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Quasiclassical treatment of the Auger effect in slow ion-atom collisions
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A quasiclassical model based on the resolution of Hamilton equations of motion is used to get evidence for
Auger electron emission following double-electron capture in 150-keV Ne10+ + He collisions. Electron-electron
interaction is taken into account during the collision by using pure Coulombic potential. To make sure that the
helium target is stable before the collision, phenomenological potentials for the electron-nucleus interactions
that simulate the Heisenberg principle are included in addition to the Coulombic potential. First, single- and
double-electron captures are determined and compared with previous experiments and theories. Then, integration
time evolution is calculated for autoionizing and nonautoionizing double capture. In contrast with single capture,
the number of electrons originating from autoionization slowly increases with integration time. A fit of the
calculated cross sections by means of an exponential function indicates that the average lifetime is 4.4 × 10−3 a.u.,
in very good agreement with the average lifetime deduced from experiments and a classical model introduced to
calculate individual angular momentum distributions. The present calculation demonstrates the ability of classical
models to treat the Auger effect, which is a pure quantum effect.
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I. INTRODUCTION

Since the pioneering work in the 1920s by Meitner [1] and
Auger [2], Auger effect and autoionization, which consist of
an Auger-type process involving outer levels of an atom or
an ion, have been extensively studied either experimentally or
theoretically and used in many fields, such as photoelectron
spectroscopy [3–5] or collisions between charged particles
(electron and ions) and atomic or molecular targets [6–13].
Specifically, since the beginning of the 1970s, Auger electron
spectroscopy has been a powerful tool to study the process
of double-electron capture (DC) in collisions between slow
multiply charged ions and He atoms [7,14–24] in order to
study the mechanisms responsible for electron capture.

In the simplest case of collisions involving fully stripped
ions AZ+ and He targets, the capture processes that occur are
written as follows:

AZ+ + He(1s2) → A(Z−1)+(nl) + He+, (1a)

→ A(Z−2)+(n ln′ l′) + He2+, (1b)

→ A(Z−1)+(nl) + He+ + e−
A, (1c)

→ A(Z−1)+(nl) + He+ + e−. (1d)

In Eq. (1a), one He electron is captured (single capture, or
SC). In Eq. (1b), both He electrons are captured onto nln′l′
configurations of the projectile and remain on the projectile.
(n, n′ and l, l′ are the principal quantum numbers and angular
momenta of the electrons on the projectile, respectively.) After
the collision, the projectile deexcites by means of photon
emission, with linewidth �R . In process (1c), both electrons
are also captured onto nln′l′ configurations of the projectile,
but the projectile deexcites via autoionization, giving rise to
an Auger electron e−

A . In the last case (1d), one He electron
is captured onto the projectile while the second He electron is
ionized. The latter process is called transfer ionization (TI).

We focus on the DC process, which is of interest in the
present work. Since collision time τC is of the order of
10−16 s at projectile energies of a few keV, and deexcitation
times τA for autoionization and τR for photon emission are

typically 10−14 and 10−10 s, respectively, the latter quantities
are much larger than τC . Hence, in the first approximation,
the collision can be divided in two separated steps: The first
step is the collision itself, where DC occurs. The second step,
also called postcollision, consists of the deexcitation of the
projectile via autoionization or photon emission. In the case of
autoionization, since it follows an exponential decrease of the
form e−�t

A , the electrons are emitted not only in the Coulombic
field of the excited projectile, but also in that of the He2+ target,
meaning that, in principle, both processes are not independent
and cannot be separated. The need not to separate collision and
postcollision processes has been demonstrated, for example,
in the theoretical analysis of double excitation of D2 following
fast electron impact [25]. It has been shown that doubly excited
D2 atoms may autoionize at very short distances between both
D+ nuclei, leading to a bound D+

2 molecular ion. In addition, at
small projectile velocities (typically < 0.1 a.u.), the separation
of the processes is no more valid, since τC ≈ τA, especially if
it is desired to differentiate between nonautoionizing double
capture (NADC) and autoionizing double capture (ADC).
Thus, it is clear that for many collision systems, collision and
postcollision have to be theoretically treated at the same time.

Since autoionization is a pure quantum effect, quantum me-
chanics is the most powerful tool to treat the whole collision.
As shown previously, a complete theoretical description of
ion-atom collisions involving two electrons requires the use of
electron correlation to account, for example, for the production
of nonequivalent electron configurations nln′l′ (n′ � n) of
the projectile at low projectile energies [15,26–28]. Electron
correlation was found also to be important in DC at high
projectile energy [29].

However, the introduction of dynamic electron correlation
in quantum-mechanical calculations remains a challenge,
because the collision is, in this case, a true four-body problem.
In addition, the treatment of the channels corresponding to SC
and DC requires, in principle, the inclusion of a large number
of basis states. Therefore, to check the validity of the model
that includes electron correlation and the role of the latter
interaction, couplings between the entry channel and the DC
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channels, or between SC and DC channels, had to be cancelled.
Despite these efforts, the ratio between experimental and
theoretical cross sections could reach a factor of 2 at particular
projectile energies [26].

In view of these difficulties, classical calculations have been
proved to be a good alternative to analyze collision processes
and determine cross sections. Classical-trajectory Monte Carlo
(CTMC) methods treat the particles as classical point particles
which interact through Coulomb’s law with their motion as
governed by Newton’s law. Most of the collisions involving
two electrons have been studied assuming two independent
electrons, i.e., neglecting electron correlation [30–33]. The
agreement between experiment and calculations was found to
be reasonable for total cross sections at projectile velocities
larger than the target electron classical velocity.

