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Spectroscopic measurement of the softness of ultracold atomic collisions
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The softness of elastic atomic collisions, defined as the average number of collisions each atom undergoes until
its energy decorrelates significantly, can have a considerable effect on the decay dynamics of atomic coherence.
In this paper we combine two spectroscopic methods to measure these dynamics and obtain the collisional
softness of ultracold atoms in an optical trap: Ramsey spectroscopy to measure the energy decorrelation rate
and echo spectroscopy to measure the collision rate. We obtain a value of 2.5(3) for the collisional softness, in
good agreement with previously reported numerical molecular-dynamics simulations. This fundamental quantity
is used to determine the s-wave scattering lengths of different atoms but has not been directly measured. We
further show that the decay dynamics of the revival amplitudes in the echo experiment has a transition in its
functional decay. The transition time is related to the softness of the collisions and provides yet another way
to approximate it. These conclusions are supported by Monte Carlo simulations of the full echo dynamics. The
methods presented here can allow measurement of a generalized softness parameter for other two-level quantum
systems with discrete spectral fluctuations.
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I. INTRODUCTION

Elastic collisions are of great importance in atomic physics
from both a theoretical and a practical perspective. They are
relevant for atomic clocks, metrology, quantum information,
evaporative cooling, atom-ion hybrid systems, and more [1–6].
Collisions may also have a significant effect on the coherence
properties of an ensemble of atoms, providing either elongation
[7–16] or shortening [17,18] of the atomic coherence time.

Considering a rapid collisional process compared to other
dynamical time scales,1 there exist two extremities for a
colliding atom in the center-of-mass frame of the interact-
ing ensemble: hard collisions, in which the energy of the
atom is completely randomized after a single collision, and
soft collisions, in which the atomic energy remains almost
unchanged after each collision [14]. We therefore define the
collisional softness parameter s as the number of times an atom
has to collide in order for the correlation between its initial
and final energies to drop to 1/e.2 The collisional softness
of hard collisions is one, since the energy correlation drops
to zero after a single collision. Collisions are considered soft
if their softness parameter is much larger than unity. Even
though the s-wave collisional process considered here is itself
of universal nature, the softness of the collisions can be affected
by the confining potential. This can be intuitively understood
by considering that only the kinetic energy changes due to

*Present address: Kirchhoff-Institut für Physik, Ruprecht-Karls-
Universität Heidelberg, Im Neuenheimer Feld 227, 69120 Heidelberg,
Germany.

1The collision time can be estimated by the range of atomic
interaction divided by the relative velocity of the colliding atoms.
For dilute ultracold atoms and excluding mean-field interactions, the
collision time is on the nanosecond scale, much shorter than the mean
time between collisions and the oscillation time in the trap (�10 ms
and �1 ms, respectively for our experiment).

2This definition of s is related to the strength parameter of velocity
changing collisions α, defined in [9], by s = 1

1−α2 .

a collision whereas the potential energy does not, carrying a
memory of the total energy prior to the collision.

More formally, an ensemble of colliding trapped thermal
atoms has two relevant characteristic rates. First, the atomic
collisions, treated as Poisson process energy-randomization
events, occur at an average collision rate �coll. Second,
the single-atom temporal energy autocorrelation function,
averaged over the atomic ensemble, decays exponentially with
an energy decorrelation rate �. The collisional softness is then
defined as

s = �coll/�. (1)

Collisions with s = 1 are hard and collisions with s � 1
are soft. The softness is the number of collisions required
for thermalization in a perturbed trap, having immediate
repercussions on the physics of evaporative cooling [19,20].

The softness of s-wave elastic collisions of ultracold
bosonic atoms trapped in a harmonic potential and far from a
Feshbach resonance was evaluated using molecular-dynamics
simulations and found to be 2.5 [19–26]. This value of the
softness has been used to determine the elastic collision cross
sections of different atoms [19,21,22,25], but has not been
measured directly.

In this paper we present a direct spectroscopic measurement
of the softness of ultracold atomic collisions. We do so using
a combination of two methods (Ramsey and echo [27]) in
two opposite regimes of low and high collision rates. First we
show that the coherence of an atomic ensemble in an echo
experiment at low density asymptotically depends only on
�coll. We then show that in a high-density Ramsey experiment
the decay is independent of the collision rate and can be fitted to
reveal the energy decorrelation rate �. By combining these two
measurements, we are able to quantitatively extract the s-wave
collisional softness of cold 87Rb atoms in an optical dipole trap.
We obtain good agreement with previously reported theoretical
results from molecular-dynamics simulations, validating our
method and laying the foundation for its application in
measuring the softness of other collisional processes.
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We further show that the coherence decay in an echo
experiment is qualitatively different for short and long times
[8,9]. This can be used to approximate the softness by
combining a Ramsey measurement and an echo measurement
in a single, intermediate-density regime. These methods may
allow measurements of a softness parameter for other two-
level quantum systems that have discrete energy fluctuations
[7,28–31].

