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Measuring the Rydberg constant using circular Rydberg atoms
in an intensity-modulated optical lattice
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A method for performing a precision measurement of the Rydberg constant R∞ using cold circular Rydberg
atoms is proposed. These states have long lifetimes as well as negligible quantum electrodynamics and no
nuclear-overlap corrections. Due to these advantages, the measurement can help solve the proton radius puzzle
[J. C. Bernauer and R. Pohl, Sci. Am. 310, 32 (2014)]. The atoms are trapped using a Rydberg-atom optical
lattice and transitions are driven using a recently demonstrated lattice-modulation technique to perform Doppler-
free spectroscopy. The circular-state transition frequency yields R∞. Laser wavelengths and beam geometries
are selected such that the lattice-induced transition shift is minimized. The selected transitions have no first-
order Zeeman and Stark corrections, leaving only manageable second-order Zeeman and Stark shifts. For
Rb, the projected relative uncertainty of R∞ in a measurement under the presence of the earth’s gravity is
10−11, with the main contribution coming from the residual lattice shift. This could be reduced in a future
microgravity implementation. The next-important systematic uncertainty arises from the Rb+ polarizability
(relative-uncertainty contribution of ≈3×10−12).

DOI: 10.1103/PhysRevA.96.032513

I. INTRODUCTION

Knowing the value of the Rydberg constant R∞ accurately
has been of interest for decades due to its relation to other
fundamental constants and its role in calculations of atomic
energy levels. More recently, the large discrepancies in the
proton [1,2] and deuteron [3] radii that were found using
muonic hydrogen and deuterium, respectively, have reinforced
the need to confirm the accuracy of R∞. Previous precision
experiments with this goal have involved low-lying states
of hydrogen, limited typically by statistical uncertainties,
ac Stark shifts, and second-order Doppler shifts [4]. These
have led to the current Committee on Data for Science and
Technology (CODATA) relative uncertainty for the Rydberg
constant value of 5.9×10−12 [5]. There has also been a
study involving circular Rydberg states of hydrogen [6]
(relative uncertainty of 2.1×10−11) and a proposal involving
circular states of lithium [7] (expected relative uncertainty
of about 10−10). The approaches involving low-lying states
and circular states deal with significantly different frequency
regimes: optical versus microwave. Therefore, measurements
involving low-lying states of hydrogen can have a better
relative uncertainty δν/ν than results for circular states (under
the assumption of similar absolute uncertainty δν). However,
circular states are insensitive to several systematics that are
limiting in spectroscopy of low-lying states, as discussed in
this paper. It has also been proposed to measure the Rydberg
constant using high-angular-momentum states of hydrogenlike
ions [8].

We propose an experiment to obtain an independent
measurement of the Rydberg constant using cold, trapped
circular Rydberg atoms. Transitions are driven using a recently
developed spectroscopic method, which is based on lattice
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modulation at microwave frequencies [9]. The critical advan-
tages of circular states, in comparison with low-lying states
of hydrogen, are their long radiative lifetimes (on the order of
milliseconds) [10], their small QED corrections [11], and the
absence of any overlap with the nucleus, hence eliminating
nuclear charge distribution effects (see Fig. 1).

In contrast with previous efforts to measure R∞ [4,13], it is
proposed to trap cold Rydberg atoms using a ponderomotive
potential optical lattice (POL) [14] instead of using cold atomic
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FIG. 1. Normalized probability density |ψ |2 for the circular state
(bottom) and near-circular state (top) of the transition of interest in
the proposed experiment. The kets are labeled in principal, parabolic,
and magnetic quantum numbers n, n1, n2, and m [12]. Near the Rb+

core, |ψ |2 = 0 for both states. The signs refer to the polarity of ψ . It
can be seen that the transition requires a quadrupolar interaction.

2469-9926/2017/96(3)/032513(11) 032513-1 ©2017 American Physical Society

https://doi.org/10.1038/scientificamerican0214-32
https://doi.org/10.1038/scientificamerican0214-32
https://doi.org/10.1038/scientificamerican0214-32
https://doi.org/10.1038/scientificamerican0214-32
https://doi.org/10.1103/PhysRevA.96.032513


ANDIRA RAMOS, KAITLIN MOORE, AND GEORG RAITHEL PHYSICAL REVIEW A 96, 032513 (2017)

beams. Trapping the atoms allows for increased interaction
times. The light shift introduced by the lattice trap can be ad-
dressed by the use of “magic” conditions under which the trap-
induced shifts of upper and lower states cancel [15]. Residual
imperfections in the magic-lattice trap can be addressed by per-
forming the experiment under microgravity conditions, which
allow for an overall reduction in the magic-lattice shift, and
the use of cavity-generated optical lattices that have a superior
mode quality over lattices formed by discrete laser beams [16].

A key method is ponderomotive spectroscopy [9], which
allows for circular-to-near-circular transitions to be driven by
amplitude modulating the ponderomotive optical lattice. The
method permits us to drive the quadrupolar transition needed
in our work as a first-order process and to eliminate Doppler
broadening. By driving transitions between states of the
same magnetic quantum number, we eliminate the first-order
Zeeman effect. To obtain a zero first-order Stark shift, we select
states with parabolic quantum numbers n1 = n2.

In these ways, the proposed experiment addresses important
issues that have been encountered in previous Rydberg
constant measurements. In addition, due to the elimination
of nuclear charge overlap, the measurement of R∞ is also
independent of the radius of the proton. Overall, a relative un-
certainty of 10−11 is expected, which would already be enough
to shed light on the proton radius puzzle. An improvement
beyond the current CODATA uncertainty δν/ν = 5.9×10−12

[5] is possible by an implementation of the experiment under
microgravity conditions.

