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Speeding up the antidynamical Casimir effect with nonstationary qutrits
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The antidynamical Casimir effect (ADCE) is a term coined to designate the coherent annihilation of excitations
due to resonant external perturbation of system parameters, allowing for extraction of quantum work from
nonvacuum states of some field. Originally proposed for a two-level atom (qubit) coupled to a single-cavity
mode in the context of the nonstationary quantum Rabi model, it suffered from a very low transition rate and
correspondingly narrow resonance linewidth. In this paper we show analytically and numerically that the ADCE
rate can be increased by at least one order of magnitude by replacing the qubit by an artificial three-level atom
(qutrit) in a properly chosen configuration. For the cavity thermal state we demonstrate that the dynamics of the
average photon number and atomic excitation is completely different from the qubit’s case, while the behavior
of the total number of excitations is qualitatively similar yet significantly faster.
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I. INTRODUCTION

The broad term dynamical Casimir effect (DCE) refers to
the generation of excitations of some field (electromagnetic,
in the majority of cases) due to time-dependent boundary
conditions, such as changes in the geometry or material
properties of the system [1–4] (see [5,6] for reviews; see
also [7–9] for the related problem of a particle in a wall
with moving boundaries). In the so called cavity DCE one
considers nonadiabatic (periodic or not) modulation of the
cavity natural frequency by an external agent, investigating
the accumulation of intracavity photons or the photon emission
outside the cavity [1,10–12]. The additional interaction of the
cavity field with a stationary “detector” during the modulation
(harmonic oscillator, few-level atom, or a set of two-level
atoms in the simplest examples) may dramatically alter the
photon generation dynamics, for instance, altering the field
statistics, shifting the resonance frequency, and inhibiting the
photon growth [13–19] (see [20] for a short review). Moreover,
the degree of excitation of the detector varies according to
the regime of parameters, and entanglement can be created
between the cavity field and the detector, or between the atoms
coupled to the field [21–25].

Over the past ten years a new path has attracted attention
of the community working on nonstationary phenomena in
cavity quantum electrodynamics (QED). Instead of changing
the cavity frequency, different studies suggested the parametric
modulation of the “detector” instead, promoting it from a
passive to an active agent responsible for both the generation
and detection of photons [26–35]. Besides eliminating the
inconvenience of time-dependent Fock states of the field
associated with time-varying cavity frequency [10], this
scheme makes full use of the counter-rotating terms in the
light-matter interaction Hamiltonian and does not require the
inclusion of additional parametric down-conversion terms in
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the formalism [26,31,34,35]. Moreover, it benefits from recent
advances in the coherent control and readout of microscopic
few-level quantum devices developed in the realm of the circuit
QED for applications in quantum information processing (see
[36] for a recent review).

The area of circuit QED investigates the interaction of arti-
ficial superconducting atoms, formed by a sophisticated array
of Josephson junctions, and the electromagnetic field confined
in increasingly complex microwave resonators, ranging from
waveguide resonators or 3D cavities [37–41]. The advances
in engineering allowed for implementation of multilevel
atoms, with controllable transition frequencies and coupling
strengths, that can interact with multiple cavities and other
atoms controlled independently [32,36,38,42–48]. Moreover,
circuit QED allows for unprecedented atom-field coupling
strength, in what became known as the ultrastrong and deep
strong coupling regimes [49–52]. In the context of DCE,
the exquisite control over the parameters of the Hamiltonian
allows for multitone multi-parameter modulations [26,53–55],
while quantum optimal control strategies can be used to
enhance the desired effects [56].

Photon generation is not the only phenomenon induced
by parametric modulations in circuit QED. It was shown
recently that the counter-rotating terms can also be employed
to annihilate excitations of the electromagnetic field from
nonvacuum initial states, in what became known as the
antidynamical Casimir effect (ADCE) [34]. This effect was
predicted in the context of the quantum Rabi model, which
describes the interaction of the cavity field with a two-level
atom [57–59], and consists of the coherent annihilation of
three photons accompanied by the excitation of the far-detuned
atom [60,61] (four photons could be annihilated by employing
a two-tone modulation [54]). Thus an amount of energy
�2h̄ω0 could be extracted from the system due to resonant
perturbation of some parameter, where ω0 is the cavity
frequency [55]. However, in the more accessible regime of
weak atom-field interaction (beneath the ultrastrong-coupling
regime) the associated transition rate is quite small, so the
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modulation frequency must be finely tuned and the dissipation
strongly affects the behavior [54,55].

