
PHYSICAL REVIEW A 96, 032709 (2017)

Boundary-corrected four-body continuum-intermediate-state method for charge exchange
between hydrogenlike projectiles and atoms
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Single-electron capture from one-electron and multielectron atoms colliding with hydrogenlike projectiles at
intermediate and high incident energies is examined by using the post version of the boundary-corrected four-body
continuum-intermediate-state (BCIS-4B) method. This method satisfies the correct boundary conditions in the
entrance and exit channels. In the entrance configuration, the BCIS-4B method takes into account the ionization
channel through the electronic continuum intermediate states described by the full Coulomb wave function
centered on the screened nuclear charge of the projectile. The presented analytical calculation yields the transition
amplitude in terms of an efficiently computed two-dimensional numerical quadrature over real variables. Total
cross sections are computed for electron capture in the He+-H, He+-He, and Li2+-He collisions at intermediate
and high impact energies. Also, differential cross sections are obtained for the He+-He collisions. The present
results from the BCIS-4B method are found to be in very good agreement with the available experimental data
on differential and total cross sections.

DOI: 10.1103/PhysRevA.96.032709

I. INTRODUCTION

Single-electron capture from one- and multielectron targets
colliding with hydrogenlike projectiles has attracted a great
deal of attention for decades [1–23]. In addition to the necessity
of a clear understanding of fundamental collision dynamics
of many-electron collision systems, detailed cross sections
for these high-energy collisions are also needed in some
other research fields. These include collisional interactions of
energetic ion beams (often highly charged) with a neutralizer
gas, with plasma in fusion experiments, with residual neutral
gas in an accelerator storage ring, or with tissue in hadron
therapy [6,7]. Such multiply charged ions are also encountered
in astrophysics as, e.g., solar wind ions that undergo exci-
tation, deexcitation, charge exchange, and ionization during
their fast collisions with atomic systems from interstellar
media.

Charge-transfer cross sections for collisions involving
dressed projectiles (those bearing electrons) have been ex-
tensively studied using theories for the underlying three-
body [24–35] and four-body problems [36–44], as reviewed
in Refs. [1–7]. In the three-body methods, the given projectile
is treated as a rigid core ion due to screening by the passive
electron in the incident atomic system. With the assumption
of a rigid core of the projectile ion, it is obvious that
the interaction of the projectile ion with the target nucleus
should be Coulombic. Some of these three-body models
show satisfactory agreement with experimental data, but their
basic drawback is that they completely neglect dynamic (i.e.,
collisional) electron-electron correlations.

The present work is a theoretical investigation of single-
electron capture from one- and multielectron atoms colliding
with hydrogenlike projectiles at intermediate and high incident
energies. We will employ the four-body boundary-corrected
continuum-intermediate-state (BCIS-4B) method. As in the
general theory from Ref. [1], in the present examination of
single charge exchange, the many-electron target has been

treated by way of a model with one active electron, which is to
be transferred to the projectile. The other noncaptured target
electrons are considered as passive and occupying the same
orbitals in the initial and final states. Their role is merely to
screen the target nuclear charge. The projectile electron has
also been treated as active in the exactly known hydrogenlike
system. The net result of this atomic model for the target is
a reduction of a difficult many-particle problem to its more
manageable four-body counterpart.

The BCIS-4B approximation is an adaptation of the same
method introduced in Ref. [45] for double-electron capture
in collisions of fast nuclei with heliumlike atomic systems.
This is a fully-quantum-mechanical four-body method with a
strict preservation of the correct boundary conditions in both
collisional channels according to the principles of quantum
scattering theory [1–5,46,47]. The matter of the correct
Coulomb boundary conditions is equivalent to the concept
of asymptotic convergence [47].

The post form of the BCIS-4B method is a hybrid distorted-
wave model, which exactly coincides with the four-body
continuum distorted-wave (CDW-4B) theory in the entrance
channel and with the four-body boundary-corrected first Born
(CB1-4B) approximation in the exit channel. The associated
perturbation potential in the post-transition amplitude of the
BCIS-4B method is the same as in the pertinent CB1-4B
method. Hence, the captured electron is treated in an asymmet-
ric manner in the entrance and exit channels. In the entrance
channel, the BCIS-4B method includes the ionization channel
of the active target electron. Namely, prior to being captured,
this electron is ionized and treated as occupying continuum
states in the intermediate stage of the collision. These states
are not free, i.e., undistorted in the sense of being described
by a plane wave. Rather, they are described by the electronic
full Coulomb wave function centered on the screened nuclear
charge of the projectile. In the exit channel, the BCIS-4B
method has no electronic distortion factors. Instead, just like
in the CB1-4B method, the only distortion of the unperturbed
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final state is the Coulomb logarithmic phase for the relative
motion of heavy particles.

By comparing the BCIS-4B and CB1-4B theories, we
would learn about the relative importance of these intermediate
ionization electronic continua, and this is one of the main goals
of the present study. A further inquiry of this paper will be
an assessment of the usefulness of the BCIS-4B method in
practice by comparing the obtained theoretical results with the
available experimental data for single-electron transfer from
one- and multielectron targets by hydrogenlike projectiles.

Atomic units will be used throughout unless otherwise
stated.

II. THEORY

In the present paper, we are interested in single charge
exchange in two types of scattering events, such as collisions
of hydrogenlike projectiles with hydrogenlike targets and/or
multielectron targets.

A. Charge exchange with hydrogenlike projectiles
on hydrogenlike targets

The rearrangement collisions to be studied in this section
are of the following type:

(ZP ,e1)i1 + (ZT ,e2)i2 → (ZP ,e1,e2)f + ZT , (1)

where P (T ) denotes the projectile (target) nucleus. The
parentheses in Eq. (1) denote the bound states, whereas
the subscript i1 (i2) is the collective label for the set of
hydrogenlike quantum numbers {n1,l1,m1} ({n2,l2,m2}) and
the index f refers to the quantum numbers of the final
heliumlike state. The binding energies of (ZP ,e1)i1 , (ZT ,e2)i2 ,
and (ZP ,e1,e2)f are EP , ET , and Ef , respectively. Throughout
the paper, the quantum-mechanical nonrelativistic scattering
theory will be used without accounting for the spin effects.
In the spin-independent formalism, the two electrons can be
considered as distinguishable from each other. The position
vectors of the first and second electrons (e1 and e2) relative
to the nuclear charge of the projectile ZP (the target ZT )
are denoted by �s1 and �s2 (�x1 and �x2), respectively. Further,
let �R be the position vector of ZP with respect to ZT . The
vector of the distance between the two active electrons (e1

and e2) is labeled as �r12 = �x1 − �x2 = �s1 − �s2. In the entrance
channel, it is convenient to introduce �ri as the position
vector between the center of mass of (ZP ,e1)i1 and the target
system (ZT ,e2)i2 , whereas the pertinent reduced mass and
momentum wave vector are μi = (MP + 1)(MT + 1)/M and
�ki , respectively, where M = MP + MT + 2. Symmetrically,
in the exit channel, let �rf be the position vector of ZT relative
to the center of mass of (ZP ,e1,e2)f , while the associated
reduced mass and momentum vector are μf = MT (MP +
2)/M and �kf , respectively. The reduced mass μ involving
the masses of the nuclei is given by μ = MP MT /(MP + MT ).
The position vectors �ri,f and ± �R are interconnected by the
general exact relations �ri = �R + �s1/(MP + 1) − �x2/(MT + 1)
and �rf = − �R − (�s1 + �s2)/(MP + 2). The incident and outgo-
ing velocities are �vi = �ki/μi and �vf = �kf /μf , respectively.
The respective unit vectors of the momenta and velocities are

�̂ki,f = �ki,f /ki,f and �̂vi,f = �vi,f /vi,f where the direction of the
incident or impact velocity �v (with �v ≡ �vi) is chosen along
the Z axis as �̂v = (0,0,1), where �̂v = (1/v)�v. The vector �R of
the internuclear axis R is decomposed as �R = �ρ + �Z, where �ρ
is the projection of �R onto the XOY plane such that �ρ · �Z = 0
and �ρ · �v = 0. For (1), as well as for the other collisional
processes investigated herein, we will consistently use the
independent variables {�s1,�x2,�ri} and {�s1,�s2,�rf } in the entrance
and exit channels, respectively. As such, the initial forms of the
derived expressions for the channel Hamiltonians, scattering
wave functions, perturbation potentials, and transition matrix
elements will all refer to these latter independent variables.

