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Time-dependent spin-density-functional-theory description of He+-He collisions
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Theoretical total cross-section results for all ionization and capture processes in the He+-He collision system
are presented in the approximate impact energy range of 10–1000 keV/amu. Calculations were performed within
the framework of time-dependent spin-density functional theory. The Krieger-Li-Iafrate approximation was used
to determine an accurate exchange-correlation potential in the exchange-only limit. The results of two models,
one where electron translation factors in the orbitals used to calculate the potential are ignored and another
where partial electron translation factors are included, are compared with available experimental data as well as
a selection of previous theoretical calculations.
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I. INTRODUCTION

The general ion-atom collision system carries active elec-
trons on both the target and the projectile. A prototypical
example from this class of problem is the He+-He system
which consists of a target with two electrons and a single
electron on the projectile. A popular alternative is to consider
an atomic hydrogen target (see, for example, Refs. [1,2]).
However, in He+-H collisions care must be taken when treating
the distinct spin-singlet and triplet initial states [3].

A variety of charge transfer processes can occur in He+-He
collisions. The processes can be broadly categorized into those
that involve one active electron,

He+ + He → He+ + He+ + e−, (1)

He+ + He → He + He+, (2)

He+ + He → He2+ + He + e−, (3)

those that involve two active electrons,

He+ + He → He+ + He2+ + 2e−, (4)

He+ + He → He2+ + He+ + 2e−, (5)

He+ + He → He + He2+ + e−, (6)

and those that involve three active electrons,

He+ + He → He2+ + He2+ + 3e−. (7)

Additionally there is the channel where no charges are trans-
ferred and the two channels that result in the production of He−.
Cross sections for the latter are known to be negligible [4,5].

Total cross sections for the processes described in Eqs. (1)–
(7) have been calculated within a spin-density-functional-
theory [6] framework, a generalization of time-dependent
density functional theory (TDDFT) [7,8] to spin-dependent
systems. The spin-polarized nature of the system accentuates
the importance of exchange effects, which in turn necessitates
an accurate exchange potential. An exploration of a procedure
for calculating such a potential comprises the bulk of this work.

*baxterma@yorku.ca
†tomk@yorku.ca

Experimental results for the various outcome channels over
a large range of impact energies [9–17] provide a useful
benchmark for this problem. Results can also be compared
with the theoretical work of other groups. These calculations
employ a variety of methods including classical models such
as the over the barrier model [18], the Bohr-Lindhard model
[19,20], and the classical trajectory Monte Carlo method
[21]. Quantum mechanical calculations have been carried out
using the local plasma approximation [22], the independent
event model [23], and a plethora of perturbative calculations
[24–30], the majority of which focus on single capture to
the projectile [Eq. (2)]. A calculation that would address all
physical outcome channels is still outstanding. One of the
primary objectives of the present work is to fill this void.

We begin our discussion with an overview of some
relevant aspects of time-dependent density functional theory in
Sec. II A. This is followed by a description of the method used
to calculate a time-dependent exchange potential in Sec. II B.
This section also includes some details of the two-center basis
generator method which was used to solve for the one-particle
density. The theory section closes with a description of
the final-state analysis for extracting the various outcome
probabilities (Sec. II C). The results of our calculations are
presented in Sec. III. Finally conclusions drawn from these
studies are offered in Sec. IV.

Atomic units (h̄ = me = e = 1) are used unless stated
otherwise.

II. THEORY

A. TDDFT

A system of N particles may be described by an N -particle
wave function �(t) whose evolution is governed by the time-
dependent Schrödinger equation (TDSE)

i
∂�(t)

∂t
= Ĥ (t)�(t), (8)

with a Hamiltonian Ĥ which may be written as

Ĥ (t) = T̂ + V̂ee + V̂ext(t), (9)
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where T̂ is the kinetic energy, V̂ee are the two-particle inter-
actions, and V̂ext is a time-dependent, one-particle interaction
potential.