In this paper we uncover that the ADCE rate can be
enhanced by more than one order of magnitude by employing
artificial three-level atoms (qutrits) in the standard ladder
configuration and weak-coupling regime [39]. We obtain a
closed approximate description of the unitary dynamics when
one or more atomic parameters undergo a low-amplitude
multitone external perturbation, and assess the advantages
and disadvantages of different regimes of parameters for
the initial thermal state of the cavity field. We also discuss
eventual complications that qutrits bring into the problem,
such as adjustment of atomic energy levels with respect to
the cavity frequency and two-tone driving with management
of the modulation phases. Nevertheless it is argued that
the substantial gain in the ADCE rate compensates for the
additional technical issues.

This paper is organized as follows. In Sec. II we define
our problem and derive the general mathematical formalism
to obtain approximate expressions for the system dynamics in
the dressed-states basis. In Sec. III we discuss three specific
configurations of the qutrit for which the overall behavior
is most easily inferred: the double-resonant, dispersive, and
mixed regimes. In Sec. IV we identify the regimes of
parameters and the transitions for which excitations can be
annihilated from the cavity thermal state, assuming that the
atom was initially in the lowest energy state. In Sec. V we
evaluate analytically the transition rates associated with ADCE
between different dressed states and compare our predictions
to the exact numerical solution of the Schrödinger equation,
demonstrating that the ADCE rate can undergo almost 50-fold
increase compared to the qubit’s case while the number of
annihilated excitations is roughly the same. Our conclusions
are summarized in Sec. VI.

II. MATHEMATICAL FORMALISM

We consider a three-level artificial atom (qutrit) interacting
with a single-cavity mode of constant frequency ω0, as
described by the Hamiltonian (we set h̄ = 1)

Ĥ = ω0n̂ +
2∑

k=1

Ekσ̂k,k +
1∑

k=0

Gk(â + â†)(σ̂k+1,k + σ̂k,k+1).

(1)

â (â†) is the cavity annihilation (creation) operator and n̂ = â†â
is the photon number operator. The atomic eigenenergies are
E0 ≡ 0,E1, and E2, with the corresponding states denoted
as |0〉,|1〉,|2〉; the atomic operators read σ̂k,j ≡ |k〉〈j|. The
parameters Gk (k = 0,1) stand for the coupling strengths
between the atomic states {|k〉,|k + 1〉} mediated by the cavity
field.

We assume that all the atomic parameters can be modulated
externally as

Ek(t) ≡ E0,k + εE,kfE,k(t), Gk(t) ≡ G0,k + εG,kfG,k(t),

where {εE,k,εG,k} are the modulation depths and {E0,k,G0,k}
are the corresponding bare values. The dimensionless

functions

fl(t) =
∑

j

w
(j )
l sin

(
η(j )t + φ

(j )
l

)
(2)

represent the externally prescribed modulation, where the
collective index l denotes {E; k = 1,2} or {G; k = 0,1}.
Constants 0 � w

(j )
l � 1 and φ

(j )
l are the weight and the phase

corresponding to the harmonic modulation of l with frequency
η(j ), and the index j runs over all the imposed frequencies (in
this paper at most 2-tone modulations will be examined). We
normalize the weights so that

∑
j w

(j )
l = 1 for any set l, so

that εl characterizes completely the modulation strength (in
our examples we shall set w

(j )
l = 1 and φ

(j )
l = 0 unless stated

otherwise).
To obtain a closed analytical description we first rewrite the

Hamiltonian as Ĥ = Ĥ0 + Ĥc, where

Ĥ0 = ω0n̂ +
2∑

k=0

[E0,kσ̂k,k + G0,k(âσ̂k+1,k + â†σ̂k,k+1)] (3)

is the bare Hamiltonian in the absence of modulation and
counter-rotating terms (to shorten the formulas we defined
formally G0,2 = εG,2 = 0). For the realistic weak-coupling
regime (G0,0,G0,1 � ω0) we expand the wave function corre-
sponding to the total Hamiltonian Ĥ as