To incorporate electron correlation in the collision, sev-
eral methods have been introduced [34–37] to deal with
the multielectron problem. In some cases electron-electron
interaction is given by the sum of Coulombic potential
1/‖−→r1 − −→

r2 ‖ (−→r1 and −→
r2 are the position vectors of both

electrons in the laboratory frame) and phenomenological
potentials to insure the stability of He (otherwise, the He
atom would spontaneously autoionize) [34,35]. In contrast,
other theories [36,37] only partially take into account electron
correlation by means of a dynamic screening of the target
nucleus as seen by each of the two active electrons.

The question arises if it is possible or not to classically
describe and quantify autoionization in ion-atom collisions,
since it is a pure quantum effect, and since ADC and TI
processes give rise to the same final states. However, at low
projectile energies, it is well known that TI cross sections
σTI are much smaller than ADC cross sections σADC, since
ionization probability is smaller than capture probability.
Therefore, if one electron from He is captured while the other
one is ionized at the end of the collision, it seems reasonable
to conclude that the process involved in this final state
is ADC.

To characterize in more detail the latter process, a time de-
pendence of the probability for autoionization can be achieved
and compared with the time dependence of probability for
other processes, i.e., NADC, single ionization (SI), or SC.
Since the cross section σP for process P is defined at infinity,
we introduce an intermediate quantity σ̃P , whose dimension is
the same as that of a cross section. This quantity is defined as
σ̃P = ∫ bmax

0 2π b P (b,tc) db, where b is the impact parameter,
bmax is the maximum value of b, and P (b,tc) is the probability
for the process P to occur after a collision time equal to tc. At
infinity, σ̃P tends towards σP .

Figure 1 shows a schematic expected behavior of σ̃ADC (full
curve), σ̃NADC (dashed curve), and σ̃SC + σ̃SI (dotted-dashed
curve) as a function of time. (Here t = 0 corresponds to the
time at which the projectile and the target are in the (xOy) plane,
perpendicular to the (Oz) axis, representing the direction of
the projectile before the collision.)

During the collision, i.e., between −to and to, the two
nuclei and the electrons constitute a quasimolecule (illustrated
by a short-dashed Gaussian curve) so that both electron
energies in the projectile and target frames are negative. Let
us suppose that at a time close to to, NO

DC are captured
by the projectile, giving rise to σ̃ADC. The latter quantity

FIG. 1. Schematic expected behavior of σ̃ADC (full curve), σ̃NADC

(dashed curve), and σ̃SC + σ̃SI (dotted-dashed curve) as a function of
integration time t . The short-dashed curve shows the time interval
during which the quasimolecule is formed. In this interval, the
electrons are shared between both nuclei.

decreases with time, reaching the value σNADC at the end of
the collision (dashed curve in Fig. 1). In contrast, the quantity
σ̃ADC increases slowly with time. Since the number of events
is conserved, the relation σ̃ADC + σ̃NADC = σADC + σNADC has
to be verified. On the other hand, since SC and SI occur during
the collision, i.e., in the range from −to to to, approximately,
the number of involved electrons is expected to be constant
at t > to. This schematic comparison clearly shows that it is
possible, in principle, to find a signature of autoionization by
analyzing the collision at various integration times. Indeed,
by fitting the calculated cross sections with a formula of the
type

ao + bo exp(−�t), (2)

where ao and bo are adjustable parameters and � is a quantity
that represents an average width, it is expected that widths
�SC and �SI for SC and SI, respectively, are much larger than
�NADC and �ADC for NADC and ADC, respectively.

In the present work, we focus on the particular case of
Ne10+ + He collisions at a projectile energy of 150 keV,
which has been extensively studied experimentally and the-
oretically [18,26,27,38]. This energy corresponds to a velocity
of ∼0.53 a.u., which is smaller than the classical velocity of
the He electron (∼1.3 a.u.). Therefore, at 150 keV, total cross
sections calculated using CTMC model are expected to deviate
from experiment. However, this point is not crucial, since we
are interested in the average width � rather than cross sections.

The method to calculate calculations cross sections is sum-
marized in Sec. II. Differential and total SC and DC capture
cross sections are then deduced and compared with previous
values. Particular attention is devoted to the dependence of
cross sections with integration time. In order to get clear
evidence for autoionization, this dependence is compared
with that formed when electron correlation is not included
in the calculation. Finally, from our results, an autoionization
width �A is evaluated and compared with that estimated from
previous calculations and experimental cross sections [38].
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In the following, the independent-electron CTMC model and
correlated-electron CTMC model will be referred as IE-CTMC
and CE-CTMC models, respectively.

II. DESCRIPTION OF CTMC METHOD

The CTMC method is based on a numerical solution of
Hamilton’s equations of motion for the many-body system,
which includes the Ne10+ and He2+ nuclei, as well as
both He electrons. The general expression of the classical
Hamiltonian reads

H =
4∑

k=1

p2
k

mk

+
3∑

k=1

4∑
j=k+1

qjqk

rjk

+
2∑

i=1

2∑
β=1

V
β

H (rβ ipβ i). (3)

In the above expression, −→
pk , qk , and mk are the momentum

vector, and the charge and the mass of particle k, respectively.
The quantity rjk is the distance between particles j and k. The
pseudopotential V

β

H (rβ ipβ i), where β denotes each nucleus
and i the index for each electron, was first introduced in nuclear
physics [39] and then adapted for atom structures [40] and
ion-atom [41,42] or ion molecule collisions [43]. Its expression
is

V
β

H = ξ 2
H

4 α μβ r2
β i

exp

{
α

[
1 −

(
rβ ipβ i

ξH

)4
]}

. (4)

In this relation, μβ is the reduced mass between each
nucleus and one He electron. The quantities ξH = 0.9582 and
α = 4 were chosen so that the first and second ionization
potentials of He are close to experimental ones [43]. With these
values, first and second ionization potentials of He are 1.1 and
2.3 a.u., respectively, which is consistent with the expected
values of 0.9 and 2 a.u. The quantities rβ i and pβ i are the
positions and momenta of He electrons, respectively, relative
to the He nucleus or the Ne nucleus.