The computationally demanding two-body term V̂ee makes
direct solutions of the TDSE difficult. TDDFT [7,8] offers a
solution to this problem. By making use of the one-to-one
correspondence between the one-particle density

n(r1,t) = N
∑

σ1...σN

∫
d3r2 . . . d3rN |�(x1, . . . ,xN,t)|2 (10)

and the external potential V̂ext, where xi = (ri ,σi) label the
position and spin of the ith particle, guaranteed by the Runge-
Gross theorem [6,31], the interacting system may be mapped
onto a system of noninteracting particles.

This so-called Kohn-Sham (KS) system consists of N spin
orbitals ϕjσ which evolve according to the time-dependent KS
equation

i
∂

∂t
ϕjσ =

(
−�

2
+ vσ

KS[n↑,n↓](r,t)
)

ϕjσ (r,t), (11)

such that

n(r,t) =
∑

σ

Nσ∑
j=1

|ϕjσ (r,t)|2. (12)

In Eq. (11) nσ , σ ∈ {↑,↓} are the spin-up and spin-down
one-particle densities given by

nσ =
Nσ∑
j=1

|ϕjσ |2, (13)

Nσ is the number of particles of a given spin projection σ , and
vσ

KS is the KS potential. The potential may be decomposed into
several simpler objects:

vσ
KS[n↑,n↓] = vext + vH[n] + vσ

xc[n↑,n↓]. (14)

The first term in this expression is the external potential, which
is the potential V̂ext of Eq. (9) on the single-particle level. For
the He+-He collision system considered in this work vext may
be written, making use of the semiclassical approximation, as

vext(r,t) = −2

r
− 2

|r − R(t)| , (15)

where R(t) = (b,0,V t) is the straight-line trajectory of the
projectile with velocity V and impact parameter (distance of
closest approach) b.

The next term in Eq. (14) is the Hartree screening potential

vH(r,t) =
∫

n(r′,t)
|r − r′|d

3r ′, (16)

which is an explicit functional of the full one-particle
density. The last term is the exchange-correlation potential
which encodes the complicated electron-electron interaction
potential into the language of the noninteracting system. For
convenience vσ

xc is often further broken down into separate
exchange and correlation potentials:

vσ
xc = vσ

x + vσ
c . (17)

Splitting vσ
xc into an exchange and correlation part facil-

itates the application of the x-only approximation where the
correlation potential is taken to be zero (vσ

c = 0). Such a model
which ignores dynamic correlation is usually referred to as an
independent electron model (IEM). Within this approximation
vσ

x may be determined exactly via the optimized potential
method (OPM) [32–34]. The complexity of the OPM makes it
prohibitively difficult to implement in general. As a secondary
option one may instead make use of the Krieger-Li-Iafrate
approximation [35–37] (KLI). In many situations potentials
generated using the KLI approximation are numerically close
to those produced by the full OPM [38]. The success of
the KLI approximation is due to the fact that it preserves
several properties of the exact potential. In particular, the
KLI approximation ensures the exact cancellation of the
self-interaction in the Hartree term and thus maintains the
correct asymptotics,

lim
r→∞ vσ

x (r) = −1

r
. (18)

B. The exchange potential

The one-particle density was determined by solving
Eq. (11) using the two-center basis generator method [39] (TC-
BGM). As mentioned above this relies upon the specification
of an exchange-correlation potential. While the correlation
potential may be ignored, that is, the x-only approximation
may be used (with some understanding of the consequences),
an accurate exchange potential is essential for a precise
description of the He+-He collision system. The spin-polarized
nature of the system, which emphasizes exchange effects,
makes this fact indisputable. To this end the KLI approxi-
mation to the OPM was employed in the calculation of vσ

x .
The ground-state density functional theory (DFT) scheme

of Ref. [40] has been adapted to calculate a time-dependent
exchange potential. At any instant of time, t , the He+-He
system may be regarded as a diatomic quasimolecule with
an internuclear distance R(t) =