|ψ(t)〉 =
∞∑

n=0

∑
S(n)

e−itλn,SAn,S (t)|ϕn,S〉, (4)

where λn,S and |ϕn,S〉 are the n-excitation eigenvalues and
eigenstates (dressed states) of the Hamiltonian Ĥ0 and the
index S labels different states with a fixed number of
excitations n, which is the quantum number associated with
the operator N̂ = n̂ + |1〉〈1| + 2|2〉〈2|. As shown in Sec. III,
the range of values of S depends on n, and we denote such
degeneration with g(n). Moreover, the number of excitations
in the subspace coincides with the number of photons of the
state having the atom in its ground (|0,n〉).

Following the approach detailed in [31,61] we propose a
change of variables that maps each group of g(m) variables
Am,T into another set bm,T , so that Am,T = ∑

T ′ αT T ′bm,T ′ . In
particular, we consider the following transformation:

Am,T = ei�m,T (t)

{
e−itνm,T bm,T (t)

− 1

2i

∑
S(m)�=T

e−itνm,Sbm,S (t)

×
∑′

j

2∑
k=0

∑
L=E,G

ϒ
L,k,j

m,T ,S

×
∑
r=±

eriφ
(j )
L,k

eit(λm,T −λm,S+rη(j )) − 1

λm,T − λm,S + rη(j )

}
, (5)

�m,T (t) =
∑

j

2∑
k=0

∑
L=E,G

ϒ
L,k,j

m,T ,T
η(j )

× [
cos

(
η(j )t + φ

(j )
L,k

) − cos φ
(j )
L,k

]
, (6)
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where we divided the sum in two parts:
∑′

j runs over
“fast” frequencies η(j ′) ∼ λm+2,S − λm,T and

∑′′
j runs over

the “slow” ones η(j ′′) ∼ |λm,S − λm,T |. The small frequency
shift νm,T will be given in Eq. (13) and we introduced constant
coefficients (k = 0,1,2)

ϒ
E,k,j

m,T ,S ≡ εE,kw
(j )
E,k〈ϕm,T |σ̂k,k|ϕm,S〉, (7)

ϒ
G,k,j

m,T ,S ≡ εG,kw
(j )
G,k〈ϕm,T |(âσ̂k+1,k + â†σ̂k,k+1)|ϕm,S〉. (8)

After substituting Am,T into the Schrödinger equation and
systematically eliminating the rapidly oscillating terms via the
rotating wave approximation (RWA) [31], to the first order in
εE,k and εG,k we obtain the approximate differential equation
for the effective probability amplitude

ḃm,T =
∑

S(m)�=T
ςm,T ,Seit(λ̃m,T −λ̃m,S )bm,S

+
∑′′

j

∑
S(m)�=T

�
(j )
m,T ,Seit�m,T ,S (|λ̃m,T −λ̃m,S |−η(j ))bm,S

+
∑′

j

⎡
⎣ ∑

S(m+2)

�
(j )
m+2,T ,Se−it(λ̃m+2,S−λ̃m,T −η(j ))bm+2,S

−
∑

S(m−2)

�
(j )∗
m,S,T eit(λ̃m,T −λ̃m−2,S−η(j ))bm−2,S

⎤
⎦. (9)

The time-independent transition rates between the dressed
states are

ςm,T ,S = i

1∑
k,l=0

G0,kG0,l

⎧⎨
⎩

∑
R(m+2)

�k,m+2,T ,R�l,m+2,S,R
λm+2,R − λm,S

−
∑

R(m−2)

�k,m,R,T �l,m,R,S
λm,S − λm−2,R

⎫⎬
⎭,

�
(j )
m,T ,S = �m,T ,S

2

2∑
k=0

∑
L=E,G

ϒ
L,k,j

m,T ,Se−i�m,T ,Sφ
(j )
L,k ,

�
(j )
m+2,T ,S =

1∑
k=0

G0,k

2

{
−ε

(j )
G,k�k,m+2,T ,S

G0,k

+
2∑

l=0

∑
L=E,G

⎡
⎣ ∑

R(m+2)

�k,m+2,T ,Rϒ
L,l,j

m+2,R,Seiφ
(j )
L,l

λm+2,R − λm+2,S + η(j )

−
∑
R(m)

