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Theoretical prediction of the fine and hyperfine structure of heavy muonic atoms
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Precision calculations of the fine and hyperfine structure of muonic atoms are performed in a relativistic ap-
proach and results for muonic 205Bi, 147Sm, and 89Zr are presented. The hyperfine structure due to magnetic dipole
and electric quadrupole splitting is calculated in first-order perturbation theory, using extended nuclear charge
and current distributions. The leading correction from quantum electrodynamics, namely vacuum polarization
in Uehling approximation, is included as a potential directly in the Dirac equation. Also, an effective screening
potential due to the surrounding electrons is calculated, and the leading relativistic recoil correction is estimated.
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I. INTRODUCTION

A muon is a charged elementary particle, which is in many
aspects similar to the electron; in particular, it has the same
electric charge, but it is ≈ 207 times heavier than the electron
[1]. When coming close to an atom, a muon can be captured
by the nucleus and form a hydrogen-like muonic ion, which
is typically also surrounded by the atomic electrons. This
atomic system is commonly referred to as a muonic atom.
The lifetime of the muon is big enough to be considered stable
in the structure calculations of these muonic bound states.
Muonic atomic systems feature strong dependence on nuclear
parameters and therefore can provide information about atomic
nuclei [2]. This triggered interest in precise knowledge of the
level structure of muonic atoms [3,4]. Due to the muon’s high
mass, it is located much closer to the nucleus; and, especially
for heavy nuclei, this results in big nuclear size effects and
a strong dependence of the muon bound-state energies on
the nuclear charge and current distributions, as well as large
relativistic effects.

A combination of the knowledge about the level structure
and experiments measuring the transition energies in muonic
atoms enabled the determination of nuclear parameters like
charge radii [5,6], quadrupole moments [7], and magnetic HFS
constants [8]. One of the most precise measurements to date
is the determination of the nuclear root-mean-square radius of
208Pb on a 0.2% level [9].

Recent measurements on muonic hydrogen renewed the
interest in muonic atoms, revealing a disagreement between the
values for the proton charge radius extracted from muonic and
electronic systems [10]. This allows the assumption that there
can be unidentified effects in muonic systems and triggered
detailed theoretical investigation of muonic hydrogen und
light muonic atoms, e.g., Refs. [11,12]. Deeper knowledge
of the physics of heavy muonic atoms could also contribute to
the understanding of the muonic puzzles. In addition, nuclear
parameters obtained from muonic x rays would be beneficial
for experiments on atomic parity violation [13]. For this reason,
there are upcoming experiments on heavy muonic atoms [14].
The complicated level structure of these systems demands
accurate theoretical calculations.
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We present updated state-of-the-art calculations of the fine
and hyperfine structures of heavy muonic atoms and analyze
the individual contributions. In combination with experimental
data, they can be used for the determination and further im-
provement of values of nuclear parameters. The fine structure
is calculated including finite-size effects and leading-order
effects of the vacuum polarization. Additionally, the screening
from the surrounding atomic electrons is considered. The hy-
perfine structure is then calculated with extended quadrupole
and magnetization distributions, including the previously
mentioned effects. Results are presented for muonic 205Bi,
147Sm, and 89Zr. The dual-kinetic-balance method [15] was
applied for the numerical evaluation of the listed contributions.

Muonic relativistic units with h̄ = c = mμ = 1 are used,
where mμ is the muon’s mass, and the Heaviside charge unit
with α = e2/4π , where α is the fine structure constant and the
electron’s charge is e < 0.