II. SPECTROSCOPIC SIGNATURES OF COLLISIONAL
SOFTNESS

87Rb atoms trapped in an optical dipole trap experience a
differential ac Stark shift imposed by the different detuning
of the trapping laser from their two ground-state hyperfine
levels. If the mean time between atomic collisions is larger
than the oscillation period in the trap, the fast oscillations
can be averaged. The rate of the phase accumulated by the
wave function, determined by the detuning, then depends on
the average energy [32]. Effectively this creates a stationary
inhomogeneous broadening of the spectrum, decreasing the
coherence time of the ensemble.

Due to this effect, the dynamics of the hyperfine coherence
in a Ramsey (π/2 − π/2) experiment with no collisions is
given by

CR(t) = [1 + 0.95(t/τ )2]−3/2 (2)

for an ensemble of two-level atoms in thermal equilibrium
in an optical harmonic potential [32]. The bare Ramsey time
is given by τ ≈ 2h̄/ηkBT . Here T is the temperature of the
cloud and η is the ratio between the hyperfine splitting and
the detuning of the trapping laser.3 In an echo experiment
(π/2 − π − π/2), where the echo pulse is given at time tπ ,
the echo coherence CE(2tπ ) ≡ C(t = 2tπ ) fully revives in the
absence of elastic atomic collisions due to the stationarity of
the trap perturbation.4

Factoring in the effect of elastic atomic collisions, the
Ramsey and echo coherences have a complicated behavior
[11]. However, they both have some useful, simple limits.
For high density nhigh, the spectrum is collisionally narrowed,
resulting in an elongated Ramsey coherence, which can be
approximated by the generalized Gumbel function [15]

CR(t) ∼ exp

[
− 2.86

�2τ 2
(e−�t + �t − 1)

]
, (3)

dependent only on τ and the energy decorrelation rate � and
not on the collision rate �coll.

In the opposite regime of low density nlow, the asymptotic
long-time echo coherence behaves as

CE(2tπ ) ∼ exp(−2�colltπ ). (4)

In this regime the coherence depends solely on the collision
rate �coll and not on the energy decorrelation rate �. This is
due to the fact that every collision, no matter how soft, causes
a finite deflection in the atomic trajectory. As t → ∞ this

3For 87Rb and a YAG 1064-nm trapping laser η ≈ 7 × 10−5.
4For strong trap perturbations and for chaotic traps this may not be

the case [33,34].
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FIG. 1. Comparison between echo revival in the regimes of
(a) low collision rate (�collτ ≈ 0.15) and (b) high collision rate
(�collτ ≈ 10). The Ramsey signal without the application of the echo
(thin blue line) is compared to the echo signal after the application
of the pulse (thick red line). Black dashed lines represent the times
of the application of the π pulses. The envelope of the obtained
Ramsey fringes is an indication of the atomic coherence. (a) At low
collision rates the amplitude of the echo revival is high. The value
of the coherence at the peak of the revival C(t = 2tπ ) is defined as
the echo coherence CE(2tπ ). (b) At high collision rates the echo pulse
essentially has no effect on the coherence. The vertical axis represents
the fraction of atoms in the upper hyperfine state after the last Raman
pulse.

deflection will fully decohere the atom. This implies that the
coherence in this long-time regime is nothing but the fraction
of atoms that did not collide.

Figure 1 illustrates the role of collisions in an echo
experiment. It presents the normalized upper hyperfine state
population as a function of the time between the Ramsey
pulses. In Fig. 1(a) the measurement is performed with very
low collision rate (�collτ ≈ 0.15).5 The coherence decays fast
and the echo revival amplitude is significant. On the other hand,
in Fig. 1(b) the collision rate is much higher (�collτ ≈ 10). The
Ramsey decay is slower (partially due to collisional narrowing)
and the echo revival is negligible, manifesting the failure of
the echo due to atomic collisions.