II. PROPOSED EXPERIMENTAL OUTLINE

A. Atom preparation and spectroscopy

We use cold atoms to reduce interaction-time broadening
and to limit the interaction volume, thereby reducing field
inhomogeneity effects. We propose to use 85Rb atoms, precool
them in a magneto-optical trap (MOT) to ∼100 μK, and further
cool them to ∼10 μK and ∼1 μK in bright and gray optical
molasses, respectively [17,18]. Further, the proposed experi-
ment has to be conducted at very low density, as one needs to
eliminate Rydberg-ground and Rydberg-Rydberg collisions,
as well as radiative effects such as superfluorescence, to a
sufficient degree. We anticipate Rydberg-atom densities of
∼103 cm−3 and ground-state atom densities of �108 cm−3.
The combination of low atom temperature and density results
in negligible van der Waals shifts and collision probabilities
over the anticipated atom-field probe time (∼10 ms).

In order to circularize atoms, we use a modified adiabatic
rapid passage (ARP) method [19,20]. The modified ARP
adds a weak magnetic field to further lift degeneracies in ml

and hence prevent unwanted transitions to lower ml states.
In rubidium, this method requires that the Rydberg atoms
are initially prepared in ml = 3. We employ a three-level
excitation scheme, 5S1/2 → 5P3/2 (wavelength of 780 nm),
5P3/2 → 5D5/2 (776 nm), and 5D5/2 → nF7/2 (1260 nm) [see
Fig. 2(a)]. The modified ARP circularization method is optimal
for states n � 50 (our case). In a recent implementation of a
high-field variant of the method, fully coherent and repeatable
preparation of circular Rydberg states has been demonstrated
[21]. If much higher principal quantum numbers were desired,
the E×B method [22,23] could be used.
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FIG. 2. (a) Excitation scheme used to prepare atoms before
circularization. (b) After circularization, the transition between an
initial circular state and a final near-circular state (expressed using
parabolic quantum numbers |n,n1,n2,ml〉) is driven by pondero-
motive spectroscopy, indicated by the wavy arrow. (c) Parallel
stabilization fields F and B define the quantization axis (z axis) of
the atoms. The angles αi correspond to the pair of lattice beams
for trapping along the ith direction and can be varied to change the
periodicities of the lattice in the ith direction.

In order to take advantage of the circular atoms’ long
lifetimes (tens of milliseconds at 4 K), it is necessary to
trap the Rydberg atoms. To achieve this, a three-dimensional
standing-wave optical lattice is adiabatically turned on and the
atoms are trapped via the ponderomotive potential [24] [see
Fig. 2(c)]. This ponderomotive potential emerges from the last
term in the minimal-coupling Hamiltonian (in SI units),

Ĥ = 1

2me
[2|e|A(r̂,t) · p̂ + e2A(r̂,t) · A(r̂,t)], (1)

which is proportional to laser intensity and arises when a
quasifree Rydberg electron is placed in a rapidly oscillating
field. Here A(r̂,t) is the vector potential of the optical field,
p̂ is the momentum operator, r̂ is the position operator,
me is the electron mass, and e is the electron charge. For
nondegenerate states in a monochromatic lattice, the adiabatic
trapping potential is given by

Vad(R) = e2

2me

∫
|ψ(r)|2|A(r + R,t)|2d3r, (2)

where R is the atomic center-of-mass position.
Several experimental parameters such as wavelength, in-

tensity ratios, and angles of each lattice axis can be adjusted
to attain a magic condition for the desired transition (equal
potentials for lower and upper states). To illustrate the effects
of changing the lattice wavelength in a simple one-dimensional
lattice, in Fig. 3(a) we show adiabatic lattice-potential depths
obtained from Eq. (2) for the two states of interest, n = 51
and 53, as a function of wavelength. In the figure it is shown
that for the two states considered there are two options to
achieve magic conditions, 290 and 532 nm. For the proposed
experiment we choose a 532-nm lattice.

The same ponderomotive term that traps atoms is also used
to drive transitions between circular and near-circular states
[9]. In ponderomotive spectroscopy, the optical-field intensity
varies substantially within the volume of the atom and the
lattice-amplitude-modulation frequency is resonant with an
atomic transition or a subharmonic of it [25]. In the proposed
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FIG. 3. (a) Ponderomotive adiabatic potential depth (in units of
the free-electron potential Vp, the energy of a free electron in the
lattice laser field) as a function of wavelength for the two states of
interest in a one-dimensional lattice formed by counterpropagating
beams (α = 0; angle α defined in Fig. 2). The points at which the
two plots cross are the “magic” wavelengths for this particular pair of
states. The magic wavelength we choose for this experiment is shown
with a white dashed line and it occurs at about 532 nm. (b) Schematics
of the projection of the wave-function density onto the lattice, as the
wavelength is varied and the atom size remains fixed. Labels I, II,
and III correspond to those in (a). The oscillatory behavior and flip
in signs in (a) are related to how many lattice periods fall within the
volume of the atom [14].

experiment, the spatial variation length scale is about the same
as the size of the atom and the lattice-amplitude-modulation
frequency (atomic transition frequency) is about 100 GHz.
Finally, the population transfer between initial and final states
is measured using state-selective field ionization [10].

The proposed experiment occurs inside a cryogenic enclo-
sure that provides a radiation temperature near 4 K. This is
done to decrease blackbody radiation effects, which reduce
the Rydberg-state lifetimes [10] but cause only minor shifts of
the transition frequencies of interest (see Sec. III G).

B. Stabilization fields

The �2n2-fold degeneracy of the circular and hydrogenic
states must be lifted using stabilization fields. To stabilize the
circular Rydberg states against state mixing, we employ an
electric field F and a weak parallel magnetic field B [B/2 <

(3/2)nF < n−3, in atomic units]. This stabilization method is
suitable for high-precision spectroscopy [6,24].

In order to probe the atoms, we trap them in a pondero-
motive potential. The ponderomotive shift must be smaller
than the shift caused by the stabilizing electric and magnetic
fields [24]. The potential must also be deep enough to trap
atoms at their thermal kinetic energy. Hence, the laser-cooling
temperature sets minimum values for the fields that we use in
both trapping and stabilization of our states. The hierarchy of
shifts is shown in Table I for MOT temperatures (∼100 μK),
temperatures in gray optical molasses (∼1 μK) [17,18], and

TABLE I. Hierarchy of level shifts in three atomic temperature
regimes. All energies are expressed in kHz. The thermal energy is
equal to kBT/2.