1. Entrance channel

As stated, in the entrance channel within the post version of
the BCIS-4B method for (1), the wave function of the CDW-4B
method [43] is employed:

χ+
i = ei�ki ·�ri ϕP (�s1)ϕT (�x2)N+(νP )

× 1F1(iνP ,1,ivs2 + i�v · �s2)N+(νi)

× 1F1(−iνi,1,ikiri − i�ki · �ri), (2)

where νP = (ZP − 1)/v, νi = ZT (ZP − 1)/v, N+(νP ) =
�(1 − iνP )eπνP /2, and N+(νi) = �(1 + iνi)e−πνi/2. The sym-
bol � denotes the Gamma function, whereas 1F1(a,b,z)
stands for the regular confluent hypergeometric function. The
single-electron hydrogenlike wave functions of the (ZP ,e1)i1

and (ZT ,e2)i2 systems are denoted by ϕP (�s1) and ϕT (�x2)
with the corresponding binding energies EP = −Z2

P /(2n2
1)

and ET = −Z2
T /(2n2

2), respectively. It can be readily verified
that the distorted wave χ+

i satisfies the proper boundary
conditions at infinitely large interparticle separations. The
function N+(νP ) 1F1(iνP ,1,ivs2 + i�v · �s2) in χ+

i describes
intermediate ionization of the electron e2. This is the electronic
full continuum Coulomb wave function in the attractive
electrostatic field of the screened projectile nucleus charge
VP 2 = −(ZP − 1)/s2. The screened point charge ZP − 1 of
the projectile (ZP ,e1)i1 is introduced because at infinitely
large values of s2, the active electron e2 from (ZT ,e2)i2 cannot
discern the individual constituents in the projectile (ZP ,e1)i1 .
In other words, at s2 → ∞, the electron e2 experiences the
hydrogenlike system (ZP ,e1)i1 as a point charge ZP − 1.

Within the standard eikonal approximation for fast
heavy-particle collisions (ki,f � 1 and MP,T � 1), it is
permitted to replace the full Coulomb wave function
N+(νi) 1F1(−iνi,1,ikiri − i�ki · �ri) in Eq. (2) by its logarith-
mic phase factor in the scattering state χ+

i for the distortion
effect arising from the relative motion of heavy particles. This
maps χ+

i from (2) into its eikonal counterpart χ+
i,eik via

χ+
i,eik = ei�ki ·�ri+iνi ln(ki ri−�ki ·�ri )ϕP (�s1)ϕT (�x2)N+(νP )

× 1F1(iνP ,1,ivs2 + i�v · �s2). (3)

It then follows that the initial eikonal scattering state χ+
i,eik also

satisfies the correct Coulomb boundary conditions, just like the
starting distorted wave χ+

i from (2). It should be emphasized
that imposing the proper Coulomb boundary conditions is of
crucial importance [1–4,46,47].
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2. Exit channel

The final state �−
f in the exit channel is distorted even

at infinite distances between the colliding aggregates due
to the long-range nature of the Coulomb interaction, as
demanded by the correct boundary condition. The reason
for this is the presence of the asymptotic Coulomb repulsive
interaction V ∞

f = ZT (ZP − 2)/rf between the target nucleus
and the screened projectile nuclear charge ZP − 2. Here ZP is
screened by the unit charges of each of the two electrons e1 and
e2 to become ZP − 2. Thus, the perturbed entrance channel
state �−

f and the corresponding perturbation potential Vf are
given by

�−
f = ϕf (�s1,�s2)e−i�kf ·�rf N−(νf )

× 1F1(iνf ,1, − ikf rf + i�kf · �rf ), (4)

Vf = ZP ZT

R
− ZT (ZP − 2)

rf

− ZT

x1
− ZT

x2
, (5)

respectively, where N−(νf ) is the Coulomb normalization
constant N−(νf ) = e−πνf /2�(1 − iνf ), with νf = ZT (ZP −
2)/v. Here ϕf (�s1,�s2) is the final-bound-state wave function of
the heliumlike atomic system (ZP ,e1,e2)f . The long-range dis-
tortion effects are present in Eq. (4) through the full Coulomb
wave function N−(νf )e−i�kf ·�rf

1F1(iνf ,1, − ikf rf + i�kf · �rf )
for the relative motion of heavy nuclei. In the mass approxima-
tion MP � 1, the perturbation potential Vf can be simplified
as follows. Using the already stated definition of �rf , we can
develop 1/rf in the Taylor-series expansion around 1/R with

the result 1/rf = 1/R + γ �̂R · (�s1 + �s2)/R2 + O(γ 2), where
γ = 1/(MP + 2). This implies that the difference 1/R − 1/rf

is a short-range potential, since it is of the order of γ smaller

than �̂R · (�s1 + �s2)/R2. This Taylor-series expansion is justified
by the small values of s1 and s2 (of the order of Bohr radius
a0), in the exit channel where the electrons e1,2 are bound to
the heliumlike system centered at the projectile nuclear charge
ZP . Thus, ignoring the terms of the order of or smaller than
1/MP , we have rf ≈ R (as well as �rf ≈ − �R), so Vf can be
written as

Vf = 2ZT

R
− ZT

x1
− ZT

x2
. (6)

The term ZT /R in Eq. (6), despite its R-dependent form, is not
related to the internuclear potential. The entire perturbation
Vf from (6) is also of a short range because it behaves
like O(1/R2) for R → ∞. This is shown by the Taylor
expansion for 1/x1 around 1/R. A small value of s1 in the
exit channel justifies such a development, since R = |�x1 − �s1|.
A similar statement also holds true for 1/x2. Thus, for large
R, we have xj ≈ R (j = 1,2) and therefore the potentials
−ZT /x1 and −ZT /x2 each possess the same asymptotic
tail −ZT /R via −ZT /xj ≈ −ZT /R (j = 1,2). Hence, at
R → ∞, we have from (6) that Vf ≈ 2ZT /R − 2ZT /R +
O(1/R2) = O(1/R2). Thus, Vf is a short-range potential.
Similarly to Ref. [4], working with the independent variables
{�s1,�s2,�rf } for the exit channel in Eq. (1), the expression for
the total Hamiltonian could also include the so-called mass-
polarization term −(1/MP ) �∇s1 · �∇s2 . In the present study, in
order to consistently apply the eikonal approximation, this

latter term has been omitted from Vf in Eq. (6) because
its contribution is merely the M−1

P th fraction of the yield
from ZT (2/R − 1/x1 − 1/x2). Another way of justifying this
omission by a specific test is to verify the consistency of, e.g.,
the total energy conservation law in the eikonal approximation.
The outcome of this direct and explicit test is that the initial and
final energies of the entire system in the eikonal approximation
are equal to within O(1/MP,T ) irrespective of whether the
mass-polarization term is included or excluded.