√
b2 + Z(t)2, where b is the

impact parameter and Z is the position of the projectile as
described below Eq. (15). If at each time step of the TC-BGM
the time-dependent KS orbitals ϕσj (r,t) are fed into the KLI
functional, a time-dependent exchange potential, vσ

x [{ϕσj }; t],
is obtained:1

vKLI,σ
x (r,t) = 1

2nσ (r,t)

Nσ∑
j=1

{[
eσ

x,j (r,t) + c.c.
]

+ |ϕjσ (r,t)|2�jσ (t)
}
, (20)

�jσ (t) =
∫

d3r
{|ϕjσ (r,t)|2vKLI,σ

x (r,t) − eσ
x,j (r,t)

}
+ c.c., (21)

1The normalization of the KLI potential is chosen so that

vKLI
x (r,t)

|r|→∞−−−→ 0. (19)
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eσ
x,j (r,t) = −

Nσ∑
k=1

ϕ∗
jσ (r,t)ϕkσ (r,t)

×
∫

d3r ′ ϕ∗
kσ (r′,t) ϕjσ (r′,t)

|r − r′| . (22)

In Ref. [40] the KLI scheme has been implemented
for eigenstates of a total KS potential which is invariant
against rotation around the internuclear axis. This restriction
complicates the use of the corresponding KLI potential, since
the present ϕjσ orbitals do not exhibit any specific symmetry.

In order to detail a solution to the symmetry problem a more
thorough description of the TC-BGM is necessary. Within the
TC-BGM the KS orbitals are represented in a nonorthogonal
basis,

ϕσj (r,t) =
∑

c∈{P,T }

∑
k,L

d
σj

ckL(t)χ̃L
ck(r,t), (23)

where

χ̃L
ck(r,t) =

{
eivT ·rχL

ck(r,t), c = T ,

eivP ·rχL
ck(r,t), c = P,

(24)

which are the basis functions with electron translation factors
(ETFs) included. The basis functions themselves are given by

χL
ck(r,t) = WP (r,t,εP )Lχ0

ck(r), (25)

with

WP (r,t,εP ) = 1 − e−εP |rT −R(t)|

|rT − R(t)| , (26)

where rT represents the position vector with respect to the
target center.

In Eq. (25) the functions χ0
ck are the bound orbitals for the

target helium atom (c = T ) and the projectile helium ion (c =
P ). Additional states generated by a target potential operator
are possible (see, for example, Ref. [41]). However, in order
to keep the number of states in the basis to a minimum and
simplify the description only the pseudostates generated with
WP are included. This simplification has proven sufficient in
the past [42]. The remaining regularizer is set to εP = 1. The
complete basis set used may be described in terms of the
maximum L value included for each bound subshell, 1s–4f ,
indexed by k, in the basis. These values are listed in Table I
and total 124 basis states.

It is clear from the above description that only the basis
states corresponding to s-type orbitals will make cylindrically
symmetric contributions to the KS orbitals. The simplest
solution is to only feed the 1s contributions into the KLI
functional. While higher s states are also admissible they
will no longer represent the most occupied subshell, meaning
their inclusion will do little to improve the accuracy of the

TABLE I. Description of the TC-BGM basis expansion.

State 1s 2s 2p 3s 3p 3d 4s 4p 4d 4f

k 1 2 3, 4 5 6, 7 8–10 11 12, 13 14–16 17–20
Lmax 0 0 1 1 2 2 2 3 3 3

description of a given orbital. Leaving out ETFs for the time
being the orbitals will take the explicit form

ϕ1s
σj (r,t) = a

σj

T (t)χ0
T 1(r,t) + a

σj

P (t)χ0
P 1(r,t). (27)

The coefficients are the result of projecting the KS orbitals
onto the two-dimensional subspace spanned by the target and
the projectile 1s states∣∣ϕ1s

σj

〉 = P̂ |ϕσj 〉 =
∑

c1,c2∈{T ,P }
S̃−1

c1c2

∣∣χ0
c11

〉〈
χ0

c21

∣∣ϕσj

〉
, (28)

with S̃−1
c1c2

being the inverse of the overlap matrix

S̃c1c2 = 〈
χ0

c11

∣∣χ0
c21

〉
. (29)