T (μK) Thermal energy POL Magnetic Electric

100 1000 3100 9400 28000
1 10 31 94 280
0.01 0.1 0.31 0.94 2.8

Bose-Einstein condensate temperatures (∼10 nK). Table II
shows the corresponding typical field magnitudes and provides
guidance in designing the circular-state stabilization scheme.

Since we are always in the Paschen-Back regime of the
fine structure (see Secs. III B and III E), we use the basis set
{|n,n1,n2,ml,ms〉} [12] throughout this paper, where n1 and n2

are parabolic quantum numbers. Parabolic and spherical bases
are related by [10]

|n,n1,n2,ml〉 =
∑

l

C
n1,n2
l,ml

|n,l,ml〉, (3)

where the Clebsch-Gordan coefficients are related to the
Wigner 3J symbols by [10] C

n1n2
lml

= 〈n,n1,n2,ml|n,l,ml〉,
C

n1n2
lml

= (−1)(1−n+ml+n1−n2)/2+l
√

2l + 1

×
(

n−1
2

n−1
2 l

ml+n1−n2
2

ml−n1+n2
2 −ml

)
. (4)

Note that for the states in Figs. 1–3, the sum over l has at most
two nonzero terms.

III. ENERGY SHIFTS

In this section we discuss the various energy-level shifts;
the results are summarized in Sec. IV.

A. Lattice-induced shift

In its interaction with the optical-lattice field, the Rydberg
electron behaves as a quasifree particle. For a plane-wave lin-
early polarized field of the form x̂FL(r) sin(ωt) (x̂ is a unit vec-
tor), Eq. (1) leads to the free-electron ponderomotive potential

Vp = e2|FL(r)|2
4meω2

, (5)

where ω is the angular frequency of the laser electric field and
|FL(r)|2 is proportional to the spatially varying field intensity
[26]. The ponderomotive potential is the average kinetic
energy of the free electron in the lattice laser field and it is
polarization and phase independent.

TABLE II. Magnetic and electric fields suitable for three temper-
ature regimes. The optical-trap depth scale, Vp, and the fields satisfy,
in atomic units, Vp ≈ kBT < B/2 < (3/2)nF for n = 51.

T (μK) Magnetic field (mT) Electric field (mV/cm)

100 0.67 290
1 6.7×10−3 2.9
0.01 6.7×10−5 0.029
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The position-dependent ponderomotive potential Vp(r̂+R)
is added as a perturbation to the Rydberg electron’s Hamilto-
nian. Diagonalization of the Rydberg Hamiltonian yields the
Born-Oppenheimer (BO) adiabatic potential surfaces Vad(R)
for the atom’s center-of-mass motion, as well as the associated
adiabatic Rydberg-electron wave function ψ(r; R) [24].

Generally, ψ(r; R) is unknown and must be simultaneously
solved for along with the BO potentials [27]. In our regime,
where the shifts due to the parallel electric and magnetic
stabilization fields dominate the optical shifts, the adiabatic
states are given by the parabolic basis states |n,n1,n2,ml,ms〉.
This greatly simplifies the calculation of the BO adiabatic
potential because ψ(r; R) is no longer dependent on R. Since
in our case the optical lattice is formed by three sets of
lattice beams (see Fig. 2), the three-dimensional BO adiabatic
potential follows from

Vad(R) =
∫

d3r
∑

i

e2|FLi cos[�ki · (R + r)]|2
meω

2
i

× |ψn,n1,n2 (r)|2. (6)

In the integral in Eq. (6), |ψn,n1,n2 (r)|2 acts as a weighting
factor. There, i is the summing index over optical-lattice
directions (for a three-dimensional lattice, i = 1,2,3), which
need not be orthogonal to each other; FLi is the field amplitude
of a single beam; ψn,n1,n2 (r) is the R-independent Rydberg
electron wave function; r is the valence electron (relative)
position, ωi is the angular frequency of the lattice beam; and
|�ki | = |ki1 − ki2| = 2kicos(αi/2), where ki1 and ki2 are the
wave vectors corresponding to the pair of lattice beams for
trapping along the ith direction, and αi is the angle between
that pair of lattice beams [see Fig. 2(c)].

The ratio of laser intensities of the lattice axes (up to three)
and the aspect ratio between the atom’s size (defined by its
known state) and the optical lattice periodicities (defined by
wavelengths λi and angles αi) (Figs. 3 and 4) can be experi-
mentally controlled. This allows us to vary the depth and the
minimum potential value of Vad(R) (see Fig. 3) and to realize a
magic-lattice condition [where the two states in the transition
experience the same energy shift in the BO potential Vad(R)].

Experimental considerations suggest the use of αi = 0
and the choice of common laser wavelengths λi , leaving the
intensity ratios and the atomic quantum numbers to attain
a magic condition. Here we consider the n = 51 → n = 53
transition, which, as seen in Fig. 3, has a magic wavelength
at about 532 nm (the second harmonic of a Nd:YAG laser).
Using a magic lattice, most of the lattice-induced shift in the
proposed experiment can be eliminated (see Sec. IV A).