II. INTERACTION BETWEEN MUON AND NUCLEUS

The total Hamiltonian for a muon bound to a nucleus
can be written as a sum of nuclear, muonic, and interaction
Hamiltonian [4]. Thus, we consider the Hamiltonian

H = HN + H (0)
μ + Hμ−N, (1)

with the nuclear Hamiltonian HN , the Dirac Hamiltonian H (0)
μ

for the free muon, and the interaction Hamiltonian Hμ−N . The
nucleus is described in the rotational model, i.e., in a state
with well-defined angular momentum and charge- and current
density in the body fixed nuclear frame [16]. As a next step, the
interaction between the bound muon and the atomic nucleus is
expanded, where electric and magnetic interactions are taken
into account. The interaction Hamiltonian is

Hμ−N = HE + HM, (2)

where the electric part reads

HE = −α

∫
dV ′ ρ(�r ′)

|�rμ − �r ′| , (3)

with the fine structure constant α, the position �r ′ of the
nuclear charge distribution, and the position �r ′

μ of the muon
in the nuclear frame. The nuclear charge distribution ρ(�r) is

2469-9926/2017/96(3)/032510(7) 032510-1 ©2017 American Physical Society

https://doi.org/10.1103/PhysRevA.96.032510


MICHEL, ORESHKINA, AND KEITEL PHYSICAL REVIEW A 96, 032510 (2017)

normalzed to the nuclear charge Z as∫
dVρ(�r) = Z. (4)

Conveniently, the nuclear charge distribution is divided into a
spherically symmetric part ρ0(r) and a part ρ2(r) describing
the quadrupole distribution in the nuclear frame as [17]

ρ(�r ′) = ρ0(r ′) + ρ2(r ′) Y20(ϑ ′,ϕ′), (5)

with the spherical harmonics Ylm(ϑ,ϕ). Since an analogous part
for the dipole distribution would be an operator of odd parity,
it would vanish after averaging with muon wave functions
of defined parity [18], and thus it is not considered here and
neither are higher multipoles beyond the quadrupole term.
Correspondingly, the electric interaction Hamiltonian from (2)
can be written as

HE = H
(0)
E + H

(2)
E , (6)

where the spherically symmetric part of the charge distribution
gives rise to

H
(0)
E (rμ) = −4πα

∫ ∞

0
dr r2 ρ0(r)

r>

, (7)

with r> = max(r,rμ). This interaction Hamiltonian will be
included in the numerical solution of the Dirac equation for
the muon as described in Sec. III. The quadrupole part of the
interaction H

(2)
E causes hyperfine splitting, which is calculated

perturbatively in Sec. VII A.
As for the magnetic part, we consider dipole interaction.

Therefore, the corresponding interaction Hamiltonian from
(2) reads [19]

HM = |e|
4π

�μ ·
[
FBW(r)

�r
r3

× �α
]
, (8)

with the charge of the muon e = −|e|, the nuclear magnetic
moment �μ, its distribution function FBW, and the Dirac
matrices �α. If the nuclear current density is described by a
normalised scalar function fμ(r) as

�j (r) = rot [ �μfμ(r)], (9)

then the distribution function is given by

FBW(r) = −r2 ∂

∂r

∫
dV ′ fμ(r ′)

|�r − �r ′| . (10)

The difference in the hyperfine splitting between a pointlike
magnetic moment and a spacial distribution of the magnetiza-
tion is called the Bohr-Weisskopf effect [20]. In Sec. VII A,
the matrix elements of the magnetic interaction are analyzed,
paying special attention to the distribution function FBW. We
expect the contribution of the higher-order terms, namely
electric octupole, magnetic quadrupole, and beyond, to be
smaller than the uncertainty of the considered terms [4,21].
Therefore they can be ignored here.

For evaluating these Hamiltonians, the appropriate states
are states of defined total angular momentum. A nuclear state
|IM〉 with nuclear angular-momentum quantum number I and
projection M on the z axis of the laboratory frame and a muonic
state |nκm〉 with total angular momentum j (κ) = |κ| − 1

2 and

projection m are coupled to a state |FMF Iκ〉 with angular
momentum F and projection MF as

|FMF Iκ〉 =
∑
M,m

C
FMF

IM jm |IM〉 |nκm〉 , (11)

where C
jm

j1m1j2m2
are the Clebsch-Gordan coefficients [22].

Here n is the principal quantum number of the muon and
κ = (−1)j+l+ 1

2 (j + 1
2 ) with the orbital angular-momentum

quantum number l.