Initially, the projectile is at a distance zp = −200 a.u., and
the orientation of the electron around the target is randomly
chosen. The only initial constraints that insure the stability of
the He atom are �rHe1 = −�rHe2, and �pHe1 = − �pHe2 [43]. The
impact parameter b varies from 0 to 20 a.u., and the angle
ϕp, which characterizes the position of the projectile in the
(xOy) plane, is also randomly chosen. The initial spatial and
momentum distributions were calculated using the method
initiated previously by Abrines and Percival [44], developed
in several cases for H target or multielectron targets (see, for
example, Ref. [45]).

From the initial conditions, the Hamiltonian equations are
numerically solved using the Runge-Kutta method of order
4, with an adaptive step defined and described in Ref. [44].
At the end of the collision, the number of projectiles that
have captured one or two target electrons is determined as a
function of the scattering angle θP , b and electron energy. To
obtain good statistics, the number of calculated trajectories
was fixed to 200 000.

When an independent model is used, the electron-electron
interaction term and the pseudopotential V

β

H (rβ ipβ i) are
cancelled. The charge of He is replaced by an effective charge
of 1.704. With this value, the total electron binding energy
on He is 2.904 a.u. In both cases, SC, NADC, ADC, SI,

TABLE I. Energy signs of electrons 1 and 2, in the Ne and He
referential frames, for single capture (SC), double capture (DC),
single ionization (SI), and autoionizing double capture + transfer
ionization (ADC + TI) processes.

ENe
1 EHe

1 ENe
2 EHe

2

SC <0 >0 >0 <0

>0 <0 <0 >0

NADC <0 >0 <0 >0

SI >0 >0 <0 <0
<0 <0 >0 >0

ADC + TI <0 >0 >0 >0
>0 >0 <0 >0

and TI processes are identified (Table I) through the sign of
the energies ENe

i and EHe
i of each electron (i = 1,2) in the

projectile and target referential frames, respectively.

III. DIFFERENTIAL AND TOTAL CROSS SECTIONS

A. Differential cross sections

Figures 2 and 3 represent differential cross sections for SC
and DC, respectively, as a function of the scattering angle
θd of the projectile. Our theoretical results (dotted-dashed
curve and full curve for IE-CTMC and CE-CTMC models,
respectively) are compared with previous experiments (full
squares) and quantum calculations (dashed curve) [27]. Note
that CTMC calculations have been normalized to experiment
at the maximum of intensity.

In the case of SC, the experimental and theoretical maxima
are located at about 0.07 mrd. Another maximum is observed
experimentally at ∼0.13 mrd. Theoretically, a second maxi-
mum also appears, at larger angles (∼0.2 mrd for quantum
and CTMC results). When the IE-CTMC model is used, the

FIG. 2. Differential single capture cross sections as a function
of the scattering angle of the projectile, in 150-keV Ne10+ + He
collisions. Present theoretical results, dotted-dashed curve and full
line, using an independent and correlated CTMC model, respectively;
experiment, full squares; quantum calculations, dashed curves.
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FIG. 3. Differential double capture cross sections as a function
of the scattering angle of the projectile in 150-keV Ne10+ + He
collisions. Present theoretical results, dotted-dashed curve and full
line, using independent and correlated CTMC model, respectively;
experiment, full squares; quantum calculations, dashed curves.

distribution cancels when θd > 0.5 mrd, while it cancels for
θd > 0.8 mrd when electron correlation is taken into account,
in good agreement with experiment and quantum calculations.
Moreover, the shape of the distribution is much better when
electron correlation is introduced.

For DC (Fig. 3), while quantum calculations reproduce
very well the experiment, the agreement between CTMC
calculations and experiment is worse than for SC. However,
as in the case of SC, the shape of the DC distribution is better
for the CE-CTMC model than that for the IE-CTMC model.
These preliminary results clearly underscore the important role
of electron correlation, even in single electron processes.

B. Total cross sections

Since no result is available for single and double ionization,
we concentrate only on SC, DC, and ADC. Total cross sections
are calculated by integration of differential cross sections
2πbP (b), where b is the impact parameter and P (b) the
probability for each process. The results are summarized
in Table II and compared with previous experiments and
calculations [26,27,46,47]. With correlated electrons, the
CTMC cross section for SC is smaller than other theories
and experiment by a factor ranging from 1.6 up to 2.6. The

TABLE II. Cross section for SC, DC, ADC + TI in 150-keV
Ne10+ + He collisions. Exp, Ref. [46] for SC and [26] for DC. First
two columns present results using IE-CTMC and CE-CTMC models,
and theory for SC [47] and DC [27], last column.

σ (10−16 cm2)

Processes IE-CTMC CE-CTMC Exp Theory

SC 15 9.5 25 20.8
NADC 5.4 5.6 1.5 ± 0.3 2.8
ADC + TI 0.12 2.6 2.6 ± 0.5 1.2

FIG. 4. Quantity σ̃mol for producing a quasimolecule (Ne−He)8+.
Between −to and to both electrons are bound on Ne and He.

total DC cross section, i.e., including NADC and (ADC + TI),
is larger than experiment and semiclassical theory by a factor
of ∼2. Surprisingly, the ADC cross section calculated by the
CE-CTMC model is equal to the experimental one [26] but
twice larger than the theoretical one [27]. As mentioned in
the Introduction, since autoionization is not possible when
both electrons are treated independently, the (ADC + TI) cross
section falls down by 2 orders of magnitude. This result shows
that the value we obtain with the IE-CTMC model is due to
TI, while ADC is dominant when electron correlation is taken
into account.

