity v. The relative velocity
v is related with the collisional energy: E = mpv2/2, with
mp the projectile mass. In the eikonal treatment the electronic
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motion is described by a wave function �EIK(r,ρ,t) solution
of the equation

Hint�
EIK − i

∂�EIK

∂t

∣∣∣∣
r,ρ

= 0. (21)

The sudden-vibrational (SV) approximation for the eikonal
wave function was explained in detail in Ref. [20]. Within this
approach, the eikonal wave function is expressed as

�SV
0jm = ρ−1Yjm(ρ̂)χ0(ρ)D(r,t)

∑
k

ak(t ; b,E,ρ)

×φk(r; R,ρ,θ ) exp

[
−i

∫ t

0
εkdt ′

]
, (22)

where D(r,t) is a common translation factor (CTF) [46] that,
in the present calculations, has the explicit form proposed in
Ref. [47]. The collision wave function is expanded in terms of
the molecular wave functions φj (r; R,ρ,θ ), eigenfunctions of
Hel of Eq. (4). Substituting this expansion into Eq. (21), and
neglecting the coupling terms proportional to ∇ρφk , leads, for
each ρ, to the system of differential equations

i
daj

dt
=

∑
l

[v · Mj l + v2Bjl]al exp

[
−i

∫ t

0
(εl − εj )dt ′

]
,

(23)

where Mj l are the nonadiabatic couplings, which include the
correction terms due to the introduction of the CTF.

The system of differential equations (23) is solved for each
ρ with the initial condition

lim
t→−∞ ak(t ; b,E,ρ) = δki . (24)

The transition probability to the final state �f νj ′m′ is

P
f νj ′m′
i0jm (b,E) = lim

t→∞
∣∣〈�f νj ′m′

∣∣�SV
0jm

〉∣∣2

= lim
t→∞

∣∣∣∣
∫

dρ̂ Y ∗
j ′m′(ρ̂)Yjm(ρ̂)

×
∫

dρχν(ρ)χ0(ρ)af (t ; b,E,ρ)

× exp

[
−i

∫ t

0
dt ′(εf − Ef )

]∣∣∣∣2

, (25)

where Ef is the internal asymptotic excitation energy (nu-
clear plus electronic) of the system in the final state. The
degeneracy-averaged transition probabilities are added over
final rotational states to obtain the vibrationally resolved
transition probabilities (i 	= f ):

P
f ν

i0 (b,E) =
∑
j ′m′

P
f νj ′m′
i0jm

= 1

4π
lim
t→∞

∫
dρ̂

∣∣∣∣
∫

dρχν(ρ)χ0(ρ)af (t ; b,E,ρ)

× exp

[
−i

∫ t

0
dt ′(εf − Ef )

]∣∣∣∣2

, (26)

where we have used the addition theorem for the spherical
harmonics. Using closure for the vibrational functions, we
can calculate the transition probability for populating all
vibrational states:

P f (b,E) =
∑

ν

P
f ν

i0 = 1

4π
lim
t→∞

∫
dρ̂

∫
dρχ2

0 (ρ)

× |af (t ; b,E,ρ)|2

= 1

4π

∫
dρ̂

∫
dρχ2

0 (ρ)Pf (b,E; ρ).

(27)

We can define an orientation-dependent total cross section in
the sudden approximation as an average over the values of the
internuclear distance in the form

σ SV
f (E; ρ̂) =

∫ ∞

0
dρ σf (E; ρ) χ2

0 (ρ), (28)

with

σf (E; ρ) = 2π

∫ ∞

0
db b Pf (b,E; ρ). (29)

At high collision energies, the Franck-Condon (FC) approxi-
mation can be employed:

σ FC
f (E; ρ̂) = σf (E; ρe), (30)

where ρe is the equilibrium distance of the diatomic target
molecule.

