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Low-energy electron elastic scattering and impact ionization with hydrogenlike helium in Debye plasmas have
been investigated by employing the exterior complex scaling method. The interactions between charged particles
in the plasmas have been represented by Debye-Hückel potentials. The 1s-1s elastic collision strengths below
the n = 2 excitation threshold of He+ dominated by resonance structures are calculated for different screening
lengths. As the screening strength increases, the resonance peaks studied [2(1,0)2

+1Se,3P o,1De, and 2(0,1)2
+1P o]

exhibit blueshifts and then redshifts with a further increase of the screening strength, which results in dramatic
changes of the collision strengths. It is found that these dynamic variation features of the resonances are related
to the changes of energy levels of He+ in the screened potential and geometric configurations of resonances.
Triple-differential-ionization cross sections in coplanar geometries at 6-Ry incident electron energy are also
reported, significant changes are observed with varying screening length.
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I. INTRODUCTION

The electron-atom–ion collision processes in hot dense
plasmas has attracted significant attention in recent decades
in connection with the research in the fields of inertial
confinement fusion, laser-produced plasmas, and astrophysics
[1–3]. In hot dense plasmas the Coulomb interactions between
charged particles are screened due to the collective effects
of correlated many-particle interactions [1,2,4]. This results in
changes of atomic electronic structures and collision dynamics
of atomic processes in plasma environments [3,5,6]. The form
of the screened interaction potential depends on the ratio of
the average Coulomb interaction between plasma electrons
and the average thermal plasma energy (coupling parameter)
� = e2/ā

kBTe
, where e is the unit charge, ā = (3/4πne)1/3 is

the average distance between particles, kB is the Boltzmann
constant, ne is the plasma electron density, and Te is the
temperature. In plasmas with � � 1 (weakly coupled classical
or Debye plasmas) the screened interaction of an electron
with a positive charge Ze is described by the Debye-Hückel
potential [1,2,4]

V (r) = −Ze2

r
exp(−r/D), (1)

where D = (kBTe/4πe2ne)1/2 is the Debye screening length.
The potential (1) describes the effects of many-particle inter-
actions on the Coulomb interaction in the pairwise correlation
approximation of the many-body correlation function.

When the coupling parameter is large (� � 1) the plasma-
screened electron-ion interaction is often described by the ion
sphere model potential (see, e.g., [2,7] and references therein).
For cold and dense plasmas with ��1, the plasma screening of
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Coulomb interactions is described with an exponential-cosine
screened Coulomb potential (see [8,9] and references therein)
that accounts for the electron degeneracy and correlation
effects.

The most extensive theoretical studies of atomic structures
and collision processes in weakly coupled, hot dense plasmas
have so far been performed for one-electron systems by using
the Debye-Hückel potential (1). These studies were recently re-
viewed in Ref. [10]. There have also been a significant number
of studies devoted to the electronic structure of few-electron
systems in the screened Coulomb potential (1). Hashino et al.
have employed the variational method to study the bound states
of heliumlike atoms in Debye plasmas in their early work [11].
Kar and Ho have investigated the effects of Debye plasmas
on resonant states in electron–hydrogen-atom scattering (or
hydrogen negative ion) and the doubly excited states of the
helium atom and Ps− ion by using the stabilization method
[12–18]. They have also calculated the energies of bound states
of helium atom in Debye plasmas by using the Rayleigh-Ritz
variational method [19,20]. Doubly excited states of He in
Debye plasmas have also been calculated by Chakraborty and
Ho [21] employing the complex-coordinate rotation method,
Lin et al. [22] using the configuration-interaction approach
with B-spline basis functions, Ordóñez-Lasso et al. [23] using
the Feshbach projection approach, and Jiao and Ho [24]
employing the variational and complex-scaling methods. In
contrast, Zhang et al. have studied the collision dynamics of
low-energy electron–hydrogen-atom scattering in the screened
Coulomb potential (1) by employing the R-matrix method
with pseudostates (RMPS) [25–27]. Zammit et al. have
calculated both the excitation and ionization processes in
electron–hydrogen-atom collisions in Debye plasmas covering
the energy range from threshold to high energies (250
eV) [28]. Whitten et al. have used the close-coupling and
distorted-wave methods to study the plasma-screening effects
on the electron-impact excitations of hydrogenlike ions with
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both the Debye-Hückel and ion sphere model potentials [6].
Note that the electronic structures of two-electron ions in dense
quantum plasmas with exponential cosine screened potentials
have also been studied [29–31].