The correct asymptotic form of �−
f as rf → ∞ can be

obtained by using the Coulomb logarithmic phase factor in the
scattering state for distortion effects due to the relative motion
of heavy particles as

�−
f,eik = ϕf (�s1,�s2)e−i�kf ·�rf −iνf ln(kf rf −�kf ·�rf ). (7)

It should be noted that in the eikonal limit, the difference
between the contributions from �−

f and �−
f,eik is of the order of

the reciprocal of the heavy particle masses and thus negligible.

3. Post form of the transition amplitude

The post form of the transition amplitude in the BCIS-
4B approximation for the process (1) is given by the matrix
element

Tif = 〈�−
f |Vf |χ+

i 〉 � 〈�−
f,eik|Vf |χ+

i,eik〉, (8)

where the perturbation potential Vf is from (6). As mentioned,
the BCIS-4B method is a hybrid approximation, which is the
combination of the CDW-4B and CB1-4B methods in the
entrance and exit channels, respectively. Hence, in the post
form of the BCIS-4B transition amplitude, the CDW-4B model
is utilized for the entrance channel, whereas the CB1-4B wave
function and the CB1-4B perturbation potential are employed
in the exit channels. In the BCIS-4B model, the proper
connection between the long-range Coulomb distortion effects
and the accompanying perturbation potentials is accomplished
according to the well-established principles of scattering
theory [2]. As evidenced in abundant applications, imposing
the correct Coulomb boundary conditions in the entrance and
exit channels is of key significance [3–7].

By employing the conventional eikonal approximation

with dominant forward scattering (�̂kf ≈ �̂ki or �̂vf ≈ �̂vi ≡ �̂v)
together with the mass limits MP,T � 1 yielding �ri ≈ �R and
�rf ≈ − �R, the product of the logarithmic Coulomb factors from
the wave functions χ+

i,eik and �−
f,eik can be reduced to a single

�R-dependent phase factor

eiνi ln(ki ri−�ki ·�ri )+iνf ln(kf rf −�kf ·�rf )

≈ eiνi ln(μvR−μ�v· �R)+iνf ln(μvR+μ�v· �R)

= (μρv)2iνi (vR + �v · �R)−iξ

= (μρv)2iνf (vR − �v · �R)iξ , (9)

where ξ = ZT /v. Here and throughout the constant phase
factors μ2iνi,f can be left out. As has been shown in Ref. [1],
the overall phase factors (ρv)2iνf and (ρv)2iνi in Eq. (9) do
not contribute to the total cross section for any values of ZP

and ZT , so they could freely be omitted from the T -matrix
elements. Crucially, for charge exchange processes in heavy
particle energetic collisions, it is precisely (9) that enabled
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the proof in Ref. [1] that the internuclear potential VPT =
ZP ZT /R gives no contribution at all to the eikonal version
of the fully-quantum-mechanical exact total cross sections.
Note that the multiplying term (ρv)2iνf ≡ (ρv)2iZT (ZP −2)/v in
Eq. (9) is especially convenient for computations of differential
cross sections for ZP = 2, i.e., with the He+ projectiles for
which (ρv)2iZT (ZP −2)/v = 1. On the other hand, the factor
(ρv)2iνi ≡ (ρv)2iZT (ZP −1)/v in Eq. (9) is advantageous in the
case of the H projectiles (ZP = 1). In both cases, ZP = 2 and
ZP = 1, the angular distributions become directly proportional
to the absolute value squared |Tif |2 of the transition amplitudes
Tif with no need to carry out the Fourier-Bessel transform [1].

Importantly, as per (9), the distorted-wave eikonal scatter-
ing states in the entrance and exit channels (3) and (7) can
equivalently be written in the following forms:

χ+
i,eik = ei�ki ·�ri+iνi ln(μvR−μ�v· �R)ϕP (�s1)ϕT (�x2)N+(νP )

× 1F1(iνP ,1,ivs2 + i�v · �s2), (10)

�−
f,eik = ϕf (�s1,�s2)e−i�kf ·�rf −iνf ln(μvR+μ�v· �R), (11)

respectively. Consequently, in the asymptotic regions of
scattering (R → ∞), the correct initial and final Coulomb
boundary conditions have two sets {(3) and (7)} and {(10)
and (11)} of equally valid prescriptions, respectively.

The same mass approximation MP,T � 1 used in �ri,f ≈
± �R also implies the like approximate equalities between
the corresponding volume elements, i.e., d�ri,f ≈ d �R, so the
relations d�rid�s1d �x2 ≈ d �Rd�s1d �x2 and d�rf d�s1d�s2 ≈ d �Rd�s1d�s2

can be employed in the defining nine-dimensional integrals
from the prior and post form of the eikonal transition ampli-
tude, respectively. This in turn corroborates the so-called gen-
eralized nonorthogonal coordinates {�s1,�x2, �R} and {�s1,�s2, �R}
treated from the onset as the independent variables [48] in
the entrance and exit channels instead of their counterparts
{�s1,�x2,�ri} and {�s1,�s2,�rf }, respectively. Had we started, e.g.,
with the set {�s1,�s2, �R} for the independent variables in the exit
channel of (1), then besides the mentioned mass-polarization
term, the perturbation potential Vf would contain an ad-
ditional contribution due to the mixed gradient operators,
(1/MP ) �∇R · ( �∇s1 + �∇s2 ). However, because of the multiplica-
tive infinitesimally small coefficient 1/MP � 1, these latter
mixed directional derivatives can also be neglected from Vf on
the same ground, as done with the mass-polarization term. The
correctness of such a procedure was confirmed by an explicit
calculation showing that retention of (1/MP ) �∇R · ( �∇s1 + �∇s2 )
would yield a correction of the order O(1/MP ) in the eikonal
form of the total energy conservation in the exit channel,
as was the case with the mass-polarization term. This is in
full harmony with the usual mass approximation under the
eikonal hypothesis, which consistently ignores every term of
the order of or smaller than 1/MP or 1/MT . It is tempting to
claim that there is an unphysical situation due to a potential
ambiguity in having the exit channel Hamiltonian (and hence
the final perturbation potential Vf ) in two different forms for
the independent variables {�s1,�s2,�rf } and {�s1,�s2, �R}. Indeed, it
would be unacceptable if two such forms were to produce
different numerical results for cross sections or for any other
observables. However, in the present context, the stated claim

would be misleading because both the Hamiltonians and the
perturbation interactions in the exit channel in fact generate
the same eikonal dynamics, accurate to within O(1/MP ). This
is the case for the coordinate origins placed on either MP

or μf , i.e., on the mass of the scattered projectile or on the
reduced mass for the center of mass of the T + (P,2e) system.
Here it is pertinent to recall that also within the close-coupling
method, Bransden and McDowell [49] have claimed that there
is a possible ambiguity in the Hamiltonian caused by switching
from one set of Jacobi’s coordinates to another. However, this
ambiguity does not exist either, as has been shown by Belyaev
et al. [50], with reference to the coupling operators in terms of
both single and double directional derivatives (the latter being
a second-order differentiation involving the mixed position
vector variables for the light and heavy particles).