The orientation-averaged cross sections can be calculated
by averaging σf (E; ρ) or σ FC

f (E; ρ̂) [Eqs. (29) and (30)] over
a set of nuclear trajectory orientations with a fixed-target
orientation, as explained in Ref. [20]. An alternative, which
is more simple from the computational point of view, is the
semiclassical equivalent to the average procedure employed in
the IOS-quantal treatment. To introduce this approximation,
we assume that, for each trajectory and molecular orientation,
the transition i → f takes place in a narrow interval of
the projectile trajectory near the point of closest approach,
characterized by a single value of the internal angle θ0,

Pf (b,E; ρ) ≈ P iso
f (b,E; ρ,θ0), (31)

and one can introduce the orientation-dependent cross section
within this approximation as,

σ iso
f (E,ρ,θ0) = 2π

∫ ∞

0
db bP iso

f (b,E; ρ,θ0). (32)

Since the couplings are independent of the azimuthal angle of
ρ in the BFF, the orientation average in Eq. (28) can be carried
out in the BFF as

σ SV
f (E) ≈ σ iso

f (E) = 1

2

∫ 1

−1
d(cos θ )σ iso

f (E,θ )

= 1

2

∫ 1

−1
d(cos θ )

∫ ∞

0
dρ σ iso

f (E,ρ,θ )χ2
0 (ρ)

= π

∫ 1

−1
d(cos θ )

∫ ∞

0
dρχ2

0 (ρ)

×
∫ ∞

0
db b P iso

f (b,E,ρ,θ ), (33)
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where we have simplified the notation by substituting θ0 by θ .
As in Eq. (11), the transition probabilities and cross sections
depend parametrically on θ , and the collision is treated as a set
of isotropic problems, similar to ion-atom collisions with the
couplings evaluated for several values of θ , which is assumed
to be constant along the collision. The FC approximation
leads to

σ FC
f (E) = 1

2

∫ 1

−1
d(cos θ )σ iso

f (E,ρe,θ ). (34)

In practice, the transition probabilities P iso
f of Eq. (32) are

calculated by solving a system of differential equations similar
to Eq. (23), where the energies (εj ) and couplings (Mj l , Bjl)
only depend on the variable R, while θ and ρ are fixed
parameters. This leads to a set of systems of differential
equations that, for each value of ρ and θ , are formally identical
to those found in ion-atom collisions:

v · Mj l(R; ρ,θ ) = v2t

R
〈φj | ∂

∂R

∣∣∣∣
θ,ρ,r

|φl〉

− bv

R2
〈φj | ∂

∂θ

∣∣∣∣
R,ρ,r

|φl〉

+ CTF correction terms, (35)

with the derivatives calculated keeping ρ,r constant in the
laboratory reference frame. Errea et al. [48] found that the
angle-averaged cross section from Eq. (33) for EC in H+ + H2

collisions is in good agreement with the more sophisticated
(and expensive) treatment of the anisotropy of the collisional
system, where the average is performed over the relative
orientations of v̂ and ρ̂, and taking into account explicitly the
dependence of the couplings on v̂ · ρ̂ along the trajectory, but
this point has not been checked yet for other systems. A similar
approximation has been employed to treat ion collisions with
large biomolecules (e.g., Refs. [49,50]), where the dynamical
calculation is performed with energies and couplings evaluated
at a fixed orientation of the molecule with respect to the
projectile velocity vector.

It must be noted that, although Eqs. (19) and (33) are
formally similar, the former one has been derived by using
the centrifugal sudden approximation while the Coriolis
couplings are not neglected in the semiclassical calculation
[see Eq. (35)]. This difference precludes that quantal and
semiclassical treatments lead in general to the same results.
The validity of this approximation has been discussed in
previous works for H+ + H2 collisions [35], where it was
found that the cross sections obtained from quantal (IOS)
and eikonal semiclassical calculations agree in the range of
collision energies 200 eV < E < 400 eV, and therefore both
trajectory effects and centrifugal sudden approximation are
not relevant. In general, it is expected that the semiclassical
treatment, including rotational couplings, is more accurate at
high energies than the IOS one.