While the collision dynamics of low-energy electron–
hydrogen-atom scattering in Debye plasmas has been studied
in detail by Zhang et al. [25–27], we are unaware of such
a detailed study for an electron–hydrogenlike-ion collision
system. The increased nuclear charge affects the change of
the electron binding energy of the ion due to the plasma
screening much more strongly than in the case of a hydrogen
atom. This obviously affects the electron–hydrogenlike-ion
collision dynamics. The aim of the present work is to study
the modification in the elastic scattering and impact ionization
processes in electron-He+ collisions in Debye plasmas at
low incident electron energies. The exterior complex scaling
(ECS) method will be employed to investigate the effects
of plasma screening on the resonances in the 1s-1s elastic
collision strength below the n = 2 threshold of He+ and on
the triple-differential-ionization cross section in a number of
coplanar geometries.

The organization of the article is as follows. In the next
section we briefly describe the computational method. In
Sec. III we present and discuss the results of our calculations.
In Sec. IV our conclusions are summarized. Unless otherwise
stated, atomic units (a.u.) are used throughout this work.

II. METHOD OF CALCULATION

The exterior complex scaling method has been described in
detail elsewhere [32–34]. Its implementation to the electron–
hydrogenlike-ion collisions (including He+) has been illus-
trated in [34,35]. In this section we give only a brief outline of
the ECS method for the electron–hydrogenlike-ion collision
system. The total scattering wave functions ψLSM�

l1l2
(r1,r2) are

obtained by solving a set of biradial equations

(E − Ĥ1 − Ĥ2)ψLMS�
l1l2

−
∑
l′1l′2

〈
yLM

l1l2

∣∣V12

∣∣yLM
l′1l′2

〉
ψLMS�

l′1l′2

= χLMS�
l1l2

, (2)

where E is the total energy of the three-body system. In
addition, Ĥi is the single-electron Hamiltonian including the
electron kinetic energy and electron-nucleus potential energy

Ĥi = −1

2
∇2

i − Z

ri

, (3)

where Z is the ion core charge (Z = 2 for He+). In Eq. (2)
V12 is the electron-electron interaction, yLM

l1l2
are the coupled

spherical harmonics [33,34,36], and χLMS�
l1l2

is the wave
function of the initial state, which can be written as

χLMS�
l1l2

(r1,r2) = 1

ki

∑
l

√
2π (2l + 1)CLM

limi l0i
l

× exp[−iσl(Z − 1,ki)]

[(〈
l1l2

∥∥∥∥ 1

r12

∥∥∥∥li l

〉
L

− 1

r2
δ

li
l1
δl
l2

)
φni li (Z; r1)φl(Z − 1; ki,r2)

+ (−1)S+�(1 ↔ 2)

]
, (4)

where ki is the projectile electron momentum, CLM
limi l0

is the
Clebsch-Gordan coefficient, L and M are the total angular
quantum number and its projection (both conserved in the
collision process), respectively, li is the angular quantum
number of the initial state of the bound electron in the
hydrogenlike target, mi is the pertinent magnetic quantum
number, l is the partial wave of the projectile electron, and
without loss of generality the incident electron is chosen
along the z direction so that m = 0. In addition, φni li (Z; r1)
is the initial-state wave function of the hydrogenlike target
and φl(Z − 1; ki,r2) and σl(Z − 1,ki) are the Coulomb wave
function and Coulomb phase shift, respectively. They describe
the projectile electron in the Coulomb field of the hydrogenlike
target. The last term in Eq. (4) represents the exchange between
the projectile electron and the target electron, and S and � are
the total spin and parity of the system, respectively.