III. DIRAC EQUATION WITH FINITE-SIZE
CORRECTIONS

As a basis for further calculations, the Dirac equation

(�α · �p + β + V (rμ)) |nκm〉 = (1 − Enκ ) |nκm〉 (12)

is solved for the muon. Here �α and β are the four Dirac
matrices, Enκ are the binding energies, and the potential
V (r) is the spherically symmetric part of the interaction with
the nucleus, which is the monopole contribution from the
electric interaction (7) and the Uehling potential from (17).
A Fermi-type charge distribution [23] is used to model the
monopole charge distribution as

ρ0(r) = N

1 + exp[(r − c)/a]
, (13)

where a is a skin thickness parameter and c the half-density
radius. The normalization constant N is chosen such that (4)
is fulfilled. It has been proven, that a = t/(4 log3), with t =
2.30 fm, is a good approximation for most of the nuclei [23].
The parameter c is then determined by demanding that the
charge radius squared

〈r2〉 =
∫

dr r4ρ0(r)∫
dr r2ρ0(r)

(14)

agrees with the values from the literature [24]. Since the
potential in Eq. (12) is spherically symmetric, the angular
part can be separated and the solution with spherical spinors

κm(ϑ,ϕ) can be written as [25]

|nκm〉 = 1

r

(
Gnκ (r) 
κm

i Fnκ (r) 
−κm

)
, (15)

and the resulting equations for the radial functions are solved
with the dual-kinetic-balance method [15] to obtain Gnκ and
Fnκ , and the corresponding eigenenergies numerically.

In Table I, the binding energies for muonic 205
83 Bi, 147

62 Sm,
and 89

40Zr are shown, both with and without the corrections
from the Uehling potential (17). The finite nuclear size effect
is illustrated by also including the binding energies E(C)

nκ of the
pure Coulomb potential −Zα/rμ, which read [25]

E(C)
nκ = 1 −

{
1 + (Zα)2

[n − |κ| +
√

κ2 − (Zα)2]2

}− 1
2

. (16)

The uncertainties include the error in the rms radius value as
well as a model error, which is estimated via the difference
of the binding energies with the Fermi potential (13) and the
potential of a charged sphere with the same rms radius. For
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TABLE I. Overview of the binding energies for muonic 205
83 Bi,

147
62 Sm, and 89

40Zr, obtained by solving the Dirac equation with the
spherically symmetric parts of the muon-nucleus interaction. The
values for solving the Dirac equation only with the electric monopole
potential and with the electric monopole potential and the Uehling
potential are presented to show the influence of the leading-order
vacuum polarization. The binding energies (16) for a pointlike
nucleus are shown as well. The reduced mass is used to include
the nonrelativistic recoil corrections from Sec. V. The corrections
from Sec. VI are not included in this table. All energies are in keV.

State Pointlike Finite size (fs)a fs+Uehlingb

205Bi 1s1/2 21573.3 10699.(51.) 10767.(52.)
2s1/2 5538.6 3654.(15.) 3674.(15.)
2p1/2 5538.6 4893.(3.) 4927.(3.)
2p3/2 4958.9 4706.(5.) 4737.(5.)
3s1/2 2394.3 1796.(5.) 1804.(6.)
3p1/2 2394.3 2170.0(5) 2190.1(5)
3p3/2 2221.4 2131.(1.) 2141.(1.)
3d3/2 2221.4 2216.9(3) 2227.8(3)
3d5/2 2174.6 2172.8(2) 2183.0(2)

147Sm 1s1/2 11423.8 7165.(28.) 7213.(29.)
2s1/2 2895.7 2230.(7.) 2242.(7.)
2p1/2 2895.7 2778.(2.) 2795.(2.)
2p3/2 2736.9 2689.(2.) 2706.(2.)
3s1/2 1268.9 1061.(2.) 1066.(2.)
3p1/2 1268.9 1228.6(4) 1234.2(4)
3p3/2 1221.7 1204.7(6) 1210.0(6)
3d3/2 1221.7 1221.4(1) 1226.2(1)
3d5/2 1207.6 1207.4 1212.1