III. MOLECULAR CALCULATIONS

A. Potential-energy curves of BeH

In order to check the accuracy of our molecular data
for BeH2

+, we have compared our results for BeH with

2 4 6 8 10 12 14
R (bohr)

0.05

0.1

0.15

0.2

0.25

Δ E
 (h

ar
tre

e)

FIG. 2. Comparison between the energy differences Ei − E0 of
the BeH molecular states (symbols) of Ref. [51] with those obtained
in the present calculation (dashed lines). Bullets correspond to 2�

states and triangles to 2� states.

those of Pitarch-Ruiz et al. [51], who carried out a full-
configuration-interaction (CI) calculation with a large basis
set combining atomic natural orbitals (ANOs) and Rydberg
functions. Since we are studying collisions with BeH in its
ground electronic state, only doublet states are relevant, and
we compare the corresponding potential energy curves (PECs)
with our results, obtained with the 6-31++G** basis set for
Be taken from Ref. [52], the Basis Set Exchange website
described in Ref. [53], and Roos Augmented Double Zeta
ANO [54] for H, using the program MELD [39]. We perform,
for both BeH and BeH2

+ systems, full-CI calculations with the
occupancy of the lowest Be 1 s2 frozen. The energies obtained
in both calculations differ by at most 0.01 hartree. In studying
collisions, the relevant quantities are the differences between
the energies of the electronic states. These differences are
compared with those of Ref. [51] in Fig. 2. At each R, the
small discrepancies between both calculations are quite similar
for all states, which points to the effect of the frozen core
approximation employed in our calculation.

B. Asymptotic electronic structure of the triatomic
system BeH2

+

A qualitative description of the mechanism of the EC
reaction can be deduced from the energies of the triatomic
system in the asymptotic limit as the distance R (see Fig. 1)
between the projectile and the BeH center of mass goes to
infinity. The corresponding energy curves are the PECs of the
BeH (doublets) system together with the PECs of the ion BeH+

(singlets and triplets systems), to which we add 0.5 hartree
corresponding to the energy of H(1s). Figure 3 presents these
curves, where the energy of the state BeH(2 �+), which is
the entrance channel of reaction (1), is the thick dashed line.
The equilibrium bond length for the BeH (2�+) molecule is
around ρe = 2.568 bohrs. We can see in Fig. 3 that there are
three EC channels close in energy to the entrance channel that
support bound states and with equilibrium distances near ρe.
There is also a repulsive charge-transfer channel whose energy
crosses that of the entrance channel at R ≈ 6 bohrs. We have
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FIG. 3. PECs of the H++BeH system in the limit as the distance
between H+ and BeH goes to infinity. The solid lines are the energies
of the states dissociating into H+BeH+ with the BeH+ in singlets
(thick black lines) and triplets (thin red lines). The dashed lines are
the energies of the doublet states of BeH. The inset is a zoom of the
squared area delimited with a long-dashed line and also includes (“+”
symbols) the energies of the vibrational levels of the four electronic
states.

calculated the vibrational levels of the bound electronic states
using Le Roy’s LEVEL program [55] (assuming J = 0) and the
results are included in the inset of the figure. At low collision
energies, the EC reaction will take place through transitions
from the ground vibrational level to quasiresonant vibrational
levels of BeH+, namely,

H+ + BeH(X 2�+,ν = 0) → H + BeH+(2 1�+,ν ′ = 3,4),

(36)

H+ + BeH(X 2�+,ν = 2) → H + BeH+(2 3�+,ν ′′ = 0).

(37)

These mechanisms are similar to those found in H+ + H2

collisions at low energies (see Ref. [35] and references therein),
where we found that the EC total cross section shows a local
maximum at E ≈ 45 eV that is a consequence of transitions
between vibronic levels. Accordingly, we expect that the
transitions (36) will furnish the low-E mechanism with an
increase of the cross section with respect to that obtained from
extrapolation of the SV results.