There are several reasons for explaining the differences
observed between the present results, experiment [26,46] and
semiclassical theory [27,47]. First, one has to recall that CTMC
calculations are valid at intermediate and high energies (cf.
Introduction). Second, the results depend strongly on the α

parameter and, to a less extent, the initial radial and momentum
electron distributions. Despite these limitations, our results
using the CE-CTMC model are satisfactory.

IV. TIME EVOLUTION OF PROCESS PROBABILITIES

A. Formation of the quasimolecule

Figure 4 shows the quantity σ̃mol for producing a quasi-
molecule (Ne−He)8+. In this configuration, both electrons are
bound on Ne and He. The distribution is centered at t = 0
and extends to ∼40 a.u., which corresponds to a maximum
internuclear distance of ∼10 a.u. This value is close to the
value of 8 a.u. found for the crossing radius where SC and DC
processes mainly occur [27].

B. SC and SI processes

In Figs. 5(a) and 5(b) are represented the results of
the present calculations for time evolution of σ̃SI and σ̃SC,
respectively, from t = 0 to 1600 a.u. In the insets, a zoom of
the evolution is shown for times smaller than 160 a.u. These
quantities are found to remain constant after integration times
larger than 50 a.u., within the uncertainties, meaning that SC
and SI processes occur during the collision, i.e., when the
four bodies form a quasimolecule. A fit of calculated cross
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(a) (b)

FIG. 5. Results of the present calculations for time evolution of quantities σ̃SI (a) and σ̃SC (b), from t = 0−1600 a.u., in 150-keV Ne10+ + He
collisions. Inset: Zoom of time evolution for integration times smaller than 160 a.u.

sections using relation (2) gives rise to �SC = 0.10 ± 0.05 a.u.

and �SI = 0.063 ± 0.007 a.u. For SC, a peak is observed at
∼−2 a.u. This peak qualitatively illustrates that one electron
can be bound, during the collision, either on Ne or on He. A
more detailed analysis would reveal more peaks, indicating
the number of swaps an electron experiences between the
projectile and target nuclei.

C. NADC and ADC processes

Figure 6 shows the time evolution of σ̃ADC + σ̃TI (top of
Fig. 6), σ̃NADC (middle of Fig. 6), and the sum of these cross
sections (bottom of Fig. 6) using CE-CTMC model. In contrast
with SI and SC, σ̃NADC decreases with time, to the advantage
of σ̃ADC + σ̃TI, since the sum remains constant after about
50 a.u. We focus now on the σ̃ADC + σ̃TI time evolution. Since
SC and SI occur at small internuclear distances and since the
probability for TI can be considered as the product of SC and
SI probabilities, σ̃TI is expected to be constant after a few a.u.
Hence, the shape of the time evolution observed on top of
Fig. 6 is mainly due to ADC. In addition, as seen in Fig. 7,
σ̃TI calculated by means of IE-CTMC is a factor of at least 10
smaller than ADC cross sections, suggesting that, at 150 keV,
the time evolution of the capture and electron emission cross
section is essentially caused by autoionization after the double
capture process.

V. AVERAGE AUTOIONIZATION WIDTH

From calculations performed for NADC and ADC (see
previous section), an average autoionization width can be
evaluated by fitting σ̃ADC and σ̃NADC using an exponential
function given by relation (2). The results for the parameters
ao, bo, and � are summarized in Table III.

FIG. 6. Time evolution of σ̃ADC + σ̃TI (top of Fig. 6), σ̃NADC

(middle of Fig. 6), and the sum of these quantities (bottom of Fig. 6)
using CE-CTMC model. For ADC + TI and NADC, a fit using
relation (2) has been performed (full line on top and dashed line
for NADC) in order to determine an average autoionization width.
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FIG. 7. Comparison between σ̃ADC (empty squares) and σ̃TI

(empty circles) as a function of time using an independent-electron
classical model.

The average autoionization width for NADC and ADC are
close to each other, within the uncertainties. To verify the
coherence of these values, an average autoionization width
�A has been evaluated from experimental cross sections and
previous calculations of individual widths [19,26,38].

The average width �A is given by

�A =
∑

l,l′,n,n′,L �A
nln′l′1LσA

nln′l′1L∑
l,l′,n,n′,L σA

nln′l′
. (5)

In this expression, �A
nln′l′1L is the individual width for a given

term nln′l′1L, where n and n′ are the principal quantum
numbers of the populated term, l and l′ are the associated
angular momenta, and L is the total angular momentum.
Each value has been calculated previously and tabulated for
3lnl′ (n = 4−9) and 4lnl′ (n = 4−6) configurations [19,38].
The quantities σA

nln′l′1L are the cross sections for Auger
emission after double capture onto a given nln′l′1L term. The
problem is that individual cross sections σA

nln′l′1L are unknown,
either experimentally or theoretically. To evaluate σA

nln′l′1L,
the method developed by Burgdörfer and collaborators [48]
for SC in collisions between highly charged ions and an H
target, based on the well-known classical over-barrier model
(COBM) [49], has been used. Extending the model to DC and
assuming that the target electrons are captured independently
from each other, the capture cross section σnln′l′1L on an
individual term nln′l′1L is written

σnln′l′1L = c(l,l′)
�l �l′

∫ RC

0
Pl(b) Pl′(b)bdb. (6)

In this expression, c(l,l′) is calculated to normalize the
quantity

∫ RC

0 Pl(b) Pl′ (b)d(vb) (v is the projectile velocity).
The quantities �l and �l′ are the widths of the angular mo-
mentum distributions, and Pl(b) and Pl′ (b) are the individual
capture probabilities on specific nl and n′l′ configurations,
respectively, that depend on impact parameter b. Each proba-

TABLE III. Parameters ao, bo and 1/� derived from relation (3)
for ADC and NADC processes.