The coefficients are then determined to be

aσj
c =

∑
c1,c2∈{T ,P }

K∑
k=1

L∑
l=0

S̃−1
cc1

S
c2 k l
c 1 0 d

σj

c2kl, (30)

with

S
c2 k2 l2
c1 k1 l1

= 〈
χ

l1
c1k1

∣∣χl2
c2k2

〉
(31)

being the full overlap matrix.
Returning to the question of the ETFs, working in the

rotating center-of-mass frame in which the z direction points
along the internuclear axis the ETFs become

eivT ·r = e
iV
2 (x sin θ−z cos θ), (32a)

eivP ·r = e
iV
2 (z cos θ−x sin θ), (32b)

where θ = arctan b/Z and V is the relative velocity of the
centers, the same velocity appearing below Eq. (15). If we
now introduce a two-centered coordinate system, placing the
foci at the two nuclear centers

x = |R|
2

√
(ξ 2 − 1)(1 − η2) sin φ,

y = |R|
2

√
(ξ 2 − 1)(1 − η2) cos φ,

z = |R|
2

ξη, (33)

it becomes clear that the portion of the ETFs containing x

violates the desired cylindrical symmetry.
Two obvious solutions present themselves. First, one may

simply ignore the ETFs completely. This would amount to
passing the orbitals described by Eq. (27) into the KLI
functional. Alternatively the symmetry-breaking portions of
the ETFs may be dropped. In this case the full 1s-only KS

orbital becomes

ϕ̃1s
σj (r,t) = a

σj

T (t)e− iV z cos θ
2 χ0

T 1(r,t) + a
σj

P (t)e
iV z cos θ

2 χ0
P 1(r,t).

(34)

This will offer at least some of the correction provided by
the full ETF. Unfortunately, as the internuclear coordinate Z(t)
approaches 0 (corresponding to θ = π

2 ) the partial ETF will
tend to 1, meaning that when the target and the projectile are
at their closest, the most active region of the collision, no ETF
will be present.

032708-3



MATTHEW BAXTER, TOM KIRCHNER, AND EBERHARD ENGEL PHYSICAL REVIEW A 96, 032708 (2017)

Regardless of which option is chosen it is important that
vH be determined with the same set of orbitals used in the
calculation of vσ

x , preserving the precise cancellation of the
self-interaction present in the Hartree potential.

C. Final-state analysis

Of interest in any scattering problem is the probability of
finding the system in some final state. If we represent the
state being considered as |f1 f2 f3〉 and the initial state of the
system propagated to some final time tf by |ϕ↑1 ϕ↑2 ϕ↓1(tf )〉,
the exclusive probability to find the system in the given final
state at time tf will be given by

Pf1f2f3 (tf ) = |〈f1 f2 f3|ϕ↑1 ϕ↑2 ϕ↓1(tf )〉|2. (35)

If one assumes that both the propagated and the final states
can be represented as sinlge Slater determinants then the
probability in question may be expressed in the form

Pf1f2f3 (tf ) = det[γff ′(tf )], (36)

where γff ′ is the one-particle density matrix

γff ′ (tf ) =
∑

σ

Nσ∑
j=1

〈f |ϕσj (tf )〉 〈ϕσj (tf )|f ′〉 , (37)

with f and f ′ ∈ {f1,f2,f3}, and the transition amplitudes
〈f |ϕσj (tf )〉 = 〈χ̃ l

ck|ϕσj (tf )〉 (for some k, l, c, and properly
orthogonalized basis functions χ̃ l

ck) readily calculable from the
dynamics. A model of this type which ignores the functional
correlations [43] is consistent with an IEM description.

Alternatively, one could consider the probability to explic-
itly measure the states of some subset of the total number
of particles. These so-called inclusive probabilities can be
expressed in terms of determinants of submatrices of the
density matrix [44].