89Zr 1s1/2 4595.5 3643.(8.) 3669.(8.)
2s1/2 1155.2 1021.(2.) 1026.(2.)
2p1/2 1155.2 1147.8(2) 1153.7(2)
2p3/2 1129.9 1127.0(2) 1132.6(2)
3s1/2 510.6 469.8(5) 471.4(5)
3p1/2 510.6 508.0(1) 509.8(1)
3p3/2 503.1 502.0(1) 503.8(1)
3d3/2 503.1 503.1 504.5
3d5/2 500.7 500.7 502.1

aV (rμ) = H
(0)
E (rμ).

bV (rμ) = H
(0)
E (rμ) + VUehl(rμ) see Eqs. (7), (12), and (17) for

definitions.

heavy nuclei, the finite nuclear size correction can amount up
to 50 %, and thus the binding energy is halved.

IV. VACUUM POLARIZATION

For atomic electrons, usually the self-energy QED correc-
tion is comparable to the vacuum polarization correction [23].
For muons, however, the vacuum polarization correction is
much larger due to virtual electron-positron pairs, which are
less suppressed due to their low mass compared to the muon’s
mass [3]. The spherically symmetric part of the vacuum polar-
ization to first order in α and Zα is the Uehling potential [19]

VUehl(rμ)

= −α
2α

3π

∫ ∞

0
dr ′ 4πρ0(r ′)

∫ ∞

1
dt

(
1 + 1

2t2

)

×
√

t2−1

t2

exp(−2me|rμ−r ′|t) − exp[−2me(rμ+r ′)t]
4merμt

,

(17)

where me is the electron mass and ρ0 is the spherically
symmetric part of the charge distribution from (5). This
potential can be directly added to the Dirac equation (12). In
this way, all iterations of the Uehling potential are included
[11]. Results for our calculations can be found in Table I.

V. RECOIL CORRECTIONS

Taking into account the finite mass and the resulting motion
of the nucleus leads to recoil corrections to the bound muon
energy levels. In nonrelativistic quantum mechanics, as in
classical mechanics, the problem of describing two interacting
particles can be reduced to a one-particle problem by using the
reduced mass mr of the muon-nucleus system [26]. With the
mass of the nucleus mN , the reduced mass reads in the chosen
system of units as

mr = mN

mN + 1
, (18)

and the Dirac equation is accordingly modified to

[�α · �p + β mr + V (rμ)] |nκm〉 = (mr − Enκ ) |nκm〉 . (19)

In relativistic quantum mechanics, this separation is not
possible. We follow an approach used in Refs. [3,27], which
includes the nonrelativistic part of the recoil correction already
in the wave functions by using the reduced mass in the Dirac
equation and calculating the leading relativistic corrections
perturbatively. If E(fm)

nκ denotes the binding energy of (12) with
the finite-size potential (7) but with the reduced mass replaced
by the full muon rest mass, and E(rm)

nκ the binding energy in
the same potential but with the reduced mass (18), then the
leading relativistic recoil correction �E(rec,rel)

nκ according to
Ref. [3] reads

�E(rec,rel)
nκ = −

[
E(fm)

nκ

]2

2MN

+ 1

2MN

〈
h(r) + 2E(fm)

nκ P1(r)
〉
, (20)

where MN is the mass of the nucleus, and the functions h(r)
and P1(r) are defined in Eqs. (109) and (111) of Ref. [3],
respectively. In Table II, the binding energies obtained from
solving the Dirac equation with the muon rest mass and the
reduced mass of the muon-nucleus system are compared,
and the leading relativistic recoil correction is shown. The
uncertainties include errors in the rms radius, the model of
the charge distribution and for the relativistic recoil, and a
(mμ/MN )2 term due to higher-order corrections in the mass
ratio of muon and nucleus, which dominates the uncertainty
for lower Z.