Processes ao (10−16) bo (10−16) � (a.u.)

ADC 2.64 ± 0.08 −1.65 ± 0.07 (4.9 ± 0.4) 10−3

NADC 5.70 ± 0.04 1.30 ± 0.09 (4.3 ± 0.7) 10−3

bility is given by a Gaussian [48]:

Pl(b) = 1√
π �l

{
exp

[
−

(
l + 1/2 − vb

�l

)2
]

+ exp

[
−

(
l + 1/2 + vb

�l

)2
]}

. (7)

The sum σnn′ = ∑
l,l′,L σ

nln′l′1L is normalized to the total
experimental cross section given in Ref. [26]. Figure 8 shows
the result of L distribution calculations using the present model
(full squares) for configurations 3lnl′ (n = 3, 6, and 9). As
seen in the figure, the distributions can be approximately fitted
using Gaussian curves. The maximum of the distributions is
centered at ∼2 and the width for each distribution is of the order
of 2.5. From the l and l′ distributions, each value of σ

nln′l′1L
could be evaluated. Then, an individual Auger cross section
σA

nln′l′1L could be obtained using the relation σA
nln′l′1L = �A

nln′l′1L
σ

nln′l′1L. Finally, using relation (5), �A was deduced.
Table IV summarizes the values for

∑
l,l′,L �A

nln′l′1LσA
l,l′,L

and
∑

l,l′,L σA
nln′l′1L for 3lnl′ (n = 4−9) and 4lnl′ (n = 4, 5)

FIG. 8. L distributions of 3lnl′ (n = 4, 6, and 9) configurations of
Ne8+ (full squares), determined using a classical model developed for
SC [48]. The sum of each L distribution is normalized to experimental
DC cross sections [26].
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TABLE IV. Values
∑

l,l′,L �A

nln′l′1L
σA

l,l′,L and
∑

l,l′,L σA

nln′l′1L
in cm2 (divided by 10−17) evaluated using calculated data for individual

widths [19,38] and COBM [48].

Configurations 3l4l′ 3l5l′ 3l6l′ 3l7l′ 3l8l′ 3l9l′ 4l4l′ 4l5l′∑
l,l′,L �A

nln′l′1L
σA

l,l′,L 1.7 × 10−2 7.2 × 10−3 1.1 × 10−3 7.5 × 10−4 2.8 × 10−4 1.2 × 10−4 4.0 × 10−2 3.4 × 10−2∑
l,l′,L σA

nln′l′1L
4.07 3.93 2.3 1.5 0.8 0.5 4.4 5.0

configurations [26]. Thus, the value for �A is ∼4.4 × 10−3,
which is surprisingly in very good agreement with the results
of CTMC calculations, considering all the approximations that
were made in the evaluation of �A.

This agreement clearly shows that the Auger effect or
autoionization can be classically described without any
ambiguity to describe double capture. In addition, CTMC
calculations, including electron correlation, also show that
configurations of nonequivalent electrons 3lnl′ (n > 5) are
populated. Indeed, if the contributions (Table III) of these
configurations are neglected, the value for �A is ∼5.6 × 10−3,
which is larger than the previous one by 25%. More detailed
work on electron energy distributions would be desirable to
confirm the presence of such configurations in the present
calculation.

VI. CONCLUSION

A four-body classical model has been developed and
applied to get evidence for the Auger effect in Ne10+ + He
collisions at a projectile energy of 150 keV. First, total SC
and DC cross sections were determined and compared with
previous experiments [26,46] and theories [27,47]. Then, time

evolution of quantities σ̃SI and σ̃SC were calculated. These
quantities were found to be constant after integration time
of ∼50 a.u., while σ̃ADC (resp. σ̃NADC) were shown to slowly
increase (resp. decrease) with integration time. By fitting the
time evolution of σ̃NADC and σ̃ADC, an average lifetime was
found to be ∼4.6 × 10−3 a.u., in very good agreement with the
value of 4.4 × 10−3 a.u. determined using a model preformed
previously [48,49] for SC and extended to DC, assuming
independent electrons.

The present result confirms the ability of a classical model
to extract Auger emission cross sections following DC. This
promising result is a first step in the analysis of more
complicated collisions. First, the integration time dependence
of the cross section can be used to study the evolution of �A

with projectile velocity. Indeed, in the case of Ne10+ + He
collisions, for example, it is well known that 3lnl′ (n > 5)
configurations are mainly populated when projectile velocity
decreases. We thus expect a decrease of �A with velocity.

In addition, this important result will be useful to study
interferences in He2+ + H2 collisions [50,51]. So far, theoret-
ical studies concern only postcollision, i.e., the interaction of
the two protons and the Auger electron after DC. The whole
collision, including the DC process and autoionization, can
now be analyzed.
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[13] Å. Larson, S. M. Nkambule, and A. E. Orel, Phys. Rev. A 94,
022709 (2016).

[14] D. H. Crandall, R. E. Olson, E. J. Shipsey, and J. C. Browne,
Phys. Rev. Lett. 36, 858 (1976).

[15] C. Harel, H. Jouin, and B. Pons, J. Phys. B: At. Mol. Phys. 24,
L425 (1991).