With this standard setting [1], the post form of the eikonal
transition amplitude in the BCIS-4B method for process (1)
can be written as

Tif (�η) = N+(νP )
∫∫∫

d�s1d�s2d �R ϕP (�s1)ϕT (�x2)

×
(

2ZT

R
− ZT

x1
− ZT

x2

)
ϕ∗

f (�s1,�s2)ei �β· �R−i�v·�s2

× 1F1(iνP ,1,ivs2 + i�v · �s2)(vR − �v · �R)iξ , (12)

�ki · �ri + �kf · �rf = �β · �R − �v · �s2, (13)

where the phase μ2iνf is ignored. Here the vector �β is
introduced as one of the momentum transfers in the form
�β = −�η − (v/2 + 
E/v) �̂v, where 
E = Ei − Ef and Ei =
EP + ET . The transverse component of the change in the
relative linear momentum of a heavy particle is denoted
by �η = (η cos φη,η sin φη,0), where �η · �v = 0. Note that the
eikonal relations �ri,f ≈ ± �R are used only in the argu-
ments ±ki,f ri,f ∓ �ki,f · �ri,f of the confluent hypergeomet-
ric functions 1F1(∓iνi,f ,1, ± iki,f ri,f ∓ i�ki,f · �ri,f ) of the
relative motion of heavy particles and not in the corre-
sponding plane waves exp(±i�ki,f · �ri,f ) from the associated

full Coulomb wave functionsN±(νi,f )e±i�ki,f ·�ri,f
1F1(∓iνi,f ,1,

± iki,f ri,f ∓ i�ki,f · �ri,f ). This is very important and it is
done to fully preserve the so-called electron translation factor
in the combined exponential exp(i�ki · �ri + i�kf · �rf ) where,
for predominant forward scattering of heavy particles, it
follows that exp(i�ki · �ri + i�kf · �rf ) ≈ exp(i �β · �R − i�v · �s2), as
per (13).

The post form of the transition amplitude Tif (�η) from (12)
can be interpreted in the following way. In the entrance
channel, collisions between the projectile (ZP ,e1)i1 and the
target nucleus ZT accumulate the Coulombic phase factor
exp[(i/v)ZT (ZP − 1) ln(vR − �v · �R)]. At the same time, the
interaction of (ZP ,e1)i1 with the target leads to single ion-
ization of the active target electron e2 in the experimentally
inaccessible intermediate stage of collision. The ionized
electron propagates in the Coulomb field of charge ZP − 1 of
the projectile ion in a particular direction with the momentum
�k = �v. Next, capture of the electron occurs from these
intermediate ionizing states (capture from the continuum)
because the electron is traveling together with the screened
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projectile in the same direction and the attractive Coulomb
interaction between ZP − 1 and e2 is sufficient to bind them
together into the heliumlike atomic system (ZP ,e1,e2)f . Thus,
in the post form of the BCIS-4B method, the continuum
intermediate states refer to the continuum of the electron
e2 (to be captured), as described by the full Coulomb wave
function centered on the projectile ion point charge ZP − 1.
Overall, in the entrance channel, the electron to be transferred
is described as being simultaneously subjected to two Coulomb
centers, the target and the screened projectile nuclei, which
produce the bound and continuum states, respectively. As a
result, the product of these two states is used as the main
part of the total distorted-wave scattering state, according to
the BCIS-4B method (the same also applies to the CDW-4B
method, which coincides with the BCIS-4B method for the
initial scattering state). On the other hand, in the exit channel,
the newly formed atomic system (ZP ,e1,e2)f interacts with
the target nucleus and accumulates the Coulombic phase factor
exp[(−i/v)ZT (ZP − 2) ln(vR + �v · �R)]. Here the continuum
intermediate states of the active electron are ignored altogether,
as in the CB1-4B method.

Notice that the CB1-4B method can formally be ob-
tained from (12), first through the replacement of the
confluent hypergeometric function N+(νP ) 1F1(iνP ,1,ivs2 +
i�v · �s2) by its asymptotic form exp[−iνP ln(vs2 + �v · �s2)].
Second, the asymptotic equality exp[−iνP ln(vs2 + �v · �s2)] ≈
exp[−iνP ln(vR + �v · �R)] is employed, which is justified at
large values of the internuclear distance (R → ∞) at which
we have �s2 ≈ �R.

4. Analytical calculation of the transition amplitude

In the present work, we use the general factorized
form for the bound state of the heliumlike atomic sys-
tem (ZP ,e1,e2)1s2 as ϕf (�s1,�s2) = ∑

k,l ϕαk(�s1)ϕαl(�s2), where

ϕαj (�r) = Nαj
exp(−αj r), with Nαj

= aj

√
N (j = k,l) and N

the normalization constant. The values of the summation
indices k and l, as well as the variationally determined
parameters αj and aj , depend upon a concrete choice for
the wave function. For the confluent hypergeometric function
1F1(iνP ,1,ivs2 + i�v · �s2) in Eq. (12), we employ the integral
representation

1F1(iνP ,1,ivs2 + i�v · �s2)

= 1

�(iνP )�(1 − iνP )

∫ 1

0
dτ τ iνP −1(1 − τ )−iνP ei(vs2+�v·�s2)τ ,

(14)

where an infinitesimally small negative imaginary part
−iε(ε > 0) is assumed to be implicitly added to the Som-
merfeld parameter νP via νP → νP − iε in order to secure the
convergence of the integral. Upon carrying out the calculation,
the limit ε → 0+ is taken, where the plus superscript indicates
that ε tends to zero through positive numbers. Then we can
cast the transition amplitude into the following form:

Tif = M
∫ 1

0
dττ iνP −1(1 − τ )−iνP Sif (τ ),

M = N+(νP )/[�(iνP )�(1 − iνP )], (15)

Sif (τ ) =
∑
k,l

Nαk
Nαl

∫
d �R ei �β· �R(vR − �v · �R)iξT ( �R), (16)

T ( �R) = ZT

∫∫
d�s1d�s2ϕP (�s1)ϕT (�x2)

×
(

2

R
− 1

x1
− 1

x2

)
e−i�v·�s2−αks1−αls2+i(vs2+�v·�s2)τ

= ZT

[
2

R
W

(k,l)
R − W (k,l)

x1
− W (k,l)

x2

]
,

W
(k,l)
R = AkCl , W (k,l)

x1
= BkCl , W (k,l)

x2
= AkDl . (17)

The quantities Ak = ∫
d�s1ϕP (�s1)e−αks1 and Bk =∫

d�s1ϕP (�s1)e−αks1/x1 can be analytically calculated, and
when the wave function ϕP (�s1) describes the ground state, the
results are

Ak = 8

√
πZ3

P

(ZP + αk)3
,

Bk = 4

√
πZ3

P

λ2
k

[
2

λkR
− e−λkR

(
1 + 2

λkR

)]
, (18)

where λk = ZP + αk . Using the Fourier transform of
e−αls2+i(vs2+�v·�s2)τ together with the Feynman identity, the quan-
tity Cl = ∫

d�s2e
−i�v·�s2−αls2+i(vs2+�v·�s2)τ ϕT (�x2) can be analytically

transformed to the following one-dimensional integral over a
real variable t :

Cl = 2μl

√
Z5

T πe−i �β· �R
∫ 1

0
dt

t(1 − t)


5
1

× (
3 + 3
1R + 
2

1R
2
)
e−i �Q1· �R−
1R, (19)

where μl = αl − ivτ , 
2
1 = v2

1 t(1 − t) + Z2
T (1 − t) + μ2

l t ,
�v1 = �v(1 − τ ), �Q1 = �α1t − �β(1 − t), and �α1 = − �β − �v1. Ap-
plying a technique similar to that for Cl , the quantity Dl =∫

d�s2ϕT (�x2)e−i�v·�s2−αls2+i(vs2+�v·�s2)τ /x2 becomes

Dl = 2μl

√
Z3

T πe−i �β· �R
∫ 1

0
dt

t


3
1

(1 + 
1R)e−i �Q1· �R−
1R.