In the current problem we are interested in those probabili-
ties which correspond to the outcome channels of Eqs. (1)–(7).
In such configurations we find k particles on the projectile,
l particles in the continuum, and 3 − k − l on the target
(0 � k � 3 and 0 � l � 3 − k). The probabilities pkl may be
calculated in terms of sums of inclusive probabilities to find
a given number of particles in the bound states of the target
and the projectile by applying the machinery of Ref. [44] (see,
for example, Refs. [45–47]). With the probabilities in hand the
corresponding total cross section for each channel may then
be calculated from (if we ignore σ10 which includes the elastic
channel and must be treated with more care)

σkl = 2π

∫ ∞

0
bpkl(b)db. (38)

III. DISCUSSION

In what follows all results obtained by propagating the full
KS orbitals in a potential generated from the 1s-only orbitals
of Eq. (27) that include no electron translation factors are
designated by nETF. Those obtained by an application of the
same processes using the 1s-only orbitals, with partial ETFs,
of Eq. (34) are referred to as pETF.

Before discussing the total cross section results we present
some of the lower level features of the calculations. We

0 1 2 3 4 5
b [a.u.]

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

p(
b)

He(↑1) → I

He(↓1) → I

He+(↑2) → I

He(↑1) → He+

He(↓1) → He+

He+(↑2) → He

FIG. 1. Single-particle probabilities for each spin orbital to
transfer between centers (thick lines) and to ionize (thin lines) in
the pETF model for an impact energy of 40 keV/amu.

consider the single-particle probabilities for each electron to
ionize and to switch the nuclear center to which it is bound.
These probabilities can be calculated from the transition
amplitudes. As an example, if ϕ↑1 begins initially on the target
then the single-particle probability to ionize this electron can
be written as

p(He(↑1) → I ) =
∑

c∈{T ,P }

K∑
k=1

L∑
l=1

∣∣〈χ̃ l
ck

∣∣ϕ↑1(tf )
〉∣∣2

(39)

and the single-particle probability to transfer to the projectile
may be written as

p[He(↑1) → He+] =
K∑

k=1

∣∣〈χ̃1
Pk

∣∣ϕ↑1(tf )
〉∣∣2

, (40)

where the probabilities are defined in terms of orthogonalized
orbitals including full ETFs. These probabilities are presented
for the pETF model for an impact energy (EP = 1

2mHeV
2) of

40 keV/amu in Fig. 1. At this impact energy capture is the
the dominant process. As one would expect, the probability
to ionize the more tightly bound He+ electron is consistently
less than that for either of the He electrons. Also of note is
the obvious difference between the two He electrons, a clear
reflection of the implementation of a spin-dependent potential.

Total cross sections for the processes described in Eqs. (1)–
(7) are presented in Figs. 2–8. Where available the results of the
current work are compared with calculations of other groups.
It should be noted that only those calculations that describe the
system quantum mechanically were considered, that is to say,
works that employ approaches such as the classical trajectory
Monte Carlo method are not included.

We begin the discussion by considering the single target
ionization process of Eq. (1). The results for this channel,
σ11, are presented in Fig. 2. Both nETF and pETF are in good
agreement with experiment throughout the full range of impact
energies. As the impact energy increases a slight gap opens
between the two. This trend is, as one would expect, due to
the fact that ETFs should become more relevant as the relative
velocity between the target and the projectile increases. The
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FIG. 2. Total cross section for single ionization of the target.
Theoretical results: pETF (solid line), nETF (dotted line), and CDW-
EIS of Miraglia and Gravielle [27] (dashed line). Experimental data:
Diamonds [14], circles [16], and squares [13].

slightly lower values for the pETF version above 200 keV/amu
make it a better fit to experiment. The underestimation of both
curves below the peak corresponds almost exactly with the
region where σ20 results begin to rise above the experimental
results (see Fig. 4).

Also displayed in Fig. 2 are the continuum-distorted-
wave eikonal-initial-state approximation (CDW-EIS) results of
Miraglia and Gravielle [27]. These results seem to compliment
the results of the present work through the majority of the
impact energy range. One notable exception to this is the
slightly higher cross-section maximum however. As there is
a fairly large spread in the experimental data around this
region it is difficult to say which is more accurate. The results
of Miraglia and Gravielle [27] also begin to diverge as one
approaches lower impact energies. This feature is likely due
in large part to the perturbative nature of the CDW-EIS which
becomes less reliable as one decreases the impact energy.