[16] Z. Chen and C. D. Lin, J. Phys. B: At. Mol. Phys. 26, 957 (1993).
[17] S. Martin, A. Denis, A. Delon, J. Désesquelles, and Y. Ouerdane,

Phys. Rev. A 48, 1171 (1993).
[18] F. Fremont, H. Merabet, J. Y. Chesnel, X. Husson, A. Lepoutre,

D. Lecler, G. Rieger, and N. Stolterfoht, Phys. Rev. A 50, 3117
(1994).

[19] H. W. van der Hart, N. Vaeck, and J. E. Hansen, J. Phys. B: At.
Mol. Phys. 28, 5207 (1995).

[20] X. Flechard, S. Duponchel, L. Adoui, A. Cassimi, P. Roncin,
and D. Hennecart, J. Phys. B: At. Mol. Phys. 30, 3697 (1997).

[21] K. Ishii, A. Itoh, and K. Okuno, Phys. Rev. A 70, 042716 (2004).
[22] M. Hoshino, L. Pichl, Y. Kanai, Y. Nakai, M. Kitajima, M.

Kimura, Y. Li, H.-P. Liebermann, R. J. Buenker, H. Tanaka, and
Y. Yamazaki, Phys. Rev. A 75, 012716 (2007).

032712-7

https://doi.org/10.1007/BF01328663
https://doi.org/10.1007/BF01328663
https://doi.org/10.1007/BF01328663
https://doi.org/10.1007/BF01328663
https://doi.org/10.1103/PhysRevLett.89.083001
https://doi.org/10.1103/PhysRevLett.89.083001
https://doi.org/10.1103/PhysRevLett.89.083001
https://doi.org/10.1103/PhysRevLett.89.083001
https://doi.org/10.1103/PhysRevA.81.033429
https://doi.org/10.1103/PhysRevA.81.033429
https://doi.org/10.1103/PhysRevA.81.033429
https://doi.org/10.1103/PhysRevA.81.033429
https://doi.org/10.1103/PhysRevA.94.062506
https://doi.org/10.1103/PhysRevA.94.062506
https://doi.org/10.1103/PhysRevA.94.062506
https://doi.org/10.1103/PhysRevA.94.062506
https://doi.org/10.1088/0022-3700/7/5/009
https://doi.org/10.1088/0022-3700/7/5/009
https://doi.org/10.1088/0022-3700/7/5/009
https://doi.org/10.1088/0022-3700/7/5/009
https://doi.org/10.1103/PhysRevLett.57.74
https://doi.org/10.1103/PhysRevLett.57.74
https://doi.org/10.1103/PhysRevLett.57.74
https://doi.org/10.1103/PhysRevLett.57.74
https://doi.org/10.1103/PhysRevA.72.050704
https://doi.org/10.1103/PhysRevA.72.050704
https://doi.org/10.1103/PhysRevA.72.050704
https://doi.org/10.1103/PhysRevA.72.050704
https://doi.org/10.1103/PhysRevA.74.012717
https://doi.org/10.1103/PhysRevA.74.012717
https://doi.org/10.1103/PhysRevA.74.012717
https://doi.org/10.1103/PhysRevA.74.012717
https://doi.org/10.1103/PhysRevLett.98.013201
https://doi.org/10.1103/PhysRevLett.98.013201
https://doi.org/10.1103/PhysRevLett.98.013201
https://doi.org/10.1103/PhysRevLett.98.013201
https://doi.org/10.1103/PhysRevA.89.042705
https://doi.org/10.1103/PhysRevA.89.042705
https://doi.org/10.1103/PhysRevA.89.042705
https://doi.org/10.1103/PhysRevA.89.042705
https://doi.org/10.1103/PhysRevA.93.032709
https://doi.org/10.1103/PhysRevA.93.032709
https://doi.org/10.1103/PhysRevA.93.032709
https://doi.org/10.1103/PhysRevA.93.032709
https://doi.org/10.1103/PhysRevA.94.022709
https://doi.org/10.1103/PhysRevA.94.022709
https://doi.org/10.1103/PhysRevA.94.022709
https://doi.org/10.1103/PhysRevA.94.022709
https://doi.org/10.1103/PhysRevLett.36.858
https://doi.org/10.1103/PhysRevLett.36.858
https://doi.org/10.1103/PhysRevLett.36.858
https://doi.org/10.1103/PhysRevLett.36.858
https://doi.org/10.1088/0953-4075/24/17/003
https://doi.org/10.1088/0953-4075/24/17/003
https://doi.org/10.1088/0953-4075/24/17/003
https://doi.org/10.1088/0953-4075/24/17/003
https://doi.org/10.1088/0953-4075/26/5/017
https://doi.org/10.1088/0953-4075/26/5/017
https://doi.org/10.1088/0953-4075/26/5/017
https://doi.org/10.1088/0953-4075/26/5/017
https://doi.org/10.1103/PhysRevA.48.1171
https://doi.org/10.1103/PhysRevA.48.1171
https://doi.org/10.1103/PhysRevA.48.1171
https://doi.org/10.1103/PhysRevA.48.1171
https://doi.org/10.1103/PhysRevA.50.3117
https://doi.org/10.1103/PhysRevA.50.3117
https://doi.org/10.1103/PhysRevA.50.3117
https://doi.org/10.1103/PhysRevA.50.3117
https://doi.org/10.1088/0953-4075/28/24/007
https://doi.org/10.1088/0953-4075/28/24/007
https://doi.org/10.1088/0953-4075/28/24/007
https://doi.org/10.1088/0953-4075/28/24/007
https://doi.org/10.1088/0953-4075/30/16/008
https://doi.org/10.1088/0953-4075/30/16/008
https://doi.org/10.1088/0953-4075/30/16/008
https://doi.org/10.1088/0953-4075/30/16/008
https://doi.org/10.1103/PhysRevA.70.042716
https://doi.org/10.1103/PhysRevA.70.042716
https://doi.org/10.1103/PhysRevA.70.042716
https://doi.org/10.1103/PhysRevA.70.042716
https://doi.org/10.1103/PhysRevA.75.012716
https://doi.org/10.1103/PhysRevA.75.012716
https://doi.org/10.1103/PhysRevA.75.012716
https://doi.org/10.1103/PhysRevA.75.012716


F. FRÉMONT PHYSICAL REVIEW A 96, 032712 (2017)

[23] A. C. K. Leung and T. Kirchner, Phys. Rev. A 93, 052710 (2016).
[24] R. Ali, P. Beiersdorfer, C. L. Harris, and P. A. Neil, Phys. Rev.