(20)

By employing the results from (18)–(20) and using (17),
the quantity Sif (τ ) from (16) can be expressed in terms

of the typical integrals In = ∫
d �R Rn−1e−i �Q1· �R−λR(vR − �v ·

�R)iξ . Using the analytical results for the integrals I0,1,2,3 that
have been obtained in Ref. [51], we arrived at the following
final expression for the transition amplitude Tif in terms of a
two-dimensional integral over the real variables t and τ :

Tif = K
∑
k,l

Nαk
Nαl

∫ 1

0
dτ τ iνP −1(1 − τ )−iνP

μl

λ3
k

×
∫ 1

0
dt

t


3
1

(ν1 − iξδ1), (21)

where K = 32π2Z
5/2
T Z

3/2
P �(1 + iξ )M. The quantities ν1 and

δ1 are given in the Appendix. The remaining two-dimensional
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integral in Eq. (21) is evaluated numerically and this can be
done efficiently by the existing quadrature rules.

The integrand in Eq. (21) possesses integrable branch-point
singularities in the part τ iνP −1(1 − τ )−iνP at τ = 0 and τ = 1,
both of which are regularizable. Following Refs. [45,52], the
customary Cauchy regularization of the whole integrand needs
to be done before applying the Gauss-Legendre routine, since
this quadrature rule needs to be regularized for functions with
singularities. It should be noted that from the computational
point of view, the BCIS-4B method is as easy as the CB1-4B
approach, since in both cases the transition amplitudes are
reduced to similar two-dimensional numerical quadratures.

B. Charge exchange with hydrogenlike projectiles
on multielectron targets

Next we will consider single charge exchange in collisions
between hydrogenlike projectiles and multielectron targets:

(ZP ,e1)i1 + (ZT ,e2; {e3,e4, . . . ,eN+2})i2

→ (ZP ,e1,e2)f + (ZT ; {e3,e4, . . . ,eN+2}), (22)

where the set {e3,e4, . . . ,eN+2} denotes the N noncaptured
electrons. In the case of a multielectron target, the N

noncaptured electrons are considered passive such that their
interactions with both active electrons e1 and e2 are viewed
as not contributing to the capture process. We also suppose
that passive electrons occupy the same orbitals before and
after the collisions [1], and this is recognized as the frozen-
core approximation. In such an atomic model, the passive
electrons do not take part individually in the transfer of the
active electron and their presence is approximately taken into
account by using an effective local target potential VT with the
appropriate screening effect.

As a consequence of the outlined procedure, an explicit in-
troduction of N passive electrons into the transition amplitude
for process (22) is avoided altogether. In this way, the original
many-body rearrangement collision is reduced to a purely
four-body scattering problem. In the present work, we will
employ the Roothan-Hartree-Fock (RHF) atomic model for the
target. According to this model, the nonlocal atomic potential
is approximated by an effective Coulomb interaction. This is
an effective interaction VT conceived as a pure Coulombic
target potential VT (x2) = −Zeff

T /x2. Here Zeff
T is the effective

nuclear charge. The value of Zeff
T is determined, as suggested

in Ref. [1], from the relation Zeff
T = ni(−2ERHF

T )1/2. The
quantity ERHF

T is the RHF orbital energy and ni is the principal
quantum number of the target electron to be captured. The RHF
energies ERHF

T are computed within the self-consistent-field
method [53] and their values are known to be in close agree-
ment with the experimentally determined binding energies.
For the initial bound state of the active electron (e2) from
the multielectron target, we will use the RHF wave function
given as a linear combination of the normalized Slater-type or-
bitals (STOs) [53] via ψRHF

T (�x2) = ∑Ni

k=1 Ckχ
(αk)
nklimi

(�x2), where

χnklimi
(�x2) =

√
(2αk)1+2nk /(2nk)!x2

nk−1e−αkx2Yli ,mi
( �̂x2). Here

Ck and αk are the variational parameters and nk is the orbital
number. The upper summation index Ni in ψRHF

T (�x2) is the
total number of STOs used in describing a given shell of
the target from which capture is taking place. In Ref. [53],

the values of Ni for many atomic systems are listed along with
all the other relevant parameters.

As stated, a direct consequence of the outlined simplifi-
cations is a reduction of the multielectron process (22) to a
four-body problem of the general type:

(ZP ,e1) + (
Zeff

T ,e2
) → (ZP ,e1,e2) + Zeff

T . (23)

In the present paper, as an illustration of collisions of the
kind (22), a helium atom is considered as the target. The quoted
RHF wave function from Ref. [53], specifically for He(1S),
is ϕRHF

T (�x2) = (1/
√

π )
∑5

i=1 Cie
−ζix2 , where C1 = 1.296 27,

C2 = 0.818 831, C3 = 0.376 271, C4 = −0.165 751, C5 =
0.051 483, ζ1 = 1.417 14, ζ2 = 2.376 82, ζ3 = 4.396 28, ζ4 =
6.526 99, ζ5 = 7.942 52, ERHF

T = −0.917 95, and Zeff
T =

1.354 954.

Expressions for the total and differential cross sections

In the case of arbitrary values of the projectile and
target nuclear charges ZP and ZT , respectively, the general
expression for the total cross sections is given by

Q
(
πa2

0

) = 1

2π2v2

∫ ∞

0
dη η|Tif (�η)|2. (24)

In the computations of the total cross sections from (24),
three-dimensional quadratures are performed numerically.
Throughout the computations, the Gauss-Legendre quadrature
rule is employed for the numerical integration over τ and t

according to (21). The remaining integration over η is also
carried out by means of the Gauss-Legendre routine, after
performing the change of variable η = √

2(1 + z)/(1 − z),
where z ∈ [−1,+1], as suggested in Ref. [54]. This latter
change of variable is important, since it concentrates the
integration points near the forward cone, which provides the
main contribution to the total cross section. The branch-point
singularity is only apparent at z = 1, since it disappears
altogether after analytical scaling of the integrand.

In addition to the total cross sections, we are presently
interested in the computation of the angular distributions
of the projectiles scattered into the solid angle � = {θ,φ}.
Comparisons of the theoretical and experimental differen-
tial cross sections will be made for single-electron capture
in the He+-He collisions. In this case we have ZP = 2,
so the remaining phase factor (ρv)2iνf from (9) becomes
unity, (ρv)2iνf ≡ (ρv)2iZT (ZP −2)/v = 1. Therefore, for such
collisions, the angular distributions can be computed by simply
squaring the absolute value of the transition amplitude with no
recourse to the Fourier-Bessel transform [1]. Then the formula
for the differential cross sections in the center-of-mass system
becomes

dQ

d�

(
a2

0/sr
) = μ2

4π2
|Tif (�η)|2. (25)

The scattering angle θ in � = {θ,φ} is defined by reference to
η through η = 2μv sin(θ/2).