Generally, Eq. (2) can be completely solved by matching the
wave functions of an inner radial region with the corresponding
boundary conditions of an outer asymptotic region [33]. Many
methods are based on this procedure, such as the R-matrix
method [37], the convergent close-coupling method [38], and
the time-dependent close-coupling method [39]. The ECS
method avoids matching the solutions of the inner region to the
sophisticated boundary conditions through a complex scaling
of the real radial coordinates

R(r) =
{
r, r < R0

R0 + (r − R0)eiθECS , r > R0,
(5)

where R0 is the turning point at which complex scaling
begins and θECS is the rotation angle. In the complex scaling
region r > R0, the outward scattering wave function with
complex scaling is exponentially damped. Thus the original
sophisticated boundary conditions are replaced simply by zero
in the ECS method. With the zero boundary conditions, the
numerical scattering wave functions ψLMS�

l1l2
in the r < R0

region can be obtained and the scattering and ionization
variables can be extracted by projecting them to the final states
of the collision system. In the present calculations, the turning
point R0 was varied from 90 a.u. (for relatively high incident
energies) to 200 a.u. (for relatively low incident energies) to
ensure the convergence.

In the scattering excitation process, the scattering T matrix
T LS

l can be calculated by projecting ψLMS�
l1l2

onto the final
bound-continuum compound state

T LS
l = 1√

2

4π

kf

i−l exp[iσl(Z − 1,kf )]CLmi

lf mf lmi−mf

× lim
R0→∞

∫ R0

0
φnf lf (Z; r1)

×W
[
ψLMS

lf l (r1,r2),φl(Z − 1; kf ,r2)
]
R0

dr1, (6)

where kf is the momentum of the scattered electron in the
final state, φnf lf (Z; r1) is the wave function of the final
bound state of the hydrogenlike target, φl(Z − 1; kf ,r2) and
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σl(Z − 1,kf ) are the Coulomb wave function and Coulomb
phase shift of the scattered electron, respectively, and
W [a,b]R0 = a′(R0)b(R0) − a(R0)b′(R0) is the Wronskian.
The integral cross section (ICS) can be obtained from the
T matrix [40] and the complete cross section (CCS) is the sum
of the ICS

σf i =
∑
LS

σLS
f i , σLS

f i = kf

ki

2S + 1

4

1

4π2

∑
lL′

T LS
f i,lT

L′S∗
f i,l .

(7)

The relation between CCS and the collision strength �f i is

�f i = k2
i (2Li + 1)(2Si + 1)

πa2
0

σf i . (8)

In the electron-impact ionization process, the entire ioniza-
tion amplitudes can be calculated by projecting ψLMS�

l1l2
to the

continuum-continuum compound state

FS(k1,k2) =
∑

l1l2LM

i−l1−l2ei(σl1 +σl2 )yLM
l1l2

(k̂1,k̂2)f LMS
l1l2

(k1,k2),

(9)

where

f LMS
l1l2

(k1,k2)

= 2√
π

ρ

k1k2

∫ π/2

0

(
φl1φl2

∂

∂ρ
ψLMS

l1l2
−ψLMS

l1l2

∂

∂ρ
φl1φl2

)
dα.

(10)

Here φl1 (Z; k1,r1) and φl2 (Z; k2,r2) are the Coulomb wave
functions, σl1 and σl2 are the pertinent Coulomb phase shifts,

ρ =
√

r2
1 + r2

2 , and α = arctan(r2/r1) [33,34,36]. Finally, the
ionization triple-differential-ionization cross section (TDCS),
which contains the contributions of both the singlet and
triplet two-electron states, can be deduced from the ionization
amplitudes as

dσ

dk̂1dk̂2dE2

= dσS=0

dk̂1dk̂2dE2

+ dσS=1

dk̂1dk̂2dE2

= 1

4

k1k2

ki

|FS=0|2 + 3

4

k1k2

ki

|FS=1|2. (11)

Note that the ECS theory is independent of the interaction
potentials; however, the initial and final states need to be
exact for the given potentials. In the scattering of an electron
with He+ in Debye plasmas, both the electron-nucleus and
electron-electron Coulomb interactions are screened. Explic-
itly, with the screened Coulomb potentials, the single-electron
Hamiltonian is