Next, we consider the results for σ01 [Eq. (3)] shown in
Fig. 3. As with the previous channel both nETF and pETF
results are in reasonable agreement with the experiment where
it is available. Also continuing the trend seen in the σ11 results,
both models begin essentially equal at low impact energies and
separate as EP increases. Both models begin to overestimate
the data above the peak around 200 keV/amu. Once again
the slightly lower pETF results are in better agreement with
experiment. The slight unphysical structures in the curves
below 40 keV/amu seem to correspond with the peaks of
the σ00 channel (not pictured here). This issue is discussed in
greater detail below.

These calculations have been compared with the indepen-
dent event model (IEVM) results of Sigaud and Montenegro
[23]. While the authors do not directly report σ01 they do
present σ02, σ03, and what they call total electron loss (we
denote this by σtotal). Using the relation

σtotal = σ01 + σ02 + σ03 (41)

101 102 103

EP [keV/amu]

0.00

0.02

0.04
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0.12

0.14

σ
01

[1
0−

16
cm

2
]

FIG. 3. Total cross section for single ionization of the projectile.
Theoretical results: pETF (solid line), nETF (dotted line), and IEVM
of Sigaud and Montenegro [23] (dashed line). Experimental data:
Diamonds [14].

one can easily determine σ01 from their disclosed results. Their
values seem to be in much better agreement with experiment
in the high-energy range than either the nETF model or the
pETF model. This can perhaps be explained by the presence of
correlation in the IEVM calculations. As is discussed in more
detail below, both of our models underestimate σ02 and σ03 in
this impact energy range. Keeping in mind that

∑
pkl = 1 the

increase in these channels resulting from the incorporation
of correlation effects, so-called antiscreening in particular,
would be drawn in part from the current channel of focus σ01

resulting in a decrease, putting our results in better agreement
with both the results of Sigaud and Montenegro [23] and the
experimental data.

For the results of single electron capture to the projectile,
the process of Eq. (2) depicted in Fig. 4, both nETF and pETF

models are essentially identical. This is what one would hope
for as they are in good agreement with experiment in the
entire range of impact energies. A possible explanation of
the slight discrepancy between theory and experiment in the
50–150 keV/amu interval is offered by a comparison with
the four-body Coulomb-Born distorted-wave approximation
(CDBW-4B) results of Ghanbari-Adivi and Ghavaminia [30].
The correlation effects included in this model may point to the
slight rise in cross section being related to the fact that we have
employed an IEM approximation. Alternatively, the rise may
be due to a failure of the partial ETF.

The latter explanation may provide a more satisfying
solution to this problem. One would expect that capture
processes should be dominated by the contributions of slow
and close collisions. The region where the nETF and pETF
models start to diverge from experiment is approximately
the region where both models begin to diverge in other
channels [see, for example, σ12 in Fig. 5], that is, the lowest
energies where ETFs are important. Additionally they begin
to agree with experiment once the cross sections begin to
rapidly approach 0, for fast collisions. This would seem to
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FIG. 4. Total cross section for single capture to the projectile.
Theoretical results: pETF (solid line), nETF (dotted line), and
CDBW-4B (post form) of Ghanbari-Adivi and Ghavaminia [30]
(dashed line). Experimental data: Diamonds [14] and circles [16].

be an indication that correct ETFs are important for capture
processes (a fact that should be at least intuitively obvious).

A few words should be spent addressing the choice of the
theoretical calculation to be compared against. Unlike other
channels there exists a relatively large number of works to
select from that fit the criteria listed above. As the majority
of these belong to a family of related perturbative models
[24–30], the latest, that of Ghanbari-Adivi and Ghavaminia,
was chosen. A comparison of the work of Ghanbari-Adivi and
Ghavaminia with several earlier perturbative calculations can
be found in Ref. [30].