In Fig. 3, we also observe the presence of a crossing
between the PECs of channels H+ + BeH(X 2�+) and H +
BeH+(2 1�+) at ρ slightly lower than ρe. This crossing
in the qualitative illustration corresponds to an asymptotic
conical intersection between the potential energy surfaces
of the triatomic system. It must be noted that the conical
intersection is accessible within the vibrational ground-state
wave function. The presence of an asymptotic conical inter-
section was previously found in the H+

3 system (see Ref. [56]).
Figure 3 shows another asymptotic conical intersection be-
tween the PESs of the entrance channel and that dissociat-
ing into H + BeH+(2 3�+) at a BeH internuclear distance,

011
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H(1s)+BeH ( Π)
H(1s)+BeH ( Π)

H +BeH( Σ)

H +BeH( Π)

CM

H(2s)+BeH ( Σ)

FIG. 4. Cuts of the PESs of the doublet states of (HBeH)+ along
the line with ρ = 2.568 bohrs and θ = 60◦ as functions of R. The
solid lines are the energies of the states that correlate to H++BeH and
the dashed lines those of the EC channels that correlate to H+BeH+.
Lines, frozen-core full-CI calculation; solid symbols, multireference
single- and double-excitation CI calculation.

ρ ≈ 3.2 bohrs, which is not accessible from the vibrational
ground state of the electronic entrance channel.

C. The triatomic system for θ = 60◦ and ρ = ρe

The perfect agreement between full-CI energies of the
three-center system calculated with MELDF and the multiref-
erence single- and double-excitation CI calculation using
the MRDCI code is illustrated in Fig. 4 for θ = 60◦ and
ρ = ρe. These PECs allow us to discuss the mechanism
of the EC reaction for the particular trajectory with the
proton approaching the nuclear center of mass of the target
molecule with a specific angle θ = 60◦ with respect to the BeH
bond direction (see Fig. 1). We have chosen this particular
orientation because it was found in Ref. [48] that the cross
section σ iso

f (E,ρ,θ = 60◦) is close to the orientation average
σ iso

f (E,ρ). The energy of the entrance channel that dissociates
into H+ + BeH(1σ 22σ 23σ 1; X 2�+) is the lowest solid line
that corresponds to the fourth state (φ4). At large R, the
energy of φ4 is very close to that of φ3, which correlates to
the charge-transfer channel H + BeH+(1σ 22σ 13σ 1; 2 1�+),
and presumably it should have a Demkov-type interaction
around R � 10 bohrs, where the PECs start to diverge. The
relative positions of the energies of these two states vary when
changing ρ. In particular, the energy of the entrance channel is
asymptotically lower than that of the charge transfer channel
for ρ < ρc, where ρc is the Be-H distance of the conical
intersection shown in Fig. 3. At lower R, the energy of the
entrance channel approaches that of the state dissociating into
H + BeH+(1 3�+), which furnishes an alternative mechanism
of the EC process.

From the energy diagram of Fig. 4, and similar ones for
other orientations and Be-H distances, it is clear that the
main exit channels are the states 2 1�+ and 1 3�+. The most
important configuration of these states is 1σ 22σ 13σ 1, which
means the electron is captured from the orbital 2σ . Capture

032714-6



AB INITIO CALCULATION OF ELECTRON- . . . PHYSICAL REVIEW A 96, 032714 (2017)

from the highest occupied molecular orbital, 3σ , leads to the
formation of BeH+(1 1�+) and is expected to be less relevant.

D. Dynamical couplings

In our calculations, the CTF included in expansion (22) is
a symmetric function with respect to the permutation of the
electronic coordinates r i of the form

D(r,t) = exp[iU (r,t)] (38)

with

U (r,t) =
∑

i

(f v · ri − 1/2f 2v2t) (39)

and the switching function

f (r i ,R) = g(R)r i · R̂, (40)

where

g(R) = R

R2 + β2
, (41)

and β = 2.0 bohrs in the present work. As explained in
Eq. (35), the nonadiabatic couplings are calculated for fixed
values of ρ and θ . Including the CTF corrections, the radial
component is given by