Both the collision rate and the energy decorrelation rate are
proportional to the multiplication of the atomic density n with
the average velocity vrel ∼ √

T : �coll = nσvrel. Therefore,

5Low and high collision rates are defined, throughout this paper,
with respect to the bare Ramsey time τ . In both regimes the collision
rate is much smaller than the trapping frequencies.
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knowing the ratios nhigh/nlow and Thigh/Tlow at the two
different experimental conditions allows for the normalization
of the collision rate, measured at low density, and the energy
decorrelation rate, measured at high density, and extraction of
the collisional softness

s =
(

nhigh

nlow

√
Thigh

Tlow

)
�low

coll

�high
. (5)

We note that in the intermediate regime �τ ≈ 1 it was
shown theoretically that the spectrum of an ensemble of
colliding atoms depends weakly on the softness [14]. It
was further suggested that it may be possible to distinguish
between the two extreme cases of hard and soft collisions,
by measuring a Dicke narrowed spectrum in a Ramsey
experiment. Practically, this task turns out to be challenging.
Small uncertainties in the experimental conditions, such as
the collision rate and the inhomogeneous broadening of the
spectrum, may cause an incorrect model to fit well to the
experimental data [10,11].

III. MEASURING THE COLLISIONAL SOFTNESS

Our apparatus is described in detail in [14]. Briefly, the
experiment consists of 87Rb atoms trapped in a 1064-nm
far-detuned crossed-beam optical dipole trap. The atoms are
evaporatively cooled down to two distinct regimes: high den-
sity with nhigh = 3.5(2) × 1012 cm−3 and Thigh = 0.56(2) μK
and low density with nlow = 3.6(3) × 1011 cm−3 and Tlow =
6.8(3) μK.6 Measurement of the total number of atoms, and
hence the peak density, is susceptible to common systematic
errors and obtaining an exact value for it is challenging [35].
However, as our method relies only on the knowledge of
the ratio between densities [Eq. (5)], systematic errors are
common-mode rejected. All errors stated throughout the paper
represent a 1σ confidence level.

The coherence is measured between the first-order Zeeman
insensitive hyperfine |1〉 ≡ |F = 1,mF = 0〉 and |2〉 ≡ |F =
2,mF = 0〉 states of the 5 2S1/2 manifold. The atoms are
prepared by optical pumping and microwave transitions in
state |1〉. We then use a microwave ∼6.8-GHz control to per-
form Ramsey (π/2-π/2) or phase-scanned echo (π/2-π -π/2)
manipulations on the atoms. At the end of each experiment we
use a state-selective fluorescence-detection scheme to evaluate
the fraction of atoms at state |2〉. The coherence is defined as
the normalized amplitude of the fringes of the Ramsey and
echo data.

We measure the collisional softness using Eq. (5), by first
obtaining �low

coll from an echo measurement in the low-density
regime by fitting the asymptotic decay described by Eq. (4)
and then obtaining �high, given by Eq. (3), from a Ramsey
measurement in the opposite regime. Focusing first on the low-
density regime, the resulting echo coherence and an additional
Ramsey measurement at the same experimental conditions are

6The temperature is measured using time of flight and the peak
atomic density using n = ωxωyωzN ( m

2πkBT
)3/2, where ωi are the trap

frequencies, N is the total number of atoms, m is the atomic mass,
kB is the Boltzmann constant, and T is the measured temperature.
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FIG. 2. Ramsey and echo experiments. (a) Atomic coherence as
a function of time in Ramsey (blue circles) and echo (red squares)
experiments at low density. The decay of the Ramsey signal yields
a coherence time of τlow = 37(1) ms. (b) Linear fit to the tail of the
echo decay, in logarithmic scale, gives �low

coll = 9.4(3) s−1. Crosses are
short-time data points excluded from the fit. Solid lines represent the
fitted functions (see the text). Time in the echo experiment corre-
sponds to 2tπ . (c) Ramsey measurement of the energy decorrelation
rate �high at high density. The measured coherence is fit to a Gumbel
function [Eq. (3)] with the energy decorrelation rate as a fitting
parameter. This yields �high = 10.6(1) s−1.

presented in Fig. 2(a). The echo decay time is indeed much
longer than that of the Ramsey experiment (by about a factor of
4). The extracted low-density bare Ramsey time is τlow = 37(1)
ms, compared to 32(1) ms obtained directly from the measured
temperature. The echo measurement exhibits a long-time
linear decay on a semilogarithmic scale [Fig. 2(b)], confirming
the expected exponential decay of Eq. (4). The slope, excluding
short times, gives a collision rate of �low

coll = 9.4(3) s−1. Next
we obtain the energy decorrelation rate �high from the
collisional narrowing of a high-density Ramsey measurement.
The atomic coherence is shown in Fig. 2(c). From the measured
temperature, we expect τhigh = 390(15) ms. We use this value
as a fixed parameter and fit the coherence data to Eq. (3),
extracting �high = 10.6(1) s−1. The softness is then calculated
using Eq. (5) to be s = 2.5(3),7 in excellent agreement with
molecular-dynamics simulations [20].