B. First-order Zeeman and Stark shifts

To avoid undesired state mixing due to minute stray electric
and magnetic fields, stabilization fields must be applied to the
atoms. The most suitable stabilization scheme is one where
(3/2)nF > B/2, in atomic units (see Sec. II B). The Stark
Hamiltonian for an electric field F pointing along z is

ĤS = Feẑ, (7)

where ẑ is the z component of the position operator. In the basis
of parabolic states |n,n1,n2,ml〉, with the quantization axis

FIG. 4. Effects of wave-function projections on the depth of the
BO adiabatic potential for a 532-nm lattice extending along x and
z, with single-beam intensities 4×109 W/m2 (αi = 0). (a) Alignment
of the optical-lattice standing waves and the circular-state probability
distribution. The amplitude of the z-direction lattice is modulated
in time. (b) Projections of |ψ |2 along x and z. The overlap of the
projections with the optical-lattice standing waves determines the
BO adiabatic trapping potentials along the respective coordinate
directions [see Eq. (6)]. (c) Trapping potentials (as a function of
the center-of-mass position of the atom) calculated from Eq. (6); the
zero position corresponds to a lattice field node. The different depths
and spatial phases are a result of the quite distinct wave-function
projections onto x and z.

along z, the first-order eigenvalues of the Stark Hamiltonian
are

ES = 3
2Fea0n(n1 − n2). (8)

The states and transitions in this work are of the type
|n,0,0,n − 1〉 ↔ |n + 2,1,1,n − 1〉; in this case the linear
Stark shifts for both levels, as well as for the transition, are
identically zero.

We apply a weak magnetic field B in the z direction that
removes the remaining degeneracies between states of interest
and other Stark levels. This results in a Zeeman Hamiltonian

ĤZ = Be

2me
(gLL̂z + geŜz), (9)

where ge is the electron spin g factor, gL is the electron’s
orbital g factor (gL = 1), and L̂z and Ŝz are the orbital
angular momentum and spin angular momentum operators,
respectively. In the Paschen-Back regime, the parabolic states
with spin |n,n1,n2,ml,ms〉 are eigenstates of the Zeeman
Hamiltonian. This shift is given by

EZ = Bh̄e

2me
(ml + gems), (10)

where h̄ is the reduced Planck’s constant. Since ml and ms are
equal for both states involved in the transition considered, the
linear Zeeman shift of the transition is zero.

It is critical that the angle between the electric and magnetic
fields be close to zero for this to hold, since any departure from
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zero would introduce x or y components of the fields, leading
to the appearance of additional second-order shifts. These can
be estimated using Eq. (2.15) in [6], which yields an upper
limit for the allowed angular misalignment between the fields
of about one degree. In experimental implementations, this
angle can be minimized by performing spectroscopy of very-
high-n Rydberg levels in near-parallel electric and magnetic
fields as a function of the angle between the fields. Zero angle
corresponds to extrema of the spectral-line positions.

C. Second-order Stark and diamagnetic shifts

Second-order perturbation theory for the Stark effect
Hamiltonian yields an energy shift of [6,10]

ESS = −4πε0a
3
0F

2n4

16

×[
17n2 − 3(n1 − n2)2 − 9m2

l + 19
]
, (11)

which is small (see Table III). The diamagnetic Hamiltonian
is

ĤD = e2B2

8me
(x̂2 + ŷ2), (12)

where x̂ and ŷ are the x- and y-direction position operators.
This Hamiltonian can be rewritten in the spherical basis as

ĤD = e2B2

8me
(r̂2 sin2 θ̂ ), (13)

where the operator θ̂ is the angle with respect to the z axis.
Using Eq. (13), we obtain a diamagnetic energy shift of

ED =
∑

l

e2B2

8me

∣∣Cn1n2
lml

∣∣2〈nlml|r̂2 sin2 θ̂ |nlml〉, (14)

where the angular matrix elements are given in [12] and
the radial matrix elements can be computed numerically. As
shown in Table III, these second-order shifts lead to uncertainty
contributions below the current uncertainty goal.

D. Quantum defects

In alkali-metal atoms, polarization and penetration quantum
defects are introduced as corrections to the hydrogenic
eigenvalue [10,28]

E = −hcRRb
1

(n − δl)2
, (15)

where c is the speed of light, n is the principal quantum number,
RRb = M

me+M
R∞ (M is the mass of Rb+), and δl is the quantum

defect. This δl can be expressed as the sum of the polarization
and penetration quantum defects δl = δpol + δpen, which is
commonly expanded by using the Rydberg-Ritz formula [10].

This δl decreases significantly with increasing l. In the
proposed experiment, where transitions from circular to near-
circular states are driven, δpen = 0 because the probability den-
sity of circular Rydberg states is zero in the ionic core region
(Fig. 1). Core polarization, however, must still be considered,
with the shift due to the effective dipole polarizability α′

d of
Rb+ being the leading term, followed by an almost negligible
shift due to the effective quadrupole polarizability α′

q. The

effective polarizabilities consist of the dc polarizability and
a nonadiabatic correction. The polarization potential is given
by [29]

V̂pol = −e2

16π2ε2
0

[
1

2

α′
d

r̂4
+ 1

2

α′
q

r̂6
+ · · ·

]
, (16)

where the values of α′
d and α′

q are obtained from [30] and can
be converted to SI units [31]. For l � n, δpol corresponding to
this potential is approximately (in atomic units)

δpol ≈ 3

4

α′
d

l5

[
1 − Od

(
l2

n2

)]
+ 35

16

α′
q

l9

[
1 − Oq

(
l2

n2

)]
, (17)

where the O(l2/n2) terms are corrections that can be exactly
obtained by using the analytically known expressions for
〈r−4〉 and 〈r−6〉 (see the Appendix of Ref. [28]). Since in
the proposed experiment high-angular-momentum states are
employed, the exact analytic expressions for 〈r−4〉 and 〈r−6〉
need to be used.

The quadrupole term in Eq. (16) becomes negligible at
large-r values such as the ones found in circular Rydberg
states. The dipole polarizability term needs to be carefully
considered.

1. Polarizabilities

The most recent experimental limit for the dipole polar-
izability is 9.12 (in atomic units) [30], which is consistent
with previous theory work [32,33]. For the quadrupole
polarizability, however, the most recent experimental value
of 14 (in atomic units) disagrees with those in [32,33]. The
current uncertainty in the experimental value of the dipole
polarizability is of the order of 10−3, which leads to a relative
uncertainty of the order of 10−12 in the proposed Rydberg
constant measurement, making this one of the main sources of
uncertainty.