VI. ELECTRON SCREENING

The effect of the surrounding electrons on the binding
energies of the muon was estimated following Ref. [28] by
calculating an effective screening potential from the charge
distribution of the electrons as

Ve(�rμ) = −α

∫
dV

ρe(�r)

|�rμ − �r| (21)
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TABLE II. Recoil corrections to the binding energies of the muon.
fm (full mass) denotes the finite size binding energy, analogous to
the fourth column of Table I but with the rest mass of the muon used
in the Dirac equation. �Erec,nr is the nonrelativistic recoil correction,
which is the difference between the finite-size Dirac solutions with
reduced mass and full mass, respectively. �E(rec,rel)

nκ is the leading
relativistic recoil correction from Sec. V. All energies are in keV.

State E(fm) �Erec,nr �E(rec,rel)
nκ

a

205Bi 1s1/2 10702.(51.) −2.80(4) 0.39(4)
2s1/2 3656.(15.) −1.42(2) 0.09(3)
2p1/2 4895.6(3.0) −2.24(1) 0.12(3)
2p3/2 4708.2(4.6) −2.27(1) 0.01(1)
3s1/2 1796.6(5.5) −0.78(1) 0.03(3)
3p1/2 2180.0(0.5) −1.05 0.03(3)
3p3/2 2131.9(1.3) −1.06 0.03(3)
3d3/2 2218.1(0.3) −1.21 0.02(2)
3d5/2 2174.0(0.2) −1.19 0.02(2)

147Sm 1s1/2 7168.(28.) −3.17(4) 0.29(7)
2s1/2 2231.1(6.7) −1.31(1) 0.05(5)
2p1/2 2779.4(1.5) −1.97(1) 0.05(5)
2p3/2 2691.2(1.8) −1.96(1) 0.04(4)
3s1/2 1062.0(2.3) −0.68(1) 0.02(2)
3p1/2 1229.5(0.4) −0.89 0.01(1)
3p3/2 1205.6(0.6) −0.89 0.01(1)
3d3/2 1222.3(0.1) −0.93 0.01(1)
3d5/2 1208.3 −0.92 0.01(1)

89Zr 1s1/2 3646.5(8.2) −3.36(3) 0.15(15)
2s1/2 1022.4(1.5) −1.11(1) 0.02(2)
2p1/2 1149.2(0.2) −1.43 0.01(1)
2p3/2 1128.4(0.2) −1.41 0.01(1)
3s1/2 470.3(0.5) −0.54 0.01(1)
3p1/2 508.6(0.1) −0.64 0.00
3p3/2 502.7(0.1) −0.63 0.00
3d3/2 503.7 −0.64 0.00
3d5/2 501.3 −0.63 0.00

a�Erec,nr := E(red.mass) − E(fm), see Sec. V for definitions.

and using this potential in the Dirac equation for the muon. The
charge distribution of the electrons is obtained by their Dirac
wave functions as ρe(�r) = ∑

i ψ
∗
ei

(�r) · ψei
(�r), where ψei

(�r) is
the four-component spinor of the ith considered electron. In
order to obtain the wave functions of the electrons, it has to be
taken into account that the muon essentially screens one unit of
charge from the nucleus. The simplest possibility is to replace
the nuclear charge by an effective charge Z̃ = Z − 1 and then
solve the Dirac equation for the electron with this modified
nuclear potential. Another possibility is to start solving the
Dirac equation for the muon in the nuclear potential without
electron screening. Then the Dirac equation for the electron is
solved for all required states, adding the screening potential
due to the bound muon

Vμ(�re) = −α

∫
dV

ψ∗
μ(�r) · ψμ(�r)

|�re − �r| , (22)

analogously to (21). The interaction between the electrons is
not taken into account here. Finally, the Dirac equation for the
muon is solved again, now including the nuclear potential and

TABLE III. Electron screening corrections to the bound muon
energy levels. �E

(1)
S,eff and �E

(1+2)
S,eff are the screening corrections with

the effective nuclear charge method, whereas �E
(1)
S,3step and �E

(1+2)
S,3step

use the three-step calculation, both described in Sec. VI. For the
superscript (1), only the 1s electrons are considered, while for (1+2),
all electrons from the first and second shells are considered. All
energies are in keV.