We perform Monte Carlo simulations to study the effect
of the softness of the collisions on the full dynamics of the

7This value is correct for the harmonic trapping potential that
describes well our crossed Gaussian beam optical potential. For other
trap shapes and energy distributions it may vary, e.g., for a flat box
potential s = 1.5 [20].
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FIG. 3. Echo experimental results (circles) compared to Monte
Carlo simulations for atoms with an energy distribution corresponding
to a 3D harmonic potential with hard (s = 1) (dashed purple line),
soft (s = 10) (dash-dotted green line), and moderate (s = 2.5) (solid
red line) collisions. The simulation uses the calculated bare Ramsey
time of τlow = 32 ms and a constant energy decorrelation rate of the
measured �high = 10.6 s−1, rescaled using Eq. (5). Insets illustrate
the energy of a sample atom as a function of time for hard (s = 1)
(purple, top right) and soft (s = 10) (green, bottom left) collisions,
with the same energy decorrelation rate �.

echo decay. The simulation calculates the ensemble coherence
of 2 × 104 two-level atoms with the energy distribution
corresponding to a three-dimensional (3D) harmonic potential
[32] as a function of time. The collision rate �coll is drawn from
a Poisson distribution and the collisional softness s is generated
by introducing controlled correlations between the energy
jumps of successive collisional events using the Cholesky
decomposition method of the required correlation matrix [36].
Typical energy trajectories for s = 1 and s = 10 are illustrated
in the insets of Fig. 3. A comparison between the experimental
data and simulation results is presented in Fig. 3 for the echo
experiment with hard (s = 1), soft (s = 10), and moderate
(s = 2.5) collisions, using the measured energy decorrelation

rate, rescaled using Eq. (5), �low = ( nhigh

nlow

√
Thigh

Tlow
)−1�high =

3.76 s−1. The simulation of the s = 1 and s = 10 collisions
clearly disagrees with the data, whereas the s = 2.5 collision
agrees best with the experimental data for all times and with
no fit parameters.

IV. MEASURING THE SOFTNESS USING A TRANSITION
IN THE FUNCTIONAL DECAY OF THE

ECHO DYNAMICS

In the low-density regime of �τ 
 1, valuable information
can be extracted by observing the entire dynamics of the decay
of the echo coherence. Equation (4) gives the long-time limit of
the coherence CE(2tπ ) ∼ exp(−2�colltπ ), depending solely on
the collision rate �coll. The short-time limit, however, depends
on the energy decorrelation rate � and the bare Ramsey time
τ and is given by [17]

CE(2tπ ) ∼ exp

[
− �(2tπ )3

6τ 2

]
. (6)
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FIG. 4. Echo measurement, with �collttr ≈ 1, showing a transition
of α. (a) Data are fit to the function given in Eq. (7), yielding 2ttr ≈ 205
ms [dashed vertical lines in (a)–(c)], using �coll = 5.1(3) s−1 obtained
from (c) as a set parameter. The inset shows a Ramsey experiment
performed under the same experimental conditions, fitted (solid line)
to Eq. (2), yielding a Ramsey time τ = 76(3) ms. (b) Same data
with the time axis rescaled to (2tπ )3, showing the transition clearly
on a semilogarithmic scale. The linear behavior at short times (the
solid line represents a linear fit) indicates the e−(2tπ )3

dependence.
(c) Same data on a semilogarithmic scale as a function of 2tπ . The
linear dependence at long times (the solid line represents a linear fit)
indicates the e−2tπ decay.

In both limits the echo coherence decays as CE(2tπ ) ∼
exp[−β(2tπ )α], with (α,β) = (1,�coll) for long times or
(α,β) = (3,�/6τ 2) for short times. Defining ttr ≡ τ/

√
s, a

transition time between the two regimes, an interpolating
function can be written to describe the entire dynamics, which
is the accurate solution in the limit of soft collisions [9]:

CE(2tπ ) ∼ exp

{
−2�colltπ

[
1 −

√
π

2

ttr

2tπ
erf

(√
2tπ

ttr

)]}
. (7)

We measure the echo coherence decay with a moderate
collision rate (�collttr ≈ 1). The resultant coherence is sum-
marized in Fig. 4. The transition of α is evident from the
fit to Eq. (7). An indication for the α = 3 decay is shown
in Fig. 4(b), where we plot the echo revival amplitudes on a
logarithmic scale against (2tπ )3. Figure 4(c) shows the same
data on a semilogarithmic scale as a function of 2tπ . Here the
linear dependence at long times indicates the α = 1 decay. A
similar transition was observed for warm molecular gases in
the limit of soft collisions [8].