III. RESULTS OF NUMERICAL COMPUTATIONS

Using (24), numerical computations of the total cross
sections are presently carried out for the following charge
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exchange processes:

4He+(1s) + H(1s) → 4He(1s2) + H+, (26)

4He+(1s) + 4He(1s2) → 4He(1s2) + 4He+(1s), (27)

7Li2+(1s) + 4He(1s2) → 7Li+(1s2) + 4He+(1s). (28)

On the other hand, by employing (25), computations of the
differential cross sections are performed for the electron
transfer process:

3He+(1s) + 4He(1s2) → 3He(1s2) + 4He+(1s). (29)

Note that among all these listed processes, only (28) exhibits
both charged scattering aggregates (in the exit channel). In the
other processes (26), (27), and (29), only one scattering particle
is charged. Nevertheless, the presented theory is general and
as such applicable to all the relevant processes irrespective
of whether the scattering particles are charged or not. This
is because whenever the electronic Coulomb wave functions
are used to describe the distortions of the unperturbed channel
states, this must be balanced out by the introduction of the
corresponding Coulomb asymptotic phases for the relative
motions of heavy nuclei in order to preserve the correct
Coulomb boundary conditions. In the BCIS-4B method, at
least one such balancing Coulomb phase survives. This is
the case with all the above processes (26)–(29). This is the
reason for imposing the correct boundary conditions even
when only one of the scattering particles is charged, as in
Eqs. (26), (27), and (29). Recall that Cheshire [46] introduced
the correct Coulomb boundary conditions within the three-
body continuum distorted-wave method for the prototypal
charge exchange in the H+ + H → H + H+ collisions, even
though no Coulomb interaction is present between protons and
neutral hydrogen atoms in the entrance and exit channels.

A. Total cross sections: Theories versus experiments

The eikonal approximation (13) has been widely used
in the framework of the different three- and four-body
methods [1,3,4]. Justification of such an approximation can
be demonstrated, e.g., in the case of single capture in the
p-He and He2+-He collisions by means of the CB1-4B
method [55] and the four-body Coulomb-Born distorted-wave
(CBDW-4B) method [56,57], which also obeys the correct
boundary conditions. There are two differences between the
CBDW-4B and CB1-4B methods. One is that the former and
the latter employ the full Coulomb wave functions and the
corresponding Coulomb logarithmic phases, respectively, for
the relative motion of heavy particles. The other is that the
CB1-4B method uses the forward-angle simplification (13),
whereas the CBDW-4B method does not. In other words,
the CB1-4B method is the eikonal version of the fully-
quantum-mechanical CBDW-4B method. Of course, in the
post-transition amplitude, both the CBDW-4B and CB1-4B
methods have the same perturbation potential Vf . Detailed
comparisons between the CBDW-3B and CB1-3B approxi-
mation for processes with three-body charge exchange have
been made in Ref. [58] with the outcome of having virtually
the same cross sections in both methods. Further, and this
is also important, it was specifically shown in Ref. [58] that

FIG. 1. Theoretical total cross sections Q (cm2) for single
charge exchange as a function of the laboratory incident energy
E (keV/amu). The curves show the results obtained by means
of the CB1-4B method [55] for the process H+ + He(1s2) →
H(1s) + He+(1s) (lower curve) and the process He2+ + He(1s2) →
He+(1s) + He+(1s) (upper curve). The open circles represent the
theoretical results of the CBDW-4B method [56,57] for the mentioned
processes. All the computations were carried out using the same
one-parameter wave function of Hylleraas for the helium target,
He(1s2).

the cross sections in the CBDW method at intermediate and
high impact energies remained practically unaltered by the
mass approximations for the position vectors of heavy nuclei,
such as �ri ≈ �R and �rf ≈ − �R, within the arguments of the
confluent hypergeometric functions for the relative motion of
heavy particles.

Presently, a comparison of the total cross sections for
single-electron capture predicted by the CBDW-4B [56,57]
and the CB1-4B [55] methods is made in Fig. 1 for the
p-He and He2+-He collisions at impact energies between
30 and 1000 keV/amu. As can be seen from this figure,
both methods give nearly the same results. As a further
test, which is extended to higher impact energies than those
in Fig. 1, we have carried out another computation of the
cross sections. Namely, we use the fully-quantum-mechanical
boundary-corrected continuum intermediate state (QBCIS)
method without the eikonal hypothesis. First, as opposed to
the BCIS-4B method, the forward-angle simplification (13),
as a part of the eikonal approximation, is not employed in the
QBCIS-4B method. Second, regarding the relative motions of
heavy particles, the QBCIS-4B method uses the full Coulomb
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wave functions, as per (2) and (4) in the initial and final
scattering states, respectively, in lieu of the corresponding
logarithmic Coulomb phases of the BCIS-4B method. Thus,
as far as the eikonal approximation is concerned, especially
for the relative motions of heavy particles, the difference
between the pair of the second-order methods (QBCIS-4B
and BCIS-4B) is precisely the same as the difference between
the corresponding first-order methods (CBDW-4B and CB1-
4B). To compare the QBCIS-4B and BCIS-4B methods,
we consider single charge exchange in the 4He+(1s) +
H(1s) collisions at three impact energies of 5, 7.5, and
12.5 MeV/amu. With this goal, it is sufficient for the purpose
of this second test to employ only the term −ZT /x1 in
the perturbation potential Vf from (6). The ensuing results
of the QBCIS-4B and BCIS-4B methods are shown in Fig. 2,
where they can be seen to be in perfect agreement. Taken to-
gether, Figs. 1 and 2 for high-energy (ki,f � 1) heavy-particle
(MP,T � 1) collisions testify to the proper use of the standard
eikonal approximation in the BCIS-4B (present computation)
and also, retrospectively, in the CB1-4B method [55]. This in
turn confirms the validity of all the employed relations in the
BCIS-4B and CB1-4B methods via �̂vf ≈ �̂vi and �ri,f ≈ ± �R,
as well as N±(νi,f ) 1F1(∓iνi,f ,1, ± iki,f ri,f ∓ i�ki,f · �ri,f ) ≈
(±ki,f ri,f ∓ �ki,f · �ri,f )±iνi,f ≈ (±μvR − μ�v · �R)±iνi,f .

Next we proceed to illustrate the BCIS-4B method for the
processes listed in Eqs. (26)–(28). First, we will consider
the asymmetric process (26). This collision between the
helium ions (He+) and the hydrogen atoms (H) is one of
the simplest and most basic collision problems involving
two composite atomic systems. The wave functions for these
systems in the entrance channel are known exactly, whereas
the state of the helium atom in the exit channel is described
by means of the configuration-interaction wave function
(1s1s ′) from Ref. [59] with the radial static correlations
ϕf (�s1,�s2) = (N/π )(e−α1s1−α2s2 + e−α2s1−α1s2 ), where N−2 =
2[(α1α2)−3 + (α1/2 + α2/2)−6]. The following variationally
determined parameters are used for He(1s2): α1 = 2.183 171
and α2 = 1.188 530. The ground-state energy of the He atom
for this wave function [59] is Ef = −2.875 661 4. The use of
this simple representation of the He atom (with about 90% of
radial correlations) is justified and should give a reasonable
description of the final ground-state for this particular process.
Previously, this wave function from Ref. [59] has successfully
been used in many studies (see, e.g., the reviews [3,4]). The
results of the computations of the total cross sections for
this process at impact energies 50–5000 keV are displayed in
Fig. 3(c). The explicit computations of the total cross sections
are carried out only for capture into the final ground state 1s2.
In Fig. 3(c), we have compared the present cross sections
from the BCIS-4B approximation with the corresponding
results obtained by means of the CB1-4B [41] and CDW-
4B [43] methods, as well as with a number of experimental
findings [15,19,21]. All the computations presented in this
figure refer to the post form. The cross sections of the BCIS-4B
approximation are observed to be in good agreement with
measurements at impact energies E � 100 keV. Moreover, all
three computations yield quite similar results at intermediate
and higher impact energies. As expected, at lower impact
energies, considerable differences exist among the BCIS-4B,
CB1-4B, and CDW-4B approximations.