2. Nonadiabatic effects

The quantum-defect theory discussed so far assumes that
the Rb+ response to the Rydberg electron’s field is adiabatic.
However, this is not necessarily the case. The nonadiabaticity
of the electron’s motion makes it necessary to redefine V̂pol

[34] and hence the polarizabilities as

V̂pol = −e2

16π2ε2
0

[
1

2

αd yd
0

r̂4
+ 1

2

αqy
q

0 + αdy
d
1

r̂6
+ · · ·

]
, (18)

where yd
0 , yd

1 , and y
q

0 vary slowly with n and l. Comparing
this expression to Eq. (16), we see that the corrected and the
adiabatic polarizabilities are related as α′

d = yd
0 αd and α′

q =
y

q

0 αq + yd
1 αd [28]. Using Ref. [35], the corrected dipolar and

quadrupolar polarizabilities can be calculated for 85Rb. The
experimental values of the polarizability used for this work
already include the nonadiabatic correction.

E. Fine-structure correction

For Rydberg atoms with large l, the form of the fine-
structure shift is the same as for the hydrogen atom. It has two
contributions, the relativistic mass correction and the spin-orbit
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coupling [36]. The spin-orbit Hamiltonian is

ĤSO = αh̄

2m2
ec

1

r̂3
L̂ · Ŝ, (19)

where α is the fine-structure constant. In the Paschen-Back
regime (our case) the fine-structure-induced correction to the
energy levels is

ESO = α4mec
2

2

∑
l

∣∣Cn1n2
lml

∣∣2 mlms

n3l(l + 1)
(
l + 1

2

) . (20)

The relativistic contribution to the fine-structure shift results
from expanding the expression for the relativistic kinetic
energy of a particle. This yields a correction Hamiltonian
of [36]

Ĥrel = − p̂4

8m3
ec

2
. (21)

Following the same procedure presented in [36], in first-order
perturbation theory the relativistic shift is

Erel = −α4mec
2

2

∑
l

∣∣Cn1n2
lml

∣∣2

[
1

n3
(
l + 1

2

) − 3

4n4

]
. (22)

Putting both terms together, we obtain the fine-structure energy
shift

EFS = −α4mec
2

2n3

∑
l

∣∣Cn1n2
lml

∣∣2

×
[

−mlms

l(l + 1)
(
l + 1

2

) +
(

1(
l + 1

2

) − 3

4n

)]
. (23)

For our states of interest, the relativistic correction is around
6 kHz while the spin-orbit correction is around 200 Hz.

F. Quantum electrodynamic corrections

Quantum electrodynamics (QED) introduces the self-
energy and the vacuum polarization QED corrections, which
together form the Lamb shift. For circular Rydberg states,
a first-order account of QED corrections is sufficient; the
result is

ELamb = 8Z4α3

3πn3
hcR∞

∑
l

∣∣Cn1n2
lml

∣∣2
[
L(n,l) + 3

8

clj

2l + 1

]
,

(24)

where

clj =
{

(l + 1)−1 for j = l + 1/2
−l−1 for j = l − 1/2.

(25)

The Bethe logarithm is L(n,l) [37], which can be extrapolated
for n � 4 and l � 3 as

L(n,l) = 0.162 383 4

2l + 1

[(
1

l

)3/2

−
(

1

n

)3/2]

×
{

1 ±
[

1

2
− 1

4

(
l + 1

n

)3/2]}
. (26)

The first term in Eq. (24) corresponds to vacuum polariza-
tion and the second term to the self-energy. The latter gives
rise to the anomalous magnetic moment of the electron. The
electron’s g factor is 2 + α/π (to lowest order). This changes
the electron’s magnetic moment, leading to the second term in
square brackets in Eq. (24), which is equivalent to accounting
for the lowest-order correction of the electron’s g factor in
Eqs. (19) and (20).

In Eq. (24), the self-energy term is typically two orders
of magnitude higher than the vacuum polarization term, with
the values of the circular state of interest being 0.59 Hz and
1.1 mHz, respectively, and values for the near-circular state
being 0.51 Hz and 1.8 mHz. These corrections are small and
lead to a small transition energy shift due to the Lamb shift as
shown in Table III.

G. Blackbody shift

Blackbody radiation has two effects on Rydberg atoms:
The on-resonance portion affects their lifetime and the off-
resonance portion can cause an energy shift [38]. Since
Rydberg-Rydberg transition frequencies are in the range of
thermal blackbody radiation, thermal transitions lead to a
lifetime reduction. For instance, the lifetime of the n = 50
circular state is reduced from 30 ms at 0 K to 10 ms at 4 K.
Since both states in the transition of interest (Fig. 1) are affected
by this lifetime reduction, we expect a linewidth in the range
of 30 Hz, which is sufficiently narrow for the current purpose.

The blackbody shift caused by the off-resonance portion is
potentially of greater concern. The blackbody energy shift is
given by

Enl
BBR = e2

h̄

∑
n′,l′

∫ ∞

0

∣∣Rn′l′
nl

∣∣2|Fb|2�ω

2
(
�ω2 − ω2

b

) dωb, (27)

where ωb is the angular frequency of the blackbody radiation,
|Fb|2 is the blackbody field amplitude squared per frequency
unit, Rn′l′

nl is the radial matrix element, and �ω is the transition
angular frequency difference between the final and initial states
being considered. The field amplitude |Fb|2 can be obtained
using the spectral energy density form of the Planck radiation
law

|Fb|2 = 2h̄ω3
b

ε0π2c3(eh̄ωb/kBT − 1)
, (28)

where kB is Boltzmann’s constant and T is the temperature.
Equation (27) has an implicit dependence on the states being
considered since �ω is defined by the transition in question.

Approximations for the limiting cases of Eq. (27) are given
in [10]. In our case, the transition frequency of interest is
about 100 GHz, which is on the order of the peak of the
radiation spectrum at 4 K. As a result, in order to calculate the
blackbody shift, Eq. (27) has to be explicitly evaluated. For
treating parabolic states, Eq. (3) can be used.