�k,m+2,R,Sϒ
L,l,j

m,T ,Reiφ
(j )
L,l

λm,T − λm,R + η(j )

⎤
⎦

⎫⎬
⎭, (10)

�k,m+2,T ,S = 〈ϕm,T |âσ̂k,k+1|ϕm+2,S〉. (11)

Here �m,T ,S ≡ sgn(λ̃m,T − λ̃m,S ) and we introduced the
complex modulation depth ε

(j )
l ≡ εlw

(j )
l exp(iφ(j )

l ). Moreover,
we defined the corrected eigenfrequencies

λ̃m,T ≡ λm,T + νm,T + �ν, (12)

where the correction due to counter-rotating terms reads

νm,T =
⎡
⎣ ∑

S(m−2)

( ∑1
k=0 G0,k�k,m,S,T

)2

λm,T − λm−2,S

−
∑

S(m+2)

( ∑1
k=0 G0,k�k,m+2,T ,S

)2

λm+2,S − λm,T

⎤
⎦ (13)

and �ν denotes the neglected contributions smaller than νm,T
and the terms of the order ∼(ϒL,k,j

m,T ,S )2/ω0,(εG,k�k,m,S,T )2/ω0.
Throughout the derivation of the formula (9) we have

assumed the constraints

|λm,T − λm,S |,∣∣ϒL,k,j

m,T ,S
∣∣,∣∣∣∣ G0,k�l,m,S,T

λm+2,T − λm,S

∣∣∣∣G0,l � ω0, (14)

G0,k|�k,m+2,S,T | � ω0.

Under these approximations we have |Am,T | ≈ |bm,T |, so from
Eq. (9) one can easily infer the evolution of populations of the
dressed states. Besides, the generalization of our method for
N -level atoms and second-order effects is straightforward [61].

It is worth noting that the occurrence of ADCE is essentially
governed by the transition rates �

(j )
m,T ,S that couple states

belonging to subspaces with different numbers of excitations.
Of course the whole dynamics is determined also by the
transitions occurring inside each subspace, but the annihilation
of (two) excitations is possible only in the presence of
non-negligible � terms.

III. ANALYTICAL REGIMES

We shall confine ourselves to three different regimes of
parameters for which the dressed states have simple analytical
expressions. With the aid of these formulas we shall be able to
evaluate analytically the coefficients �

(j )
m,S,T in Sec. IV.

The ground state of Ĥ0 is |ϕ0〉 = |0,0〉 and the corre-
sponding eigenenergy is λ0 = 0. In this paper we denote
|k,n〉 ≡ |k〉atom ⊗ |n〉field, where k stands for the atomic level
and n stands for the Fock state. Moreover, we define the bare
atomic transition frequencies as

�01 = E0,1 − E0,0 ≡ ω0 − �1,

�12 = E0,2 − E0,1 ≡ ω0 − �2,

where �1 and �2 are the bare detunings.

A. Two-level atom

We include this case (G0,1 = 0) to compare the advantages
and disadvantages of using qutrits instead of qubits. The exact
expressions for m � 1 read

λm,±D = ω0m − �1

2
± D

βm

2
, (15)

|ϕm,±D〉 = 1√
βm

[
√

βm,±|0,m〉 ± D
√

βm,∓|1,m − 1〉], (16)
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where βm =
√

�2
1 + 4G2

0,0m,βm,± = (βm ± |�1|)/2 and we
introduced the detuning symbol D = +1 for �1 � 0 and D =
−1 for �1 < 0.

For the qutrits we can use Eqs. (15) and (16) for the subspace
containing a single excitation, m = 1; the dressed states with
m � 2 excitations are presented below.

B. Double-resonant regime

When both G0,0 and G0,1 are nonzero, first we consider the
special case when �2 = −�1, so that we have the “double
resonance” �02 = E0,2 − E0,0 = 2ω0. The exact formulas
read (for m � 2)

λm,0 = mω0,λm,±D = mω0 ± D�m,∓, (17)

|ϕm,0〉 = N−1
m,0[−G0,1

√
m − 1|0,m〉 + √

mG0,0|2,m − 2〉],

|ϕm,±D〉 = N−1
m,∓[

√
mG0,0|0,m〉 ± D�m,∓|1,m − 1〉

+√
m − 1G0,1|2,m − 2〉],

where we defined

�m =
√

�2
1/4 + mG2

0,0 + (m − 1)G2
0,1,

�m,± = �m ± |�1|/2,�m,0 =
√

mG2
0,0 + (m − 1)G2

0,1,

Nm,0 = �m,0, Nm,± = √
2�m�m,±.