Rj l = 〈φj | ∂

∂Z̃

∣∣∣∣
X̃,ρ,θ,r

|φl〉

− 1

2
[2g − Rg2](εl − εj )〈φj |

∑
i

z2
i |φl〉, (42)

and the rotational one by

Sj l = 〈φj | ∂

∂X̃

∣∣∣∣
Z̃,ρ,θ,r

|φl〉

− g(εl − εj )〈φj |
∑

i

xizi |φl〉, (43)

where it is assumed that the electronic wave functions are exact
eigenfunctions of Hel and

∂

∂X̃
= 1

R

∂

∂θ
. (44)

The particular CTF of Eqs. (38) and (40) yields also correction
terms proportional to v2, see Eq. (23), that come from the
matrix elements of ∇U and ∂U/∂t , and are proportional to
electronic quadrupole matrix elements.

On the other hand, since the switching function (40)
is also used to define the common reaction coordinate in
the quantal treatment, the radial and rotational couplings
are identical in semiclassical and quantal formalisms. The
derivative couplings in Eqs. (42) and (43) have been evaluated
numerically [40] for R � 0.5 bohr, where the molecular
states are clearly identified. In any case, very small distances
are only reached in collisions with small impact parameter
(low-L partial waves in the quantal formalism) that does not
significantly contribute to the total cross section. An explicit
check of the numerical differentiation procedure is shown in
Fig. 5, where we compare the couplings Rj l , evaluated with
the techniques implemented in MELDF and MRDCI codes and
with the same Gaussian basis set.
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FIG. 5. Nonadiabatic couplings between the adiabatic states φ3

and φ4 (solid line) and φ5 and φ6 (dashed line) for ρ = 2.568 bohrs
and θ = 180◦, obtained with the full-CI calculation, as functions
of R, compared to multireference single- and double-excitation CI
calculation (solid symbols).

As an illustration, we show in Fig. 6(a) the nonadiabatic
couplings between the third and the fourth adiabatic states,
which are, respectively, the main exit channel and the entrance
channel (Fig. 4) of the EC process. For ρ = 2.568 bohrs
and θ = 60◦, the radial coupling shows a small maximum
at R ≈ 8 bohrs that is due to the Demkov-type interaction
(e.g., Ref. [57]) between both states. There is a maximum in
both components at R ≈ 4.5 bohrs, which is a consequence
of the avoided crossing between the corresponding PECs. The
most conspicuous structures arise at R ≈ 2.45 bohrs; the radial
coupling exhibits a high peak, while the rotational one shows
a double-peak structure, which are characteristics of a conical
intersection between the corresponding PESs. In this particular
case, the conical intersection seam appears for isosceles-
triangle geometries (C2v symmetry). There is another peak
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FIG. 6. Nonadiabatic radial (solid lines) and rotational (dashed
lines) couplings between the adiabatic states (a) φ3 and φ4 and (b) φ4

and φ5 for ρ = 2.568 bohrs and θ = 60◦ as functions of R.
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FIG. 7. Orientation-averaged total EC cross section as a function
of the impact energy, calculated at the FC level and different basis
sets, as indicated in the figure. SC denotes semiclassical calculations
and Q quantal calculations. The lines correspond to calculations
including only couplings proportional to v-CTF. The bullets are the
results obtained including also the CTF corrections proportional to
v2. Shaded area is ±3% of solid line.

at R ≈ 0.55 bohr, which comes from an additional avoided
crossing not shown in Fig. 4. The couplings between states
φ4 and φ5 are plotted in Fig. 6(b). One can note peaks in
both components at R ≈ 5.80 bohrs in the pseudocrossing;
there is also an avoided crossing at R < 0.5 bohr that explains
the increase of the couplings at the lowest distances of our
calculation. The remaining structures are due to the changes
in the character of the adiabatic states in regions where
nonadiabatic couplings with other states are important, for
instance, near the φ3-φ4 conical intersection.