Hi = −1

2
∇2

i − Z

ri

exp
(
− ri

D

)
(12)

and the electron-electron interaction is

V12 = 1

r12
exp

(
− r12

D

)
, (13)

where r12 = |r1 − r2| is the interelectron distance.
With the Hamiltonian (12), for the He+ target in Debye

plasmas the screened bound orbitals φnl are different from that

FIG. 1. The 1s-1s elastic collision strengths below the n = 2
excitation threshold of He+. The line shows the present RMPS results
and the circles the present ECS results.

in the pure Coulomb field. Similarly, the continuum states
of the Hamiltonian (12) are not Coulomb wave functions
anymore and φl and σl in Eqs. (4), (6), (9), and (10) need
to be replaced by the continuum wave functions of the
Debye-Hückel potential. In this work, the bound orbitals and
continuum wave functions are numerically calculated by the
RADIAL program [41]. The present ECS code is based on the
modification of the packages hex-ecs [36] and hex-db [40].

III. RESULTS AND DISCUSSION

A. The 1s-1s elastic collision strength

In order to verify the modification of the computer package,
we have calculated the 1s-1s elastic collision strengths of
e-He+ scattering in the energy region below the n = 2
threshold and compared with the RMPS result [42]. Good
agreement is obtained as shown in Fig. 1. Four dominant
resonant structures can be identified in the 1s-1s elastic
collision strengths at the incident energies around 2.5 Ry.
The resonance parameters (energy position and width) can be
evaluated by fitting the eigenphase sum [26] from RMPS and
are (in a.u.) (−0.777 810, 4.58 × 10−3), (−0.760 461,2.99 ×
10−4), (−0.701 610, 2.38 × 10−3), and (−0.692 805, 1.37 ×
10−3)) for the 2s2 1Se, 2s2p 3P o, 2p2 1De, and 2s2p 1P o res-
onances, respectively. The calculated resonance parameters
agree very well with those published by other authors [23,43].

We note that the two-electron resonant states are more
appropriately classified as n(K,T )N A and 2S+1Lπ in hyper-
spherical coordinates, as suggested by Lin [44–46]. Here L,
S, and π are the usual quantum numbers of the whole system,
n is the principal quantum number of the outer electron,
and N is the principal number of the inner electron. In this
notation A is the quantum number of radial correlations
and indicates the distribution of the wave function in the
hyperangle α; K and T are quantum numbers representing
the angular correlations and contain the full information of
the angular part � ≡ (α,r̂1,r̂2). Within this classification,
the four resonances observed in Fig. 1 have the notation
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2(1,0)2
+1Se, 2(1,0)2

+3P o, 2(1,0)2
+1De, and 2(0,1)2

+1P o, re-
spectively.

Before presenting e-He+ elastic collision results in Debye
plasmas by the present ECS method, we note that previously
the authors have comprehensively studied the low-energy
electron-hydrogen collision excitations in Debye plasmas by
employing the modified RMPS method [25–27]. However,
the RMPS cannot be successfully implemented in the present
study due to the strong Coulomb field of the ion core. While
the Debye-Hückel potential still decreases faster than the
pure Coulomb potential of the nucleus at large distances, its
short-range character is significantly weakened. The concept
of a big radial box cannot be efficiently implemented in the R-
matrix treatment [42], which presents difficulties in matching
the correct wave functions in the outer radial region to the
wave functions from the inner radial region. As mentioned
in the preceding section, the ECS method avoids the difficult
matching procedure by making a complex scaling and turns
into an easy and appropriate method to be implemented.