FIG. 2. Theoretical total cross sections Q (cm2) for single charge
exchange in the 4He+(1s) + H(1s) collisions as a function of the labo-
ratory incident energy. The shown cross sections include only the term
−ZT /x1 in the perturbation potential Vf from (6). The open circles
represent the results from the QBCIS-4B method, whereas the solid
line shows results from the BCIS-4B method. All the computations
were performed using the two-parameter wave function of Silverman
et al. [59] for the helium atom in its ground state, He(1s2). The
BCIS-4B method is the eikonal version of the QBCIS-4B method,
which is the fully quantum-mechanical four-body boundary-corrected
continuum-intermediate-state approximation. For the relative motion
of heavy particles in the initial and final states, the QBCIS-4B and
BCIS-4B methods utilize the full Coulomb wave functions and the
associated logarithmic phases, respectively. The other difference is
that the BCIS-4B method employs the forward-angle simplification
of the eikonal type in the arguments of plane waves as per (13),
whereas the QBCIS-4B method uses directly �ki · �ri + �kf · �rf without
resorting to the simplification (13).

The results from the BCIS-4B approximation for the
He+-He collisions in the energy range from 40 to 3000
keV/amu are plotted in Fig. 3(b). A comparison between the
theoretical results and numerous experimental data shown in
this figure also reveals good agreement above 100 keV/amu.
As anticipated with high-energy methods, all the theoretical
curves (BCIS-4B, CB1-4B, and CDW-4B) displayed in this
figure overestimate the experimental data at lower impact
energies, especially in the case of the CDW-4B model [43].

In addition to electron capture into the ground 1s2 final state,
which is described in the present work, several other processes
can also occur. These are electron transfer to an excited state
of the atomic system with the projectile nucleus, electron

032709-8



BOUNDARY-CORRECTED FOUR-BODY CONTINUUM- . . . PHYSICAL REVIEW A 96, 032709 (2017)

FIG. 3. Total cross sections (in cm2) as a function of the
laboratory incident energy E (keV/amu). Curves in a are for the
7Li2+ + 4He+ → 7Li+ + 4He+ collisions. All the results (theoretical
and experimental) for this process are multiplied by 10. The experi-
mental data are from [10] (�). Curves in b are for the 4He+ + 4He →
4He + 4He+ collisions. The experimental data are from Ref. [11] (�),
Ref. [16] (�), Ref. [14] (◦), Ref. [13] (�), Ref. [22] (�), and Ref. [23]
(�). Curves in c are for the 4He+ + H → 4He + H+ collisions. All
the results (theoretical and experimental) for this process are divided
by 100. The experimental data are from Ref. [19] (•), Ref. [15]
(�), and Ref. [21] (�). The solid curves represent the total cross
sections in the BCIS-4B method (present computation). The dotted
curves display the results from the CDW-4B method [43]. The dashed
curves depict the results from the CB1-4B method [41,42]. All the
computations refer to the post forms and have been carried out by
using the two-parameter wave function of Silverman et al. [59] for
the Li+(1s2) and He(1s2) in the exit channels and the RHF wave
function [53] for the helium target in the entrance channels.

capture accompanied by target excitation [transfer excitation
(TE)], or processes where one target electron is captured
whereas the remaining target electron is ionized (transfer
ionization). Schöffler et al. [60] measured the projectile
scattering-angle dependence for various electronic final states
for single-electron capture in the He+-He collisions at impact
energies between 60 and 630 keV/amu. They investigated the
ratio of different capture channels to capture into the ground
state, which is usually a dominant channel. Further, formation
of the singly and doubly excited states in the He+-He collisions
was the subject of the investigations in Refs. [61,62]. Winter
and Lin [63] computed cross sections for electron capture
into each singly excited state of He up to 4 1,3D by the
He+ impact on He in the energy range 0.1–10 MeV using

the Jackson-Schiff-Bates-Dalgarno version of the first Born
approximation [1]. They showed that the contributions to the
total cross section from excited states for these collisions
were 13%, 15%, and 9% at impact energies of 0.1, 1.0, and
10 MeV, respectively. The experimental data for the sum of
all cross sections corresponding to the 2lnl′ configuration in
the TE process for the He+-He collisions have been reported
in Ref. [64]. Therein, the obtained results were found to be
smaller than the cross sections for all the states by about
100, 45, and 60 times at impact energies of 50, 100, and
150 keV/amu, respectively. The presently used BCIS-4B the-
ory describes only capture to the 1s2 final state. Nevertheless,
on the basis of the above-mentioned facts and according to
a smaller contribution from the excited states by a factor of
n−3

f for nf � 2 (the Oppenheimer scaling law) relative to the
ground state (nf = 1) [1], it is anticipated that the inclusion of
electron capture into the excited states would not significantly
influence the presently reported total cross sections.

The theoretical results for formation of the Li+ ion in the
Li2+-He collisions at impact energies 1–20 MeV are shown in
Fig. 3(a). The two-parameter wave function from Ref. [59]
for the Li+(1s2) ion in the exit channel is utilized with
the variationally determined parameters α1 = 3.294 909 and
α2 = 2.078 981 and with the associated ground-state energy
Ef = −7.248 748. Our total cross sections are compared
with the experimental data from Ref. [10]. As can be seen
from this figure, the BCIS-4B model slightly underestimates
the experimental data. In Fig. 3(a), the results from the
CB1-4B approximation [42] are also plotted. The BCIS-4B
method provides cross sections that are smaller than the
associated results of the CB1-4B approximation throughout
the considered energy range. The difference between the
findings of the BCIS-4B and CB1-4B methods increases as
the impact energy is augmented. Thus, the difference between
the results of the BCIS-4B and CB1-4B methods can be
directly attributed to the importance of the full Coulomb
electronic continuum intermediate states that are retained and
ignored in the former and latter approximations, respectively.
As can be seen in Fig. 3(a), at higher impact energies, the
BCIS-4B method gives results that are similar to those from the
CDW-4B method [43]. It should be recalled that in the CDW-
4B method, the electronic continuum intermediate states are
included in both channels through the full Coulomb waves. The
presently used impact energy intervals for the processes (26)–
(28) are dictated by the available experimental data. The
obtained theoretical total cross sections for processes (27)
and (28) are multiplied by 2 to account for the presence of
two electrons in the K shell of the helium target.