IV. DYNAMICAL CALCULATIONS

A. Franck-Condon orientation-averaged cross sections

At high impact energies it is appropriate to employ the FC
approximation, where the orientation-dependent total cross
sections are σ iso

f (E,ρe,θ ) and they are orientation averaged
using Eq. (34). Moreover, the FC calculations are useful to
gauge the validity of some approximations mentioned in Sec. II
and to check the convergence of the expansion.

Figure 7 presents the total EC cross sections at the FC level:

σ FC(E) =
∑
f

σ FC
f (E). (45)

The figure shows the results obtained with different basis sets:
the three-state basis {φ3 − φ5} is a minimal basis that includes
the entrance channel (φ4) and the two main exit channels (φ3

and φ5), see also Fig. 4; the five-state basis {φ2 − φ6} adds
two EC channels; the six-state basis includes one excitation
channel (φ7); and the eight-state basis has two additional
EC channels. In all these calculations we have neglected
the coupling terms proportional to v2 [Bjl in Eq. (23)]. The
results including these terms are only plotted for the eight-state
calculation. We can note that both calculations agree within
a ±3% error for E � 5 keV, as indicated by the shaded area.

 0  2  4  6  8  10
d (bohr)

0

30

60

90

120

150

180

E=62.5 eV
E=250 eV

E=6.25 keV

FIG. 8. Polar plot of d [Eq. (47)] as a function of θ for the three
collision energies indicated in the figure. The spheres indicate the
positions of the target nuclei.

Accordingly, the collision mechanism can be discussed by
considering only the couplings Mjl , shown in Sec. III. One
can also notice the good agreement between five-, six- and
eight-state calculations for E � 10 keV, which confirms the
convergence of our calculation. At E > 10 keV, the eight-state
cross section shows a sudden increase that suggests that the
population of the high-lying states, in particular that of φ8,
could correspond to ionization, not correctly described by the
L2-integrable basis.

We include in Fig. 7 some results of σ Q(E):

σ Q(E) =
∑
f

σ
Q
f (E) = 1

2

∑
f

∫ 1

−1
d(cos θ )σf (E,ρe,θ ), (46)

obtained with the quantal formalism [see Eqs. (6), (12), and
(19)] and the three-state basis. Although the comparison
with the three-state semiclassical result is unsatisfactory, it
merges with this semiclassical calculation when the Coriolis
couplings are removed. This comparison clearly indicates
that the semiclassical eikonal approximation is valid and the
differences with the quantal results are due to the centrifugal
sudden approximation employed in the latter approach. The
slow merging of the results with and without rotational
couplings in Fig. 7 also indicates the importance of rotational
couplings at E > 2.5 eV.

B. Franck-Condon orientation-dependent EC
total cross section

The dependence of the EC total cross section on the angle
θ is illustrated in Fig. 8, where we plot the values of the radius,
d, related with the cross section:

d =
√√√√ 1

π

∑
f

σ iso
f (E,ρe,θ ). (47)

As it has already been explained in Sec. II, the results for
specific values of θ are obtained from energies and couplings
calculated along lines with constant θ , which can be viewed
as ion trajectories approaching the target center of mass along
lines with fixed θ in Fig. 8. In practice, the calculation is carried
out for each value θ by integrating the system of coupled
differential equations (23) for each impact parameter with the
corresponding coupling matrix elements Mjl(R,ρe,θ ). For
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FIG. 9. State-selected EC cross sections in Å
2

as functions of the
impact energy. (a) FC calculation with θ = 60◦, σ iso

f (E,ρe,θ = 60◦).
(b) Orientation-averaged FC calculation, σ FC

f .

all collision energies, the calculations with θ ≈ 90◦ yield the
lowest EC cross sections because the dynamical calculation
is carried out with the couplings evaluated in a direction
perpendicular to the internuclear axis where the electronic
density is relatively small. The largest cross sections are
found for trajectories with small θ when the data (energies
and couplings) correspond to a projectile approaching the
molecule near the H nucleus. This behavior is a consequence
of the dominant mechanism discussed in Sec. III C, where
the electron is captured from the molecular orbital 2σ that has
the largest electronic density near the H nucleus. An
intermediate situation is found for large values of θ , where the
electron is predominantly captured from the density located
near the Be nucleus.