The elastic collision strengths below the n = 2 excitation
threshold of He+ for a selected number of values of the screen-
ing length between D = ∞ and D = 3 a.u. are presented in
Figs. 2 and 3. Note that the critical screening lengths, where
the 2s and 2p states of He+ merge into a continuum, are
1.61 and 2.27 a.u., respectively [47]. As the figures show,
the values of the collision strengths are not very sensitive to
the variation of the screening length, except in the energy
regions of resonances for very small screening lengths. For
example, the values of collision strengths around resonances
2(1,0)2

+ 1Se and 2(1,0)2
+ 3P o hardly change for all the selected

screening lengths (3 a.u. � D � ∞) (cf. Fig. 2). However,
the peak of the 2(1,0)2

+ 1De resonance decreases significantly
when D = 3.5 a.u., where this resonance crosses over the
He+(2s) threshold (cf. Fig. 3).

The most prominent features revealed in the figures are
the variations of the resonant positions with decreasing the
screening length. As shown in Fig. 2, the relative energy
difference for resonances 2(1,0)2

+ 1Se and 2(1,0)2
+ 3P o is

not sensitive to the variations of the screening length.
Similarly, the relative energy differences for resonances
2(1,0)2

+ 1Se, 2(1,0)2
+ 3P o, and 2(1,0)2

+ 1De hardly change for
all the selected screening lengths, which agrees very well with
the structure calculations for those resonances in Refs. [15,23]
(see Fig. 4 for the variation of resonant positions with the
screening length). With the decrease of screening length,
resonances 2(1,0)2

+ 1Se, 2(1,0)2
+ 3P o, and 2(1,0)2

+ 1De keep
shifting towards the higher-energy region (blueshift) up to
D ≈ 5 a.u. However, with the further decrease of D, the
resonance positions start to shift towards the lower energies
(redshift). While the resonance 2(0,1)2

+ 1P o shows the same
dynamic feature (blueshift to redshift reversal) when D varies,
its critical screening length for this reversal is about D ≈ 6
a.u. It is observed in Fig. 3 that for D = 6 a.u. the positions of
resonances 2(1,0)2

+ 1De and 2(0,1)2
+ 1P o almost coincide and

their contributed (two) peak structures merge into one peak
structure in the collision strength.

The dynamic variation features of the resonant positions
[relative to the level He+(1s)] in screened potentials can
be understood from the changes of energy levels of He+

in the screened potential and the geometric configurations

FIG. 2. Variations of resonances 1Se and 3P o manifested in the
1s-1s elastic collision strengths in Debye plasmas for different
screening lengths. The vertical lines indicate the excitation energies
for states 2s and 2p for the specific screening length D.

of the resonances in the hyperspherical coordinate repre-
sentation. Figure 4 shows the dynamic variation of resonant
positions (data from Refs. [15,23]), together with the energy
differences between the energy levels of He+(n = 2) and
He+(n = 1) for different screening lengths. Since the lower
orbitals 2l(l = s,p) of He+ (and other hydrogenlike ions)
are tightly bound, from a very naive picture, the orbitals of
the two electrons in the present studied resonances (doubly
excited states 2l′2l′′ of He) should be close to orbitals 2l

of He+ with orbital energy EHe+(2l), i.e., the energy of the
resonance equals approximately to the orbital energies of
the two electrons (EHe+(2l′) + EHe+(2l′′)) corrected with the
electron-electron interaction (Vee). It is apparent that this
simple picture can break down quickly for higher orbitals of
hydrogenlike ions and for any orbital of the hydrogen negative
ion. As shown in Fig. 4, the relative energy differences �E =
EHe+(2l′) + EHe+(2l′′) − EHe+(1s) increase with decreasing D

down to D ≈ 3.5 a.u. and then decrease with a further decrease
of D, due to the rapid decrease of the electron-electron
interaction Vee with an increase of the screening strength.
These changes result in the phenomenon of a blueshift to
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FIG. 3. Same as in Fig. 2 but for resonances 1De and 1P o.

redshift reversal of the resonant positions when D varies,
observed in Figs. 2 and 3.