H. Hyperfine-structure correction

The interaction of the nuclear magnetic moment with the
magnetic field caused by the valence electron gives rise to the
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hyperfine-structure Hamiltonian [39]

ĤHFS = μ0gIe
2

4πmemp

(
L̂ · Î
2r3

− ge

4r3
Ŝ · Î

+ ge

4r3
3(Ŝ · r̂)(Î · r̂) + ge

3

δ(r)

r2
Ŝ · Î

)
, (29)

which acts on the space {|n,n1,n2,ml,ms,mi〉}, where mi is
the nuclear magnetic quantum number. Above, μ0 is the
permeability of free space, gI is the g factor of the nucleus, mp

is the mass of the proton, Î is the nuclear spin operator, and δ(r)
is the Dirac delta function. The last term in the Hamiltonian is a
contact term, where the energy depends on the wave-function
density at the position of the nucleus, which is zero for the
states we consider in this experiment (Fig. 1). Noting that the
hyperfine structure is in the Paschen-Back regime and using
first-order perturbation theory and the analytic expression
given in [12] for the r−3 matrix elements, we obtain a hyperfine
energy shift of

EHFS = mi

∑
l

∣∣Cn1n2
lml

∣∣2

a3
0n

3(l + 1)
(
l + 1

2

)
l

μ0gIh̄
2e2

8πmemp

×
[
ml − gems

2

(
1 − 3

2l2 + 2l − 2m2
l − 1

(2l + 3)(2l − 1)

)]
(30)

which leads to a negligible energy shift (see Table III).

I. Doppler effect

To drive transitions, one of the components of the op-
tical lattice is amplitude modulated (optical carrier angu-
lar frequency ω and modulation angular frequency �; see
Fig. 4). Ponderomotive spectroscopy involves the inelastic
scattering of two counterpropagating optical-lattice photons
of angular-frequency difference � [40], which is at the atomic
transition frequency. In traditional Raman spectroscopy with
counterpropagating beams, the Doppler shift between the drive
frequency experienced by the atoms, �′, and � would follow
the expression

�′ − � ≈ −2ωk̂ · v
c

+ �

2

v2

c2
, (31)

where v is the center-of-mass velocity of an atom and the
unit vector k̂ marks the direction of propagation of the beams.
While the second-order Doppler effect is entirely negligible
at MOT temperatures, the first-order Doppler effect would
lead to a shift of about 20 kHz (for temperature of 1 μK). In
ponderomotive spectroscopy Eq. (31) does not apply. While it
approximately accounts for the overall widths of the spectra
(indicated by the arrows in Fig. 5), it fails to describe the
central narrow peak observed in ponderomotive spectroscopy.
There, the cooling and trapping of the atoms in a magic
lattice [25], combined with the fact that the phase of the
Rabi frequency is constant within a potential well, allow
us to achieve Doppler-free, Fourier-limited linewidths of the
central peak (see Fig. 5). This has already been seen in a
simulation in [25]. The underlying effect that gives rise to the
Doppler-free characteristics is somewhat akin to Doppler-free
two-photon spectroscopy, where the spatially varying phase of

-100 -50 0 50 100
0.000

0.001

0.002

0.003

0.3

0.4

0.5

300 kHz

P
e

Detuning (kHz)

20 kHz

FIG. 5. Simulation of the excited-state population Pe as a function
of detuning for two temperature regimes: 100 μK (red dashed line)
and 1 μK (blue solid line) for a potential depth of 35 kHz (motivated
by Table I) and an interaction time of 5 ms. The inset shows that
the widths of the narrow features at the center are Fourier limited.
The arrows indicate the approximate half-widths of the Doppler-
broadened background signals.

the atom-field interaction is canceled when the two photons
effecting the transition are from counterpropagating beams.

In order to model the spectra, we employ a simulation
program that treats the center-of-mass dynamics of the atoms
(due to lattice-induced forces) classically and the internal
modulation-driven dynamics quantum mechanically [9,25,41].
The effects of temperature on the population fraction that
becomes excited into the upper state are shown in Fig. 5
for a potential depth of 35 kHz in a one-dimensional lattice.
The central Fourier-limited features shown correspond to
trapped atoms (no Doppler effect). As the temperature is
lowered, the fraction of atoms trapped in the optical-lattice
wells increases, leading to a corresponding increase of the
area under the central peaks in Fig. 5. For a substantial
number of atoms to be captured, molasses temperatures are
required, as shown in Fig. 5. At 100 μK, only about 6%
of the population is trapped, whereas 1 μK yields 51%
trapped population. When temperatures are lowered, the
full width of the Doppler-broadened background signal is
approximately equal to 4vω/πc, where the thermal velocity
v = √

kBT/Matom [see Eq. (31)]. The gaps between the central
peak and the onset of the Doppler background reflect the
fact that atoms within a range of velocities are trapped.
The trapped atoms experience no Doppler shift and generate
the Fourier-limited feature at the center of the spectrum.
They essentially undergo recoil-free absorption within the
lattice wells.

IV. DISCUSSION

In Table III we summarize the sources of frequency shifts
and their respective relative uncertainties for the sample atomic
transition |51,0,0,50〉 → |53,1,1,50〉 considered in this paper.
These lead to an expected relative uncertainty in the proposed
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TABLE III. Transition frequency shifts, relative transition shifts, and relative uncertainties for ground-based experiment under conditions
suitable for a kinetic temperature of 1 μK. Reduced shifts and uncertainties, which may be achieved under microgravity conditions, are shown
in square brackets for a temperature of 10 nK. The second-order Stark and diamagnetic shifts are lowered under these conditions since the field
values are determined based on the kinetic temperature of the atoms (see Sec. II B). Here we use ms = 1/2. The blackbody shift is calculated
at 4 K.