C. State-selected EC cross sections

We present in Fig. 9 the EC partial cross sections
σ iso

f (E,ρe,θ = 60◦), obtained in a FC semiclassical calculation
with the eight-state basis set and θ = 60◦. At low energies, the
dominant exit channel is BeH+(2 1�+), in agreement with the
fact that very efficient transitions take place from the state
φ4 (the entrance channel) to the state φ3 that correlates to
BeH+(2 1�+)+H(1s) (see Fig. 4). As E increases, the cross
section for populating BeH+(1 3�+)+H(1s) also increases as
a consequence of the fact that φ3 → φ2 transitions become
more efficient. In fact, the cross sections for transitions
to BeH+(2 1�+)+H(1s) and BeH+(1 3�+)+H(1s) are very
similar at E > 1 keV. Besides, the states 1 1,3� are formed
in transitions φ4 → φ5 → φ6. From the asymptotic structures
of these channels the population of states 1 1,3� involves a
two-electron transition: one electron is captured from the 2σ

molecular orbital and another electron is excited from 3σ

to 1π , which explains that the corresponding cross sections

0.1 1 10
E (keV)

0.1

1

10

σ 
(Å

2 )

Total ECBeH+(21Σ)

BeH+(13Σ) BeH+(11Σ)

BeH+(13Π) BeH+(11Π)

FIG. 10. State-selected EC cross sections σ iso
f (E,θ = 60◦), eval-

uated using the vibrational sudden approach of Eqs. (33) and (48).
The thick dash-dotted line is the FC result for the total EC cross
section.

are small compared to those for populating BeH+(2 1�+,
1 3�). However, although the EC into BeH+(1 1�+) involves
a one-electron transition, in which the electron is captured
from the singly occupied 3σ molecular orbital, the energy
gap between the PECs of states φ1 and φ4 precludes the direct
transition; it takes place through the sequence φ4 → φ2 → φ1.
It explains the small cross section and the fact that in Fig. 9 the
lines for the cross sections for populating BeH+(1 3�+) and
BeH+(1 1�+) are almost parallel.

D. Sudden vibrational calculations

We plot in Fig. 10 the EC orientation-dependent partial
cross sections, σ iso

f , calculated using the SV approach; they
are obtained by substituting Eq. (32) into Eq. (28):

σ iso
f (E,θ = 60◦) =

∫ ∞

0
dρ σ iso

f (E,ρ,θ = 60◦)χ2
0 (ρ). (48)

The FC results of Fig. 9(a) qualitatively agree with the SV
ones of Fig. 10. However, there are clear differences for some
partial cross sections at low E. For instance, the SV cross
section for populating BeH+(1 3�+) is larger than that from
the FC calculation by almost an order of magnitude for E <

0.1 keV. This difference comes from the ρ dependence of the
PECs, as can be noticed from the asymptotic energies plotted in
Fig. 3, the increase of the energy of the state BeH+(1 3�) as ρ

decreases approaching that of the entrance channel at ρ < ρe,
which accordingly leads to higher transition probabilities and
to larger contributions of the small ρ values to the integral
over ρ in Eq. (48). On the contrary, the cross sections for
populating BeH+(1 1,3�) states in Fig. 10 are smaller than
the corresponding ones in Fig. 9(a) for E < 0.1 keV, as a
consequence of the increase of the energies of these two states
(see Fig. 3) as ρ decreases, which lowers the transitions from
the entrance channel. We also compare in Fig. 10 the total EC
cross sections calculated at the FC level,

σ iso(E,ρe,θ = 60◦) =
∑
f

σ iso
f (E,ρe,θ = 60◦), (49)
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and the corresponding SV one:

σ iso(E,θ = 60◦) =
∑
f

σ iso
f (E,θ = 60◦). (50)

At low energies, the EC process is dominated by transitions to
the three-center electronic state dissociating into BeH(2 1�),
well represented by the FC approximation, which leads to an
almost constant error of about 20% of the FC total EC cross
section with respect to the more accurate SV result.