For example, if G0,1 ∼ G0,0 and |�1| � G0,0
√

n for all
relevant values of n we have approximately |ϕm,−D〉 ∼
|1,m − 1〉, |ϕm,0〉 ∼ (|0,m〉 − |2,m − 2〉)/√2, and |ϕm,D〉 ∼
(|0,m〉 + |2,m − 2〉)/√2. On the other hand, for |�1| �
G0,0,G0,1 (near the atom-field resonance) we get |ϕm,±D〉 ∼
(|0,m〉 ± √

2|1,m − 1〉 + |2,m − 2〉)/2.

C. Dispersive regime

Now we assume that both the atomic transition frequencies
are far-detuned from the cavity frequency

|�1|,|�2|,|�1 + �2| � G0,0
√

m,G0,1

√
m − 1. (18)

From the perturbation theory we obtain to the fourth order
in G0,0/�1 and G0,1/�2

λm,0 = mω0 + δ1m

[
1 + G2

0,1(m − 1)

�1(�1 + �2)
− G2

0,0m

�2
1

]
,

|ϕm,0〉 = N−1
m,0

[
|0,m〉 + ρm,0G0,0

√
m

�1
|1,m − 1〉

+ rm,0G0,0G0,1
√

m(m − 1)

�1(�1 + �2)
|2,m − 2〉

]
,

λm,1 = mω0 − �1 − [δ1m − δ2(m − 1)]

×
[

1 − G2
0,0m

�2
1

− G2
0,1(m − 1)

�2
2

]
,

|ϕm,1〉 = N−1
m,1

[
|1,m − 1〉 − ρm,1G0,0

√
m

�1
|0,n〉

+ rm,1G0,1
√

m − 1

�2
|2,m − 2〉

]
,

λm,2 = mω0 − �1 − �2 − δ2(m − 1)

×
[

1 + G2
0,0m

�2(�1 + �2)
− G2

0,1(m − 1)

�2
2

]
,

|ϕm,2〉 = N−1
m,2

[
|2,m − 2〉 − ρm,2G0,1

√
m − 1

�2
|1,m − 1〉

+ rm,2G0,0G0,1
√

m(m − 1)

�2(�1 + �2)
|0,m〉

]
,

where we defined the dispersive shifts δ1 ≡ G2
0,0/�1 and δ2 ≡

G2
0,1/�2. We adopted an intuitive notation in which the second

index in |ϕm,S〉 represents the most probable atomic state in
a given dressed state (for example, in the expansion of |ϕm,0〉
the bare state |0,m〉 appears with the highest weight). The
parameters ρm,S , rm,S , and Nm,S are equal to 1 to the first
order in G0,0/�1,G0,1/�2 and their expressions are reported
in Sec. I of the Supplemental Material [62].

D. Mixed regime

In the mixed regime we assume �2 = 0 and

|�1| � G0,0
√

n, G0,1

√
n − 1; (19)

i.e., the atomic transition |1〉 → |2〉 is resonant with the cavity
mode, while the transition |0〉 → |1〉 is far-detuned. To the
second order in G0,0/�1 we obtain

λm,0 = mω0 + �1G
2
0,0m

�2
1 − G2

0,1(m − 1)
,

|ϕm,0〉 = N−1
m,0{G0,1

√
m − 1ρm,0|2,m − 2〉

+ρm,0�1|1,m − 1〉 + |0,m〉},

λm,±D = mω0 − D

(
|�1| ∓ G0,1

√
m − 1

+ 1

2

G2
0,0m

|�1| ∓ G0,1
√

m − 1

)
,

|ϕm,±D〉 = N−1
m,±{(1 − rm,±)|2,m − 2〉

±D(1 + rm,±)|1,m − 1〉 + ρm,±|0,m〉},
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where we defined

ρm,± = G0,0
√

m

G0,1
√

m − 1 ∓ |�1|
, ρm,0 = G0,0

√
m

�2
1 − G2

0,1(m − 1)
,

rm,± = 1

4

G2
0,0m

G0,1
√

m − 1(G0,1
√

m − 1 ∓ |�1|)
,

Nm,0 =
√

1 + ρ2
n,0

[
�2

1 + (m − 1)G2
0,1

]
,

Nm,± =
√

2 + 2r2
m,± + ρ2

m,± .