μ state �E
(1)
S,eff �E

(1+2)
S,eff �E

(1)
S,3step �E

(1+2)
S,3step

205Bi 1s1/2 5.555 10.825 5.555 10.825
2s1/2 5.537 10.803 5.538 10.805
2p1/2 5.548 10.817 5.549 10.818
2p3/2 5.547 10.816 5.548 10.817
3s1/2 5.490 10.748 5.494 10.753
3p1/2 5.514 10.776 5.516 10.779
3p3/2 5.512 10.774 5.515 10.777
3d3/2 5.526 10.791 5.528 10.793
3d5/2 5.525 10.789 5.527 10.792

147Sm 1s1/2 3.705 7.312 3.705 7.312
2s1/2 3.699 7.305 3.700 7.305
2p1/2 3.703 7.309 3.703 7.309
2p3/2 3.703 7.309 3.703 7.309
3s1/2 3.682 7.285 3.683 7.286
3p1/2 3.689 7.293 3.691 7.295
3p3/2 3.689 7.293 3.690 7.294
3d3/2 3.694 7.299 3.695 7.300
3d5/2 3.694 7.298 3.694 7.299

89Zr 1s1/2 2.214 4.405 2.214 4.405
2s1/2 2.212 4.402 2.212 4.403
2p1/2 2.213 4.403 2.213 4.403
2p3/2 2.213 4.403 2.213 4.403
3s1/2 2.205 4.395 2.206 4.396
3p1/2 2.207 4.397 2.208 4.398
3p3/2 2.207 4.397 2.208 4.398
3d3/2 2.209 4.399 2.210 4.400
3d5/2 2.209 4.399 2.209 4.400

the screening potential (21) due the atomic electrons from the
considered electron configuration. This procedure can be re-
peated in the spirit of Hartree’s method [29] until the electrons
and the muon are self-consistent in the fields of each other, but
our studies show that one iteration is usually enough since the
overlap of muon and electron wave functions in heavy muonic
atoms is small. It is important to note that here the screening
potential depends to a small extent on the state of the muon,
since the muon wave function is used in the calculation for the
electron wave function. The atomic electrons primarily behave
like a charged shell around the muon and the nucleus; thus
every muon level is mainly shifted by a constant term, which is
not observable in muonic transitions. The screening correction
�ES is defined as the difference of the binding energy without
screening potential and with screening potential, therefore a
positive value indicates that the muon is less bound due to
the screening effect. The main contribution to the nonconstant
part of the screening potential comes from the 1s electrons,
since their wave functions have the biggest overlap with the
muon; therefore the exact electron configuration has only a
minor effect on transition energies [28]. In Table III, results
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for the screening correction are shown for both mentioned
methods and for different electron configurations. Values of
the screening correction for different electron configurations
show that a 10% error for the nonconstant part is a reasonable
estimate.

VII. HYPERFINE INTERACTIONS

A. Electric quadrupole splitting

Since for heavy nuclei the nuclear radius is comparable
to the muon’s Compton wavelength [1,24], the muonic wave
function overlaps strongly with the nucleus and the muon
is sensitive to nuclear shape corrections, which results in
hyperfine splitting of the energy levels. The quadrupole part
of the electric interaction (6) can be rewritten as [16]

H
(2)
E = −α

Q0FQD(rμ)

2 r3
μ

2∑
m=−2

C2m(ϑN,ϕN )C∗
2m(ϑμ,ϕμ), (23)

where Clm(ϑ,ϕ) = √
4π/(2l + 1)Ylm(ϑ,ϕ) and angles with a

subscript μ(N ) describe the position of the muon (z axis
of the nuclear frame) in the laboratory frame. Here the
nuclear intrinsic quadrupole moment is defined via the charge
distribution (5) as

Q0 = 2

√
4π

5

∫ ∞

0
r4ρ2(r) dr, (24)

and the distribution of the quadrupole moment is described by
the function f (rμ), where in the pointlike limit f (rμ) = 1/r−3

μ .
For the shell model, where the quadrupole distribution is
concentrated around the nuclear rms radius RN , the divergence
for rμ = 0 is removed, and the corresponding quadrupole
distribution function is