With the single-electron processes taken care of, double
target ionization, Eq. (4), the first of the two-electron processes
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σ
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16
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]

FIG. 5. Total cross section for double ionization of the target.
Theoretical results: pETF (solid line) and nETF (dotted line).
Experimental data: Diamonds [14], circles [16], and squares [13].

101 102 103

EP [keV/amu]

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

σ
21

[1
0−

16
cm

2
]

FIG. 6. Total cross section for transfer ionization of the target.
Theoretical results: pETF (solid line) and nETF (dotted line).
Experimental data: Diamonds [14] and circles [16].

is considered next. The results for this channel are presented in
Fig. 5. As with previous channels both nETF and pETF results
appear to be very similar, with a slight edge going to the pETF
model’s marginally lower results above 100 keV/amu. Both
models seem to shift the peak in the cross section to higher
impact energy than experiment would suggest is correct. As
one would expect from an IEM the two models exaggerate
double ionization (see, for example, Refs. [43,48]). As there
are no previous works fitting the conditions for inclusion listed
earlier, little else can be concluded about the results of the
present work.

Another channel where the literature lacks a proper touch-
stone is that of transfer ionization [Eq. (6) shown in Fig. 6].
The trends for σ21 are very similar to those for σ12. As
with the previously discussed process both models are above
experiment and shift the experimental peak to a higher impact
energy. The only significant difference is that this is one of
the few channels where the nETF model tends to give smaller
cross section values and is in slightly better agreement with
experiment than the pETF. The flattening of the curves below
20 keV/amu is an artifact of the TC-BGM becoming less
reliable at the lowest impact energies.

The last two-electron process is simultaneous single ion-
ization of the target and the projectile, Eq. (5). The results for
our nETF and pETF models are presented in Fig. 7. These
results both follow the trend of the data quite closely, arguably
matching the position of the peak in the experimental cross
sections. This channel is the second of two where the nETF
model has a slight edge over the results of the pETF model.
Unfortunately they fall below experiment for the majority of
the impact energy range shown.

A comparison with the IEVM of Sigaud and Montenegro
[23] explains this fact. Sigaud and Montenegro claim to capture
the effects of antiscreening, the direct interaction between
target and projectile electrons, which becomes increasingly
important for projectile ionization processes at larger impact
energies. As the results of the current work are those of
an independent electron model (IEM) they make no effort
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FIG. 7. Total cross section for simultaneous single ionization of
the target and the projectile. Theoretical results: pETF (solid line),
nETF (dotted line), and IEVM of Sigaud and Montenegro [23]
(dashed line). Experimental data: Diamonds [14] and crosses [17].

to capture any correlation effects. Sigaud and Montenegro’s
efforts to capture antiscreening see their results fall within
experiment for their entire extent. Encouragingly, if one were
to extend the curve of Sigaud and Montenegro it would seem to
overlap with the results of the present work, lending credence
to the curve in the region below the cross section peak, where
antiscreening cannot contribute.

Finally we consider the sole three-electron process, simul-
taneous double target and single projectile ionization [Eq. (7)].
The results, presented in Fig. 8, again follow the general trends
found in the previously discussed channels: overestimation
of the cross section peak and a slightly better showing for
the pETF model over the results of the nETF model. Unlike
for previous channels our results are in better agreement
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FIG. 8. Total cross section for simultaneous double target and
single projectile ionization. Theoretical results: pETF (solid line),
nETF (dotted line), and IEVM of Sigaud and Montenegro [23]
(dashed line). Experimental data: Diamonds [14] and crosses [17].

with experiment than those of Sigaud and Montenegro [23],
which overestimate the cross sections to a greater extent and
over a larger impact energy range. As in previous channels
the underestimation of our cross sections at larger impact
energies may be attributed to correlation effects, in particular,
to antiscreening which Sigaud and Montenegro [23] seem to
exaggerate in this channel.