B. Differential cross sections: Theories versus experiments

Next we turn our attention to differential cross sections
that provide a more sensitive test for all the theoretical
models. Figure 4 shows the results of the BCIS-4B method
for differential cross sections in the 3He+ + 4He collisions
via (29) at impact energies of 300 keV/amu (curve a) and
630 keV/amu (curve b). These theoretical findings are
compared with the corresponding measured data reported
in Ref. [9]. The differential cross sections from Ref. [9]
have been measured with a high resolution using cold-target
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FIG. 4. The data near curve a show the differential cross sections
as a function of scattering angle θ ≡ θlab(mrad) in the laboratory
frame of reference at the incident energy E = 300 keV/amu for
single-electron capture in the 3He+ + 4He → 3He + 4He+ collisions.
The solid curve represents the theoretical results obtained by using
the post form of the BCIS-4B method (present computations). The
ground state of He(1s2) in the exit channel is described by means
of the two-parameter wave function of Silverman et al. [59]. The
RHF wave function for the helium target in the entrance channel has
been used. The experimental data are from [9] (�). The data near
curve b are the same as for curve a, except for the incident energy of
E = 630 keV/amu. Both the theoretical and experimental results at
this energy are divided by a factor of 10.

recoil ion momentum spectroscopy. At small scattering angles,
associated with a dominant contribution to the total capture
cross section, the transverse momentum exchange in electron
transfer is mediated by the electron. However, at larger
deflection angles, the scattering is dominated by momentum
exchange between the nuclei. The BCIS-4B theory can be
seen in Fig. 4 to be in good agreement with the experimental
data [9] at small scattering angles. Nevertheless, there is a
difference between the measurement and the theory at larger
angles that belong to the region of the Rutherford collision
for heavy aggregates. Therein, despite a proper inclusion of
the Rutherford collisional effect, the BCIS-4B method still
overestimates the experimental data. One of the possible
reasons for this discrepancy could be the present reduction
of a five-body to a four-body problem. More experimental
measurements on angular distributions of scattered heavy
projectiles would be welcome for further tests of high-energy
methods for rearranging collisions.

The BCIS-4B approximation predicts a noticeable Thomas
peak, which for the considered collision system appears at
θlab = (1/MP ) sin 600 � 0.153 mrad. On the other hand, the
experimental data [9] do not exhibit the Thomas peak, because
the impact energy is not high enough to allow detection of this
structure. The BCIS-4B model exhibits two interference-type
dips (masked and as such unobserved by the measurement)
located before and after the Thomas peak. These dips are due
to partial cancellations of the repulsive and attractive potentials
in the perturbation interaction Vf from (6), as well as to
the interference between the full electronic Coulomb wave

function and the Coulomb logarithmic phase for the relative
motion of heavy particles.

IV. CONCLUSION

Using the four-body boundary-corrected continuum-
intermediate-state method, we have investigated single-
electron capture from one- and multielectron targets colliding
with hydrogenlike projectiles. The total scattering wave
functions of the BCIS-4B approximation satisfy the correct
boundary conditions in both the entrance and exit channels,
according to the well-known principles of quantum scattering
theory. The captured electron is treated in an asymmetric
manner in the entrance and exit channels. Namely, the
BCIS-4B method is a hybrid approximation, which is the
combination of the four-body versions of the continuum
distorted-wave method, in the entrance channel and the
boundary-corrected first Born method in the exit channel.
The associated perturbation potential in the post form of
the transition amplitude coincides with the corresponding
interaction encountered in the CB1-4B method. The BCIS-4B
method accounts for the continuum intermediate states of the
captured electron in the entrance channel through the use of the
full Coulomb wave function centered on the screened projectile
nucleus charge. We have carried out an analytical reduction of
the original nine-dimensional integral for the post form of the
transition amplitude to a two-dimensional real integral, which
is readily amenable to efficient numerical computations.

The obtained theoretical total cross sections for the studied
charge transfer processes in the He+-H, He+-He, and Li2+-He
collisions at intermediate and high impact energies are found
to be in very good agreement with the available experimental
data. Comparisons are made between the results from the
BCIS-4B and CB1-4B methods. The latter method ignores the
continuum intermediate states of the electron and includes only
the logarithmic Coulomb phase distortions due to the relative
motion of heavy particles. This comparison shows that the
full Coulomb electronic continuum intermediate states of the
captured electron play a very important role for single-electron
capture. Reduction of the total cross sections at higher impact
energies is observed in the BCIS-4B method in comparison
with the corresponding results of the CB1-4B method. This
latter method incorporates only the direct collisional path
without any double-electron scattering effects. Such a pattern
can be explained by the following argument. The captured
electron is intermediately found in the on-shell continuum
state of the screened projectile ion with the Coulomb point
charge ZP − 1 prior to the actual capture. Since the electron
is not staying in this continuum state in the final stage of
the collision, the probability for single-electron transfer to a
discrete state in the projectile Coulomb field is reduced. This
reduction is more pronounced in the case of the asymmetric
charge exchange in the Li2+-He collisions at higher impact
energies.

The differential cross sections are computed for the He+-He
collisions at intermediate impact energies such as 300 and
630 keV/amu. In this five-body problem, the presently adopted
atomic model accounts for the presence of the noncaptured
target electron through its screening effect and describes the
captured electron by means of the RHF wave function [53].
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Despite such a reduction of a five-body to a four-body
problem, the results obtained in the BCIS-4B method are in
good agreement with the associated measured data. Both the
predicted and the measured angular distributions are sharply
peaked in a very narrow forward cone, where the agreement
between the BCIS-4B theory and the experiment is very good.
Additionally, the present theory for differential cross sections
predicts another peak at the so-called critical angle. This
supplementary structure is a quantum-mechanical counterpart
of the Thomas peak associated with the billiard-type, classical
Thomas double scattering effect. Despite the achieved high
angular resolution in the measurement [9] for charge exchange
in the He+-He collisions, the Thomas peak has not been
detected. One of the reasons for this lies in the occurrence
that at a relatively low incident energy, such as 630 keV/amu,
the Thomas peak might be obscured by convolution of the
experimentally determined angular distribution with a finite
resolving power of the measuring apparatus. In the future,
for a more stringent test of second-order distorted-wave
theories, such as the BCIS-4B method, it would be desirable
to also provide the apparatus resolution profile, along with the
measured angular distributions of scattered projectiles. Such a
point-spread function could advantageously be used to decon-
volve the measured apparent differential cross sections. This
could possibly unfold the Thomas peak in measurements even
at relatively low impact energies of the order of 1000 keV/amu,
at which the BCIS-4B method predicts a clear signature for
double-scattering events in the presently examined charge
exchange processes. Alternatively, for still better agreement
between the BCIS-4B method and experiments on angular
distributions, the theory could be folded with a point-spread
function (whenever available) due to the measuring device, as
has earlier been done in, e.g., Ref. [2].
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APPENDIX

Quantities ν1 and δ1 from (21) in the main text are defined
as ν1 = ν2 + ν3 and δ1 = δ2 + δ3, where

ν2 = 2F (
1)
[
3p + 2(3p
1 − 1)D(
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− 2(p
1 − 1)D(
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)
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p = (1 − t)ZT


2
1

, F (λ) = [B(λ)]iξ

Q2
1 + λ2

,

B(λ) = 2(vλ + i �Q1 · �v)

Q2
1 + λ2

, (A5)

C(λ) = v

λB(λ)
− 1, A(λ) = λ2

Q2
1 + λ2

, D(λ) = A(λ)

λ
,


 = 
1 + λk, λ = 
 or 
1, (A6)

A(λ)
α = 1 − 4A(λ), B(λ)

α = 1 + 2A(λ)C(λ)
α ,

C(λ)
α = C(λ)[4 + (1 − iξ )C(λ)], (A7)

A
(
)
β = 6[1 − 2A(
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(
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β = 2A(
)C

(
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(
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D
(
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β = 2 − (1 + iξ )C(
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β = C(
){18 + 9(1 − iξ )C(
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+ (1 − iξ )(2 − iξ )[C(
)]2}. (A9)
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