A 93, 012711 (2016).
[25] J.-Y. Chesnel, D. Martina, P. Sobocinski, O. Kamalou, F.

Frémont, J. Fernández, and F. Martín, Phys. Rev. A 70,
010701(R) (2004).

[26] J.-Y. Chesnel, H. Merabet, X. Husson, F. Frémont, D. Lecler,
H. Jouin, C. Harel, and N. Stolterfoht, Phys. Rev. A 53, 2337
(1996).

[27] X. Fléchard, C. Harel, H. Jouin, B. Pons, L. Adoui, F. Frémont,
A. Cassimi, and D. Hennecart, J. Phys. B: At. Mol. Phys. 34,
2759 (2001).

[28] F. Frémont, G. Laurent, J. Rangama, P. Sobocinski, M. Tarisien,
L. Adoui, A. Cassimi, J.-Y. Chesnel, X. Fléchard, D. Hennecart,
and X. Husson, Int. J. Mol. Sci. 3, 115 (2002).

[29] M. Schulz, T. Vajnai, and J. A. Brand, Phys. Rev. A 75, 022717
(2007).

[30] L. Meng, C. O. Reinhold, and R. E. Olson, Phys. Rev. A 42,
5286 (1990).

[31] W. Wu, J. P. Giese, I. Ben-Itzhak, C. L. Cocke, P. Richard, M.
Stockli, R. Ali, H. Schöne, and R. E. Olson, Phys. Rev. A 48,
3617 (1993).

[32] Z. Chen, C. D. Lin, and N. Toshima, Phys. Rev. A 50, 511
(1994).

[33] K. Tökésy, Radiat. Phys. Chem. 76, 621 (2007).
[34] D. Zajfman and D. Maor, Phys. Rev. Lett. 56, 320 (1986).

[35] M. L. McKenzie and R. E. Olson, Phys. Rev. A 35, 2863 (1987).
[36] V. J. Montemayor and G. Schiwietz, Phys. Rev. A 40, 6223

(1989).
[37] J. G. Wang, A. R. Turner, D. L. Cooper, D. R. Schultz, M. J.

Rakovic, W. Fritsch, P. C. Stancil, and B. Zygelman, J. Phys. B:
At. Mol. Phys. 35, 3137 (2002).

[38] H. Merabet, G. Cremer, F. Frémont, J.-Y. Chesnel, and N.
Stolterfoht, Phys. Rev. A 54, 372 (1996).

[39] C. L. Kirschbaum and L. Wilets, Phys. Rev. A 21, 834 (1980).
[40] J. S. Cohen, Phys. Rev. A 51, 266 (1995).
[41] J. S. Cohen, Phys. Rev. A 54, 573 (1996).
[42] F. Frémont and A. K. Belyaev, J. Phys. B: At. Mol. Phys. 50,

045201 (2017).
[43] J. S. Cohen, Phys. Rev. A 56, 3583 (1997).
[44] R. Abrines and I. Percival, Proc. Phys. Soc. 88, 861 (1966).
[45] F. Frémont, J. Phys. B: At. Mol. Phys. 49, 065206 (2016).
[46] L. Liu, J. G. Wang, and R. K. Janev, Phys. Rev. A 89, 012710

(2014).
[47] A. C. K. Leung and T. Kirchner, Phys. Rev. A 92, 032712 (2015).
[48] J. Burgdörfer, R. Morgenstern, and A. Niehaus, Nucl. Instrum.

Meth. Phys. Res., Sect. B 23, 120 (1987).
[49] A. Niehaus, J. Phys. B: At. Mol. Phys. 19, 2925 (1986).
[50] J.-Y. Chesnel, A. Hajaji, R. O. Barrachina, and F. Frémont, Phys.

Rev. Lett. 98, 100403 (2007).
[51] G. Oliviéro, V. Pestel, L. Bottey, M. Philippe, and F. Frémont,

Phys. Rev. A 90, 042711 (2014).