In addition to the outcome channels discussed above there
are three further processes. One, σ10, has been left out as
it involves no charge transfer. The other two, σ00 and σ30,
involve all three electrons bound to either the target or the
projectile. As is pointed out in the Introduction, these channels
should not be considered due to the fact that the production
cross sections for these configurations should be negligible.
While modeling the initial and final states of the system as
single Slater determinants accounts for Pauli exclusion which
precludes all three electrons from occupying the ground state,
there is nothing in the model to stop additional electrons
from capturing and remaining in excited states. The only
recourse, short of implementing a model which contains at
least some functional correlation, is to artificially redistribute
the probability from p00 and p30 into other channels.

Two options immediately present themselves. The first
possibility is to feed the extra probability into the corre-
sponding ionization channels. In other words, p00 and p30

would augment p01 and p21, respectively. With the peak in
σ30 approximately matching that of σ21 in both position and
magnitude this solution would lead to a doubling of the
overestimation present in the σ21 channel. A similar issue
would arise in the lower impact energy range of the σ01

curve. This leaves one with the second option, to put the extra
probability from p00 into p10 and feed p30 into p20. The only
effect this could have on the presented results would be to
increase σ20; however, as σ30 is at worst an order of magnitude
less than σ20, it would provide only a small shift in the curve
displayed in Fig. 4.

One last point must be mentioned before closing this
discussion. Above 500 keV/amu several of the cross-section
curves exhibit minor spurious structures. These are the result
of numerical issues that, above this impact energy, limit the
minimum possible impact parameter for which the calculations
produce results from 0.1 a.u. below 500 keV/amu gradually to
0.8 a.u. at 1000 keV/amu. In Eq. (38) the integrand, b p(b), is
approximated by a cubic spline which is, in turn, integrated to
arrive at a cross section. The structure of the integrand means
that so long as p(0) is finite its value is irrelevant and we always
know the integrand at b = 0. In the best-possible scenario the
lower bound on the error of a cubic spline will scale to the
fourth power in the largest step between knots [49]. The step
size factor in the error bound then increases from 0.0001 to
0.4096, an increase by an approximate factor of 4000. It is
this decrease in the accuracy of the interpolation which results
in the minor structures above 500 keV/amu. The presence of
these unphysical structures is the reason for the lack of a data
point at 1000 keV/amu in Fig. 3.

IV. CONCLUSIONS

In this work we have presented an investigation of the
He+-He collision system within time-dependent spin-density
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functional theory under the constraints of the exchange-
only approximation. An accurate time-dependent exchange
potential was determined through the application of the KLI
approximation. Total cross-section results for all physical
outcome channels were then offered in the approximate impact
energy of range 10–1000 keV/amu for two models: one in
which electron translation factors in the calculation of the
potential were ignored and a second model where partial ETFs
were used. The results of both models are in overall good
agreement with experiment. Additionally, the current work
is the only quantum-mechanical approach which captures all
outcome channels over such a wide range of impact energies.

Without diminishing the results of this work it is necessary
to highlight a few limitations and where the results may
be improved in future iterations. First, the restriction of the
implementation of the KLI functional to systems of cylindrical
symmetry is the impetus for both the 1s-only approximation
as well as the need to consider both the nETF and the pETF
models. Future applications of the procedure laid out in this
work would benefit greatly from a fully three-dimensional
implementation of the KLI functional that makes no symmetry
assumptions.

Comparisons of our results with the theoretical works of
other groups point to the fact that the calculations would also
gain from the inclusion of correlation effects. Treating this

x-only version as a proof of concept, there is nothing, apart
from the added complexity of the calculations, precluding the
addition of dynamic correlation through the application of any
number of ground-state correlation functionals in the future.
It should be noted that such a model would still not offer a
complete description of time-dependent correlation; it would,
for example, lack memory effects [7]. An added difficulty
would be the inclusion of functional correlation effects. In
order to move beyond the IEM single Slater determinant
description of outcome probabilities, one would have to adapt
a model similar to that of Wilken and Bauer [50] used in
Ref. [43] to explicitly spin-polarized systems.
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