V. SUMMARY AND CONCLUSIONS

In this work we have calculated total and state-resolved
integral cross sections for electron capture in H++BeH
collisions by employing an eight-state molecular basis. The
calculations have been carried out in the framework of the
sudden approximation for rotation and vibration and with
rectilinear nuclear trajectories. We have performed exploratory
quantal (IOS) calculations that indicate that the semiclassical
approximation is appropriate for E > 25 eV, but the accuracy
of the IOS treatment is limited by the approximation of ne-
glecting the Coriolis couplings. Although this approximation
is not relevant at E < 1 eV, at these low energies, transitions
between quasiresonant vibronic levels will probably furnish
the main mechanism of the EC process, and prevent the
extrapolation to low energies of the present SV calculation.
The vibronic transitions will increase the cross section, and
the cross section plotted in Fig. 7 for E < 25 eV is a lower
bound of the total cross section. Therefore, the EC cross
section is sizable and may be relevant to plasma modeling.
The usefulness of the FC approximation has been gauged by
comparing SV and FC orientation-dependent cross sections
[Figs. 10 and 9(a), respectively]. Although we have found
general good agreement for the total cross section and the
cross section for EC into the main exit channel, the validity of
the FC approximation is in general limited to impact energies
above 1 keV for the partial cross sections.

The main exit channel of the electron-capture reaction is
the formation of H(1s)+ BeH+(2 1�+), which involves the
electron transfer from the 2σ molecular orbital to the orbital
H(1s), which is almost degenerate; this molecular orbital has
the largest electronic density located near the H nucleus. It

can be noted that the total cross section is large (≈25 Å
2
)

compared with that of H+ + H2 [35], which has a maximum

of σ ≈ 10 Å
2

at E ≈ 5 keV and decreases very quickly with

σ < 1 Å
2

at E = 100 eV. The cross section is also one order
of magnitude larger than the one calculated for H+ + Be in
Ref. [58]. The value is, however, close to the cross section
obtained for H+ + H(1s) ≈ 25 Å

2
at E = 100 eV [59], in

accordance with the dominant H(1s) character of the 2σ

orbital. On the other hand, at low energies, the partial cross
section for populating BeH+(1 3�+) is small because of the
large energy difference with the entrance channel, but, as E

increases, the contribution of this channel to the EC total cross
section becomes significant. For E > 1 keV the populations
of states BeH+(1 3�+) and BeH+(2 1�+) are similar, and
since the state 1 3�+ is dissociative [60], it means that about
50% of the electron-transfer collisions lead to the molecular
fragmentation into Be+(2s) and H(1s).

Previous theoretical studies have focused on collisions with
H2 molecules, where the isotropic approximation [Eqs. (33)
and (34)] allows one to simplify the average over molec-
ular orientations, but this approach has not been checked
for heteronuclear targets. One can note that in collisions
with homonuclear molecules, and assuming the six-trajectory
approximation of Ref. [20], where θ is a function of t , the
energies and couplings are symmetric or antisymmetric upon
time inversion; if we assume that the transitions take place
in a narrow region of ion-molecule separations at t ≈ ±t0,
they correspond to a single value of θ (t0). However, the
present calculation for collisions with BeH shows a significant
dependence of the EC cross sections σ iso

f (E,ρe,θ ) on the
angle θ (see Fig. 8). In particular, the comparison of our EC
cross sections for θ and π − θ indicates that a calculation
following a given trajectory may not be well simplified
by considering transitions for a representative value θ0, as
assumed in Eq. (31). Although this condition is probably too
restrictive, the dependence of the EC cross sections on θ casts
some doubts on the validity of the isotropic approximation,
and a detailed calculation with the couplings varying along
the trajectory is required.
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