032712-8

https://doi.org/10.1103/PhysRevA.93.052710
https://doi.org/10.1103/PhysRevA.93.052710
https://doi.org/10.1103/PhysRevA.93.052710
https://doi.org/10.1103/PhysRevA.93.052710
https://doi.org/10.1103/PhysRevA.93.012711
https://doi.org/10.1103/PhysRevA.93.012711
https://doi.org/10.1103/PhysRevA.93.012711
https://doi.org/10.1103/PhysRevA.93.012711
https://doi.org/10.1103/PhysRevA.70.010701
https://doi.org/10.1103/PhysRevA.70.010701
https://doi.org/10.1103/PhysRevA.70.010701
https://doi.org/10.1103/PhysRevA.70.010701
https://doi.org/10.1103/PhysRevA.53.2337
https://doi.org/10.1103/PhysRevA.53.2337
https://doi.org/10.1103/PhysRevA.53.2337
https://doi.org/10.1103/PhysRevA.53.2337
https://doi.org/10.1088/0953-4075/34/14/301
https://doi.org/10.1088/0953-4075/34/14/301
https://doi.org/10.1088/0953-4075/34/14/301
https://doi.org/10.1088/0953-4075/34/14/301
https://doi.org/10.3390/i3030115
https://doi.org/10.3390/i3030115
https://doi.org/10.3390/i3030115
https://doi.org/10.3390/i3030115
https://doi.org/10.1103/PhysRevA.75.022717
https://doi.org/10.1103/PhysRevA.75.022717
https://doi.org/10.1103/PhysRevA.75.022717
https://doi.org/10.1103/PhysRevA.75.022717
https://doi.org/10.1103/PhysRevA.42.5286
https://doi.org/10.1103/PhysRevA.42.5286
https://doi.org/10.1103/PhysRevA.42.5286
https://doi.org/10.1103/PhysRevA.42.5286
https://doi.org/10.1103/PhysRevA.48.3617
https://doi.org/10.1103/PhysRevA.48.3617
https://doi.org/10.1103/PhysRevA.48.3617
https://doi.org/10.1103/PhysRevA.48.3617
https://doi.org/10.1103/PhysRevA.50.511
https://doi.org/10.1103/PhysRevA.50.511
https://doi.org/10.1103/PhysRevA.50.511
https://doi.org/10.1103/PhysRevA.50.511
https://doi.org/10.1016/j.radphyschem.2005.12.060
https://doi.org/10.1016/j.radphyschem.2005.12.060
https://doi.org/10.1016/j.radphyschem.2005.12.060
https://doi.org/10.1016/j.radphyschem.2005.12.060
https://doi.org/10.1103/PhysRevLett.56.320
https://doi.org/10.1103/PhysRevLett.56.320
https://doi.org/10.1103/PhysRevLett.56.320
https://doi.org/10.1103/PhysRevLett.56.320
https://doi.org/10.1103/PhysRevA.35.2863
https://doi.org/10.1103/PhysRevA.35.2863
https://doi.org/10.1103/PhysRevA.35.2863
https://doi.org/10.1103/PhysRevA.35.2863
https://doi.org/10.1103/PhysRevA.40.6223
https://doi.org/10.1103/PhysRevA.40.6223
https://doi.org/10.1103/PhysRevA.40.6223
https://doi.org/10.1103/PhysRevA.40.6223
https://doi.org/10.1088/0953-4075/35/14/310
https://doi.org/10.1088/0953-4075/35/14/310
https://doi.org/10.1088/0953-4075/35/14/310
https://doi.org/10.1088/0953-4075/35/14/310
https://doi.org/10.1103/PhysRevA.54.372
https://doi.org/10.1103/PhysRevA.54.372
https://doi.org/10.1103/PhysRevA.54.372
https://doi.org/10.1103/PhysRevA.54.372
https://doi.org/10.1103/PhysRevA.21.834
https://doi.org/10.1103/PhysRevA.21.834
https://doi.org/10.1103/PhysRevA.21.834
https://doi.org/10.1103/PhysRevA.21.834
https://doi.org/10.1103/PhysRevA.51.266
https://doi.org/10.1103/PhysRevA.51.266
https://doi.org/10.1103/PhysRevA.51.266
https://doi.org/10.1103/PhysRevA.51.266
https://doi.org/10.1103/PhysRevA.54.573
https://doi.org/10.1103/PhysRevA.54.573
https://doi.org/10.1103/PhysRevA.54.573
https://doi.org/10.1103/PhysRevA.54.573
https://doi.org/10.1088/1361-6455/50/4/045201
https://doi.org/10.1088/1361-6455/50/4/045201
https://doi.org/10.1088/1361-6455/50/4/045201
https://doi.org/10.1088/1361-6455/50/4/045201
https://doi.org/10.1103/PhysRevA.56.3583
https://doi.org/10.1103/PhysRevA.56.3583
https://doi.org/10.1103/PhysRevA.56.3583
https://doi.org/10.1103/PhysRevA.56.3583
https://doi.org/10.1088/0370-1328/88/4/306
https://doi.org/10.1088/0370-1328/88/4/306
https://doi.org/10.1088/0370-1328/88/4/306
https://doi.org/10.1088/0370-1328/88/4/306
https://doi.org/10.1088/0953-4075/49/6/065206
https://doi.org/10.1088/0953-4075/49/6/065206
https://doi.org/10.1088/0953-4075/49/6/065206
https://doi.org/10.1088/0953-4075/49/6/065206
https://doi.org/10.1103/PhysRevA.89.012710
https://doi.org/10.1103/PhysRevA.89.012710
https://doi.org/10.1103/PhysRevA.89.012710
https://doi.org/10.1103/PhysRevA.89.012710
https://doi.org/10.1103/PhysRevA.92.032712
https://doi.org/10.1103/PhysRevA.92.032712
https://doi.org/10.1103/PhysRevA.92.032712
https://doi.org/10.1103/PhysRevA.92.032712
https://doi.org/10.1016/0168-583X(87)90426-5
https://doi.org/10.1016/0168-583X(87)90426-5
https://doi.org/10.1016/0168-583X(87)90426-5
https://doi.org/10.1016/0168-583X(87)90426-5
https://doi.org/10.1088/0022-3700/19/18/021
https://doi.org/10.1088/0022-3700/19/18/021
https://doi.org/10.1088/0022-3700/19/18/021
https://doi.org/10.1088/0022-3700/19/18/021
https://doi.org/10.1103/PhysRevLett.98.100403
https://doi.org/10.1103/PhysRevLett.98.100403
https://doi.org/10.1103/PhysRevLett.98.100403
https://doi.org/10.1103/PhysRevLett.98.100403
https://doi.org/10.1103/PhysRevA.90.042711
https://doi.org/10.1103/PhysRevA.90.042711
https://doi.org/10.1103/PhysRevA.90.042711
https://doi.org/10.1103/PhysRevA.90.042711