Source �ν �ν/ν δ�ν/ν (×10−12)

Residual lattice shift 0(3) Hz 0 32
[0(0.1)] Hz [1.0]

Dipolar polarization quantum defect 120.1(3) Hz 1.283×10−9 2.8
second-order Stark −6.8(1) Hz −7.3×10−11 1.5

[−0.73(1)mHz] [1.6×10−4]
Diamagnetic 0.94(4) Hz 1.0×10−11 0.4

[94(4) μHz] [4.0×10−5]
Mass correction −605.08747(3) kHz 6.4606271×10−6 0.3
Lamb shift −84.1(5) mHz −8.98×10−13 5.0×10−3

Blackbody 0.64(6) mHz 6.8×10−15 6.2×10−4

Quadrupolar polarization quantum defect 26(5) μHz 2.8×10−10 6.0×10−5

second-order Doppler 0.05 (7)nHz 5×10−22 7.3×10−10

Fine structure 488.0332466612(5) Hz 5.210818188587×10−9 1.6×10−9

Hyperfine structure 32.89402(7) μHz 3.512153×10−16 7.2×10−12

first-order Stark 0 0 0
Zeeman 0 0 0
first-order Doppler 0 0 0

measurement of the Rydberg constant in the low 10−11 range.
In the following, we discuss the leading sources of uncertainty
and how these can be improved in order to attain a state-of-the-
art uncertainty. In contrast with measurements performed with
low-lying states of hydrogen (from which the best current
uncertainty of 5.9×10−12 is obtained), our measurement is
independent of nuclear effects and therefore could contribute
to solving the proton radius puzzle [42].

A. Main sources of uncertainty

The main source of uncertainty on the proposed ground-
based experiment is the residual lattice-induced shift. The
residual lattice shift amounts to a differential ponderomo-
tive shift between upper and lower Rydberg states in our
ponderomotive-optical-lattice trap. After minimizing this shift
by choosing magic-lattice conditions, we estimate a remaining
relative uncertainty of 3.2×10−11, due to laser intensity
fluctuations. This uncertainty value is obtained assuming a
1% lattice-intensity uncertainty (better stabilities are likely
possible). The lattice shift results presented in Table III are
obtained through simulations based on Eq. (6) where we
specify the two atomic states of interest, arbitrary laser-beam
geometry, wavelengths, and intensities of the beams that form
the lattice. For these calculations, it is assumed that the
alignment between the normal vectors of the lattice planes
and the quantization axis is perfect. As suggested by Fig. 4,
conditions can be chosen such that one pair of lattice beams
causes a transition shift with a different polarity than that
due to another pair of lattice beams such that the induced
shifts can cancel each other out. To achieve this type of
magic lattice, the intensity of one of the beams is adjusted
until the calculated transition lattice shift reaches zero. In
Table III, the corresponding uncertainties are generated by

the assumption that the intensities can be controlled with a 1%
relative uncertainty.

Smaller uncertainties are possible through the use of
shallower lattices and fewer laser beams. To achieve this, lower
atomic temperatures are needed, for which other well-known
cooling methods can be employed [43]. Moreover, for a
similar experiment in microgravity conditions, the depth of
the lattice could be further decreased or even only used
for driving transitions. This reduction of the lattice-induced
uncertainty may be the only improvement necessary to achieve
a competitive Rydberg-constant measurement. In Table III,
lattice-shift estimates are presented for two cases of the lattice
depth, one suitable for ground-based experiments and the other
for microgravity experiments. Table III also shows that the
lattice-induced shift represents the by far dominant source of
systematic uncertainty and needs to be addressed first in any
incremental improvement of the experiment.

The next-significant systematic shift arises from the dipole
polarizability of the ionic core (see Table III), which currently
stands at 9.12(2) [30], with experiments under way to improve
the uncertainty in this value [40]. The uncertainty due to
the quadrupolar energy level shift is negligible in the overall
uncertainty budget, because of the 1/r6 dependence of that
shift [44,45].

The quantum defect corrections are due to deviations
from the hydrogenic 1/r potential. This applies to both the
penetration [10] (zero for the case of circular states) and the
polarization quantum defects. This issue could be avoided in
the first place by using hydrogen instead of rubidium. However,
experimental obstacles due to the large recoil energy of
hydrogen and laser cooling on the Lyman-α line are prohibitive
at this time, leaving rubidium as an attractive option.

The uncertainties in the second-order Stark and Zeeman
shifts arise from the electric and magnetic fields not being
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precisely known. The hierarchy of first-order energy-level
shifts has been explained in Table I. The electric and magnetic
fields that correspond to these shifts are listed in Table II. Then
Eqs. (11) and (14) are used to compute the corresponding
second-order Stark and Zeeman shifts. The second-order
shifts, their uncertainties, and the known transition frequencies
are used to compute the numbers in Table III.

For the values displayed in Table III, we assume an electric-
field uncertainty of 1% of the field magnitudes provided
in Table II. The resulting uncertainty is the third largest in
Table III. It can be seen in Table III that by performing the
experiment under microgravity conditions the second-order
Stark shift uncertainty can be decreased by four orders of
magnitude (because the electric field can be dropped by two
orders of magnitude) and hence the shift goes from borderline
significant to insignificant.

The uncertainty displayed for the second-order Zeeman
shift in Table III assumes that the magnetic field is known
to 2% of its value that is dictated by the kinetic temperature
of the atoms (see Table II). This precision can be achieved
by monitoring the atomic Larmor precession of cold-atom
samples using the Faraday rotation technique.