More quantitatively, extracting ttr from the echo decay
using Eq. (7) and τ from the Ramsey decay under the same
experimental conditions, we can evaluate the softness by the
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FIG. 5. Numerical investigation of the effectiveness of using
Eq. (7) as a fitting function for extracting the softness for a Gaussian
energy distribution (closed symbols) and the energy distribution
corresponding to a 3D harmonic potential (open symbols). The
simulation calculates, for a predetermined input softness, a Ramsey
decay curve as well as a full echo coherence decay curve. To
approximate the obtained softness, we simultaneously fit the Ramsey
decay to Eq. (3) and the echo decay to Eq. (7) with three fitting
parameters: �, τ , and s. The black dotted line is where the obtained
softness is equal to the real one.

definition of the transition time s = (ttr/τ )2. Fitting the echo
decay of Eq. (7) to the data of Fig. 4, using �coll = 5.1(3) s−1

obtained from fitting the long-time decay of Fig. 4(c), we get
2ttr = 205(17) ms.8 This, in addition to a Ramsey experiment
under the same experimental conditions [inset of Fig. 4(a)]
that gives τ = 76(3) ms, yields s = (ttr/τ )2 = 1.8(3). The
agreement with the theoretical value of 2.5 is not as good
as for the measurement described in the preceding section.

We investigate the use of the interpolation function of
Eq. (7) as a fitting function for extracting the softness using
the Monte Carlo simulations described previously. We find
that for a Gaussian energy distribution the method is quite
precise. Figure 5 presents a summary of the softness obtained
for a Gaussian energy distribution (closed symbols) by fitting
Eq. (7) to the numerically simulated decay of coherence
as a function of the input softness for different values of
�τ . For most cases, the output softness is very close to
the input softness. The relative error is less than 10% as
long as �collttr is within the range 0.1 < �collttr < 10. Outside
this range, the value of the coherence at the transition time
CE(2ttr) ≈ exp(−2�collttr) is either too high or too low for
the fitting procedure to accurately extract the transition time.

8To evaluate the error 2
ttr we use the value �coll ± 
�coll as a
fitting parameter. The upper 1σ confidence bound on ttr is that which
is obtained for �coll + 
�coll and the lower bound is that which is
obtained for �coll − 
�coll.

For the case of an energy distribution of a 3D harmonic trap
similar to the one we have in the experiment the situation is
different (Fig. 5, open symbols). The approximate solutions
for the Ramsey [Eq. (3)] and echo [Eq. (7)] coherence fit only
qualitatively, yielding significant errors similar to the ones
observed in the experiment.

V. SUMMARY AND OUTLOOK

We have measured the softness of ultracold elastic atomic
collisions using a combination of two spectroscopic methods:
a measurement of the energy decorrelation rate obtained from
the collisional narrowing of a Ramsey experiment with a
high collision rate and a direct measurement of the collision
rate obtained from an echo experiment with a low collision
rate. The obtained collisional softness is 2.5(3), in excellent
agreement with the value previously obtained by molecular-
dynamics simulations. We have also demonstrated a transition
in the functional decay of the echo coherence, from exp(−t3) at
short times to exp(−t) at long times [8]. This transition occurs
at a softness-dependent time ttr = τ/

√
s. We show that this

transition in the functional decay can be used to approximate
the softness at a single intermediate-density regime.

Our results validate the spectroscopic method, allowing for
its use in measuring the softness of other, nontrivial, collisional
processes such as extensions to higher temperature involving
the inclusion of more partial waves in the scattering process,
fermionic collisions and thermalization [37], interspecies
hybrid collisions [38,39], and atom-ion collisions [5]. It
can also be useful as a tool in simulating the efficiency of
evaporative cooling [20], the investigation of high-density
atom interferometers [40], and slow and stored light [11]. Our
methods may allow measurements of a generalized softness
parameter for other two-level quantum systems with discrete
spectral jumps [28–31].

Our work can be extended to warm vapor systems where the
bare Ramsey time is dominated by Doppler broadening and the
presence of a buffer gas induces collisional narrowing [7]. As
in our system, the effect of collisional softness on the Ramsey
signal is in itself very small and challenging to detect [10,11].
Combining Raman Rabi, Ramsey, and echo spectroscopy at
high- and low-collisional-rate regimes can provide an accurate
measure of the collisional softness for different buffer gases.
In this case, it is possible to change �collτ by simply altering
the angle between the Raman beams without actively changing
the density [11].
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