It is known that in the hyperspherical coordinate rep-
resentation, the resonances 2(1,0)2

+ 1Se, 2(1,0)2
+ 3P o, and

2(1,0)2
+ 1De possess the same geometric configurations and

their positions show the same dynamic variation when D

varies. For different geometric configurations, K = 0 [for
resonances 2(0,1)2

+ 1P o] signifies that the two electrons
are in perpendicular orbitals, while K = 1 [for resonances
2(1,0)2

+ 1Se, 2(1,0)2
+ 3P o, and 2(1,0)2

+ 1De] signifies that the
two electrons are separately localized on each side of the
nucleus [45]. For the states with the same orbitals (n =
N = 2) and different K , the electron-electron distance of the
states with K = 1 is larger than that with K = 0; hence,

FIG. 4. Variations of the resonant positions (1Se, 3P o, 1De,
and 1P o) and the energy differences (�Enl−n′ l′ = Enl − En′ l′ and
�Enl+n′ l′−n′′ l′′ = Enl + En′ l′ − En′′ l′′ ) between levels He+ (2s/2p)
and He+ (1s) in Debye plasmas for different screening lengths. The
resonant positions are cited from Ref. [23] for 1Se, 1De, and 1P o and
from Ref. [15] for 3P o.

the electron-electron interaction in the states with K = 1 is
smaller than that with K = 0. This results in the fact that the
critical screening length for the blueshift to redshift reversal
of the resonance 2(0,1)2

+ 1P o is larger than that of resonances
2(1,0)2

+ 1Se, 2(1,0)2
+ 3P o, and 2(1,0)2

+ 1De. We also note that
in the previous studies of resonances in He and He-like positive
ions [48–52] similar blueshift to redshift reversal phenomena
were identified with the decrease of screening length and can
be understood within the present qualitative model.

B. Triple-differential-ionization cross section

The present TDCSs for e-He+ and e-H ionization with
respective incident electron energies Einc of 6 and 1.5 Ry
in pure Coulomb interactions have been calculated in four
different coplanar geometries [32,35]. The good agreement
(not shown) observed with previous ECS calculations [35]
validates our implementation. This work studies e-He+ impact
ionizations in the same geometries implemented in Ref. [35].
The present TDCS results for e-He+ impact ionizations with
fixed Einc = 6 Ry in the selected coplanar geometries with
screening lengths D = ∞, 100, 50, 20, 12, 8, and 5 a.u. are
shown in Fig. 5. The energies of the outgoing electrons are
E1 and E2 and their total energy is E = Einc + En=1(He+) =
E1 + E2. Further, θ1(or θ2) is the relative outgoing angle to the
direction of incident electron [35].

The TDCS features observed in the present unscreened case
can be partly interpreted on the basis of the binary (e, 2e)
spectroscopy [53,54]. Thus, for E1 = 0.05E and θ2 = 15◦
[Fig. 5(a)], the forward peak around θ1 ∼ −90◦ is mainly
due to the single-binary (incident-target electron) collision,
while the backward peak around θ1 ∼ 160◦ is mainly due to
the double-binary (incident electron–bound electron–nucleus)
collision. The dip around θ1 ∼ 0◦ is due to the interference of
the single- and double-binary-collision scattering amplitudes.
For the case of E1 = 0.95E and θ2 = 15◦ [Fig. 5(b)], the

032707-5



LI, ZHANG, YE, WANG, AND JANEV PHYSICAL REVIEW A 96, 032707 (2017)

FIG. 5. Triple-differential cross sections of He+ for the incident electron energy of 6 Ry in Debye plasmas in the selected coplanar
geometries. The kinetic energy of the outgoing electron and the direction of the ejected electron are (a) E1 = 0.05E and θ2 = 15◦, (b)
E1 = 0.95E and θ2 = 15◦, (c) E1 = 0.95E and θ2 = 150◦, and (d) E1 = 0.50E and θ2 = −θ1, respectively; E is the total energy of the whole
collision system; and the ratio between E1/E2 in each panel for different screening lengths is fixed.

forward and backward peaks are greatly reduced, but the inter-
ference of the single- and double-binary-collision scattering
amplitudes still produces a remarkable dip in the TDCS at
θ1 ∼ 0◦. For E1 = 0.95E and θ2 = 150◦ [Fig. 5(c)], the single-
binary-collision mechanism completely dominates the process
and the forward peak appears at θ1 ≈ 0◦. In the symmetric
equal energy sharing geometry [Fig. 5(d)], the forward peak
at θ1 ∼ 45◦ is again dominated by the single-binary-collision
mechanism, whereas the double-binary-collision mechanism
is responsible for the weak peak at θ1 ∼ 135◦. We note that
the process of single-binary collisions is almost independent
of the nucleus, which is an important participant in the double-
binary-collision process, and the momentum transferred in the
single-binary collision is less than that in the double-binary
collision.