B. Other sources of uncertainty

The following discussion shows that the remaining shifts
listed in Table III present negligible uncertainties at the current
level of precision (5.9×10−12), but these are discussed here for
completeness. The finite-mass correction, which accounts for
the noninfinite mass of the nucleus, consists of a dominant
first-order term and several higher-order terms. The first order
can be considered by multiplying the Rydberg constant by
a factor of μ/me [μ = meM/(me + M)] [12], where M is
the Rb+ mass. The correction is −605.087 47 kHz, as shown
in Table III. The mass correction introduces an insignificant
uncertainty to our measurement since the mass of Rb+

(84.911 245 324 a.u.) and that of the electron are well known
(relative uncertainties of 4.4×10−8 [46] and 1.2×10−8 [5],
respectively). The higher-order terms show up as factors of
the form (μ/me)η in the fine-structure (η = 1), second-order
Stark effect (η = 3), diamagnetic shift (η = 1), Lamb shift
(η = 2), and hyperfine-structure (η = 1) corrections. When
the mass correction factor is considered for these, the shifts
decrease by 3 mHz, 0.1 mHz, 6 μHz, 1 μHz, and 212
pHz, respectively. Since these differences are negligible,
we do not carry out these corrections in the results shown
in Table III.

In contrast to measurements on low-lying states of hy-
drogen [4], through the use of circular states, we obtain
low QED corrections, since the valence electron has zero
probability of being in the vicinity of the nucleus, and the
size of the Rydberg wavefunction becomes very large. The
main source of uncertainty in the Lamb shift is the Bethe
logarithm [37], leading to a negligible uncertainty for our
measurement.

The blackbody shift is lowered three orders of magnitude
by placing our system in thermal contact with liquid helium,
which has a temperature of 4 K. Even so, at 300 K the
blackbody radiation shift for the transition of interest is just
−21 mHz, making this shift negligible for a wide range of

typical experimental temperatures. The results of numerical
calculations shown in Table III follow a similar procedure
to that presented in [38]. However, we consider only bound
states up to about n = 300. This truncation of the basis set
does not affect the results significantly. By leaving out the
last 250 states in the calculation, at worst, the calculated
shift for the individual states (about 2.4 kHz at 300 K and
0.42 Hz at 4 K) changes only by about 0.1 mHz at a
temperature of 300 K and by nanohertz at a temperature of
4 K. This leads us to the conclusion that it is not necessary
to include the continuum states in our calculations, which
is also reaffirmed in [38]. We treat the near-circular state as
a sum of spherical states multiplied by their respective 3J

symbols squared. The radiation field is taken to be isotropic
inside our spectroscopy enclosure, since at the frequencies
considered, the cavity density of states approaches that of
free space. With this treatment, we obtain results comparable
to those obtained in [38] for temperatures of 300 K. The
radial matrix elements used in the calculations are correct
to four significant figures. The main source of uncertainty
for the shift presented in Table III is dictated by how well we
know the temperature inside the spectroscopy enclosure. When
calculating the blackbody shift uncertainty, it is assumed that
the temperature is known to ±0.5 K.

The main effect caused by the blackbody radiation is the
broadening it induces on the spectral line due to thermally
induced decays and excitations, leading to the anticipated
linewidth of about 30 Hz for the transition studied here (see
Sec. III G). The broadening due to blackbody radiation and the
limited atom-field interaction time is expected to be symmetric,
hence it does not entail additional systematic shifts.

Despite producing a relatively large shift, the fine-structure
correction can be calculated very accurately since the fine-
structure constant is well known (relative uncertainty of
2.3×10−10 [5]). As a result, the relative uncertainty introduced
by the fine-structure shift is only 1.6×10−21.

Even though the hyperfine-structure shift in itself is
negligible, its uncertainty is nevertheless estimated. The main
sources of this uncertainty are the electron mass, proton mass,
Planck’s constant (all of them with relative uncertainties of
1.2×10−8), and the electron charge (relative uncertainty of
6.1×10−9) [5]. The g factors for the nucleus (0.000 293 640 0)
and the electron (2.002 319 304 361 53) are also well known
(relative uncertainties of 6.0×10−10 [39] and 2.6×10−13 [5],
respectively).

Effective trapping of atoms in the lattice leads to zero first-
order and negligible second-order Doppler effects (Fig. 5). As
discussed in Sec. III B, the first-order Stark and Zeeman shifts
are zero for our transition. This is possible by choosing the
lower and upper state so that either the shift on each individual
state is zero (first-order Stark shift) or both states experience
the same shift (first-order Zeeman shift).

Finally, a precise determination of the spectroscopic line
center is essential in obtaining a successful measurement
of R∞. To achieve a relative uncertainty of the transition
frequency of 3×10−12, the line center of the transition studied
here needs to be located to within a statistical uncertainty of
0.3 Hz, corresponding to about 1/100 of the net radiative
linewidth anticipated at a 4 K radiation temperature. Not-
ing that microchannel plate particle detectors are virtually
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background-free, the statistics are expected to be dominated
by shot noise in the counting gates. Initial estimates indicate
required data acquisition times of several hours; however,
any experimental realization will be accompanied by its own
analysis of anticipated statistics.

V. CONCLUSION

We have discussed an experimental method to help solve
the proton radius puzzle using a cold-atom-based measurement
of the Rydberg constant R∞, which utilizes (near-)circular
Rydberg states and is free of QED shifts and sensitivity to
nuclear charge overlap. Previous efforts to measure R∞ with
Rydberg atoms have encountered several experimental chal-
lenges, which are addressed in this proposed measurement.
The first-order Zeeman and Stark shifts are both zero, owing
to appropriate selection of parabolic atomic states involved in
the transition. By applying cooling and trapping techniques,
the interaction times are increased, leading to a reduction of
the Fourier width. By using a recently-demonstrated method of
spectroscopy in modulated optical lattices [9,25], the Doppler

broadening is eliminated. An implementation of the proposed
experiment at atomic temperatures of 1 μK is projected to
yield a Rydberg constant value with an uncertainty in the
low 10−11 range, limited almost exclusively by lattice-trap-
induced shifts. Since the proposed experiment differs from
spectroscopy on low-lying atomic states, in that it is entirely
insensitive to the proton radius, this level of precision would be
sufficient to make a statement about the proton radius puzzle.
The trap-induced shifts could be very well addressed by per-
forming the experiment under microgravity conditions, which
could lead to an uncertainty in the approximately 3×10−12

range, almost a factor of 2 improvement over the current
uncertainty.
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