FQD(rμ) =
{

(rμ/RN)5 rμ � RN

1 rμ > RN

. (25)

Formally, this corresponds to a charge distribution with

ρ2(rμ) = Q0

2R4
N

√
5

4π
δ(rμ − RN ). (26)

The matrix elements of the quadrupole interaction (23) in the
states (11) read [30]

〈FMF Iκ| H (2)
E |FMF Iκ〉

= −α(−1)j+I+F 〈I || Q0

2
Ĉ2(ϑN,ϕN ) ||I 〉

× 〈nκ|| FQD(rμ)

r3
μ

Ĉ2(ϑμ,ϕμ) ||nκ〉 . (27)

The reduced matrix element in the nuclear coordinates can be
expressed with the spectroscopic nuclear quadrupole moment
Q as

〈I || Q0

2
Ĉ2(ϑN,ϕN ) ||I 〉 = Q

√
(2I + 3)(2I + 1)(I + 1)

4I (2I − 1)
,

and the reduced matrix elements in the muonic coordinates are

〈nκ|| f (rμ)Ĉ2(ϑμ,ϕμ) ||nκ〉

= −
√

(2j + 3)(2j + 1)(2j − 1)

16j (j + 1)

×
∫ ∞

0

[
G2

nκ (rμ) + F 2
nκ (rμ)

]FQD(rμ)

r3
μ

drμ. (28)

The values for the nuclear rms radii RN and the spectroscopic
quadrupole moments Q are taken from Refs. [24,31]. In
Table IV, results for the electric quadrupole hyperfine splitting
for the nuclei 205

83 Bi, 147
62 Sm, and 89

40Zr are shown for a selection
of hyperfine states, including uncertainties stemming from
the error in the quadrupole moment and an estimation of the
modeling uncertainty.

B. Magnetic dipole splitting

In addition, the hyperfine splitting arises from the interac-
tion of the nuclear magnetic moment with the muon’s magnetic
moment, which is also sensitive to the spatial distribution of
the nuclear currents. Since the magnetic moment of the muon
is inversely proportional to its mass, the magnetic hyperfine
splitting in muonic atoms is less important than in electronic
atoms. The matrix elements of the corresponding Hamiltonian
(8) in the state (11) are [30]

〈FMF Iκ| HM |FMF Iκ〉
= [F (F + 1) − I (I + 1) − j (j + 1)]

× α

2mp

μ

μN

κ

Ij (j + 1)

×
∫ ∞

0

Gnκ (rμ)Fnκ (rμ)FBW(rμ)

r2
μ

drμ, (29)

where mp is the proton mass, and the ratio of the observed
magnetic moment μ := 〈II | ( �μ)z |II 〉 and the nuclear magne-
ton μN can be found in the literature [31]. For the simple model
of a homogeneous nuclear current distribution the distribution
function (10) of the Bohr-Weisskopf effect reads

FBW(rμ) =
{

(rμ/RN )3 rμ � RN

1 rμ > RN
. (30)

Furthermore, an additional method is used to obtain the
distribution function FBW from the nuclear single particle
model, where the nuclear magnetic moment is assigned to
the odd nucleon and the Schrödinger equation for this nucleon
is solved in the Woods-Saxon potential of the other nucleons
[19]. In Table IV, results for the magnetic dipole hyperfine
splitting for the nuclei 205

83 Bi, 147
62 Sm, and 89

40Zr are presented
for a selection of hyperfine states, using both methods for
obtaining FBW, where the model error is estimated by the
difference of these two methods and the uncertainty in the
magnetic moment is also taken into account.

VIII. CONCLUSION

Improved calculations for the fine and hyperfine structure
of heavy muonic atoms were presented. In this work, finite-
size corrections, leading-order vacuum polarization, electron
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TABLE IV. Results for the electric quadrupole and magnetic dipole hyperfine splitting for a selection of hyperfine states of muonic 205
83 Bi

(I = 9
2 ), 147

62 Sm (I = 7
2 ), and 89

40Zr (I = 9
2 ). 〈H (2)

E 〉 are the values of the electric quadrupole splitting. 〈H hom
M 〉 is the magnetic dipole splitting from

(29) using a homogeneous nuclear current distribution and 〈H sp
M 〉 using the nuclear magnetization distribution in the single-particle model. See

Sec. VII for definitions. All energies are in keV.