As the figure shows, the TDCSs change significantly due to
the screening effects. In the case with E1 = 0.05E and θ2 =
15◦, as shown in Fig. 5(a), with decreasing screening length,
the amplitude of the backward peak increases and its position
shifts towards smaller scattering angles; the position of the
forward peak, on the other hand, is practically unaffected.
In the case of Fig. 5(b) with E1 = 0.95E and θ2 = 15◦, the
potential screening results in the emergence of a prominent
forward peak around θ1 = 0◦ whose amplitude increases
dramatically as the screening strength increases. In the case
of Fig. 5(c) with E1 = 0.95E and θ2 = 150◦, the screened
potential does not affect the peak structure considerably, but the
peak amplitude increases dramatically with the decrease of the

screening length. In the case of Fig. 5(d) with E1 = 0.50E and
θ2 = −θ1, when the screening length decreases, the forward
peak shifts towards smaller scattering angles and its amplitude
increases significantly, while the screening effects hardly affect
the backward peak.

In the environment of plasmas, the short-range character
of the Debye-Hückel potential decreases the strong and
complex interactions between the electrons and target and
can provide a simpler picture to qualitatively understand
the dynamic variations of the TDCS with the decrease
of the screening length. The screened Coulomb potential
decreases the electron-electron repulsive interactions and the
ionization process can be treated as the classical two-ball
collisions in the limit of very strong screening in which
the electron-electron interactions can be neglected. In the
classical two-ball collisions, both balls tend to move along the
direction of the incident ball after collisions and both ionized
and scattered electrons tend to escape along the direction of
the incident electron (θ1,2 → 0◦). As revealed in Fig. 5 and
described in the preceding paragraph, the shifting of the peak
structures of TDCSs towards smaller scattering angles with
the decrease of the screening length is consistent with the
classical two-ball collisions. Note that in Fig. 5(b), θ2 = 15◦
is fixed and the newly appearing peaks for the screened case
are around θ1 ≈ 0◦ and along the direction of the incident
electron; less electron-electron repulsion can weakly change
the movement of the ionized (scattered) electron and increase
the probability of the ionized (scattered) electron in a specific
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direction. Furthermore, the TDCSs wholly increase, which is
also consistent with the general increase of the TDCSs with
the increase of the screening effects.

IV. CONCLUSION

In the present work we have studied the elastic scattering
and impact ionization processes for e-He+ collisions in Debye
plasmas by the ECS method. In the low-energy elastic scatter-
ing process, the collision strengths are dominated by resonance
structures. While the magnitudes of collision strengths are little
affected by the screening effects of the plasma on the strength
of the potential, these effects are dramatic in the energy
positions of the resonances. With a decrease in screening
length from D = ∞ to about 5 and 6 a.u. [for the resonances
2(1,0)2

+ and 2(0,1)2
+, respectively], the resonance positions

shift towards the higher energies (blue shift), whereas with a
further decrease of the screening length they shift towards the
lower energies (redshift). An explanation for this blueshift to
redshift reversal phenomenon is provided, based on a simple
picture of the change of He+ energy levels in Debye plasmas. It
is argued that the difference in the critical screening lengths for

the resonances 2(1,0)2
+ and 2(0,1)2

+, where this shift reversal
occurs, originates from the different geometric configurations
of the resonances.

The calculated TDCSs for the e-He+ ionization process in
Debye plasmas at an incident energy of 6 Ry and for four
selected typical coplanar geometries also show significant
differences with respect to the pure Coulomb results. The
differences are particularly pronounced in the amplitudes and
positions of forward and backward peaks of the cross sections,
which are sensitive to the value of the screening length of
Debye-Hückel potentials. Explanations for these differences
were briefly discussed.
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