Nucleus State
〈
H

(2)
E

〉 〈
H hom

M

〉 〈
H

sp
M

〉
F = I − 1

2 F = I + 1
2 F = I − 1

2 F = I + 1
2 F = I − 1

2 F = I + 1
2

205Bi 1s1/2 0 0 −2.27(20) 1.86(16) −2.41(20) 1.97(16)
2s1/2 0 0 −0.43(5) 0.35(4) −0.47(6) 0.38(4)
2p1/2 0 0 −1.23(11) 1.01(9) −1.31(11) 1.07(10)
2p3/2 −175.(24.) 175.(24.) −0.55(2) 0.010(4) −0.554(22) 0.098(4)
3s1/2 0 0 −0.144(20) 0.118(16) −0.160(20) 0.131(16)
3p1/2 0 0 −0.311(33) 0.255(26) −0.336(33) 0.275(27)
3p3/2 −48.9(8.0) 48.9(8.0) −0.160(7) 0.028(1) −0.163(7) 0.029(1)
3d3/2 −25.4(1.3) 25.4(1.3) −0.161(6) 0.028(1) −0.163(6) 0.029(1)
3d5/2 28.3(1.3) −28.3(1.3) −0.103(3) −0.027 −0.103(3) −0.027

147Sm 1s1/2 0 0 0.42(18) −0.33(14) 0.25(17) −0.20(14)
2s1/2 0 0 0.072(39) −0.056(30) 0.033(39) −0.026(30)
2p1/2 0 0 0.164(58) −0.127(45) 0.106(58) −0.082(45)
2p3/2 −32.8(3.2) 32.8(3.2) 0.066(8) −0.004(1) 0.058(8) −0.004(1)
3s1/2 0 0 0.023(13) −0.018(10) 0.010(13) −0.008(8)
3p1/2 0 0 0.044(18) −0.034(14) 0.026(18) −0.02(1)
3p3/2 −9.4(1.1) 9.4(1.1) 0.020(3) −0.001 0.017(3) −0.001
3d3/2 −3.2(0.1) 3.2(0.1) 0.015(1) 0.000 0.014(1) 0.000
3d5/2 3.7(0.2) −3.7(0.2) 0.010 0.004 0.010 0.004

89Zr 1s1/2 0 0 0.36(13) −0.29(10) 0.23(12) −0.19(10)
2s1/2 0 0 0.053(23) −0.043(18) 0.030(23) −0.025(18)
2p1/2 0 0 0.071(14) −0.058(11) 0.057(14) −0.047(11)
2p3/2 12.2(4.7) −12.2(4.7) 0.023(1) −0.004 0.022(1) −0.004
3s1/2 0 0 0.016(7) −0.013(6) 0.009(7) −0.007(6)
3p1/2 0 0 0.020(4) −0.017(4) 0.016(4) −0.013(4)
3p3/2 3.6(1.4) −3.6(1.4) 0.007 −0.001 0.007 −0.001
3d3/2 0.9(0.3) −0.9(0.3) 0.004 0.000 0.004 0.000
3d5/2 −1.1(0.4) 1.1(0.4) 0.003 0.000 0.003 0.000

screening, and nonrelativistic recoil corrections are already
included in the solution of the Dirac equation. Thus, all
further calculations of the hyperfine structure also contain
these corrections via using the corrected wave functions. The
electric quadrupole and magnetic dipole hyperfine structure
was calculated to first order, using extended charge and current
distributions. The detailed shape of these distributions repre-

sent a source of uncertainty for the predicted values and thus
motivates the comparison with experimental data, especially
for nuclei with to date unknown charge distributions.

The presented usage of modified wave functions for the
calculation of hyperfine effects can be extended to other
phenomena in muonic atoms, for example, the dynamic
hyperfine structure with highly deformed nuclei.
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