IV. ADCE

Our goal is to study the coherent annihilation of system
excitations from the initial separable state ρ̂0 = |0〉〈0| ⊗ ρ̂th,
where ρ̂th = ∑∞

m=0 ρm|m〉〈m| is the cavity thermal state with

ρm = n̄m/(n̄ + 1)m+1. Here n̄ = (eωβ − 1)−1 is the average ini-
tial photon number, β−1 = kBT , T is the absolute temperature,
and kB is the Boltzmann constant. From Eq. (10) it is clear that
such process can be implemented via transition of the form
|ϕm,T 〉 → |ϕm−2,S〉 when the modulation frequency is η(res) =
λ̃m,T − λ̃m−2,S . So first we must determine the dressed states
for which the initial population of the state |ϕm,T 〉, denoted as
Pm,T , is larger than Pm−2,S . We assume a small integer m (for
the sake of illustration we choose m = 4, although the overall
behavior is similar for other values of m) and set the realistic
parameters G0,0 = 6 × 10−2ω0 and n̄ = 1.5. We verified nu-
merically that when G0,1 is of the same order of G0,0 the exact
value of G0,1 does not affect qualitatively the results, so in this
paper we set G0,1 = 1.2G0,0. See Sec. II of the Supplemental
Material [62] for an illustration of the quantitative differences
in the results when G0,1 = G0,0 or G0,1 = 0.8G0,0.

In Fig. 1 we plot the initial population difference
P (m,T ,S) ≡ Pm,T − Pm−2,S as a function of |�1| for
m = 4. Only positive values of P (4,T ,S) are plotted and
the values (T ,S) are indicated next to the curves, where the
index stands for 2-level (2L), double-resonant (r), dispersive
(d), and mixed (m) regimes. In the dispersive and mixed
regimes we assume |�1|/G0,0 � 4 in order to satisfy the
approximations (18) and (19). Besides, throughout this
paper we set �2 = 6G0,0sgn(�1) in the dispersive regime
so that |�1 + �2| never approaches zero, as required by the
inequality (18). One can see that large detuning |�1| favors
the implementation of ADCE; the transitions (1,2)d and
(D, − D)m are not particularly useful since the population
differences are always small and are inversely proportional to
the detuning. As already known, for a qubit the ADCE relies
on the transition (D, − D)2L. From Fig. 1 we discover that for
a qutrit we have the following candidates for the realization
of ADCE: (D, − D)r and (0, − D)r in the double-resonant
regime, (0,1)d and (0,2)d in the dispersive regime, and (0,D)m
and (0, − D)m in the mixed regime.

Now we are in position to evaluate the ADCE rate
in different regimes according to Eq. (10). For the
transition |ϕm,T 〉 → |ϕm−2,S〉 [denoted as (T,S)] we evaluate
analytically �m,S,T under the resonant modulation frequency
η(res) = λ̃m,T − λ̃m−2,S . In Fig. 2(a) we plot the dimensionless
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FIG. 1. Difference of initial populations P (m,T ,S) ≡ Pm,T −
Pm−2,S for m = 4 and different regimes as function of the absolute
value of the detuning �1. Regimes: 2-level atom (2L), double-
resonant regime (r), dispersive regime (d), and mixed regime (m).
Only the states for which P (m,T ,S) > 0 are plotted and the values
(T ,S) are indicated alongside the curves. (Here G0,1 = 1.2G0,0.)

transition rate |�m,S,T |/ω0 for m = 4 assuming the
harmonic modulation of E1 with perturbative amplitude
εE,1 = 5 × 10−2�01. We disregard the region near �1 = 0
since P (m,T ,S) < 0 in this case, so ADCE does not occur.
We observe that for the qutrit in the dispersive or mixed
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FIG. 2. (a) Transition rate for ADCE (involving the transition
|ϕ4,T 〉 → |ϕ2,S〉) as a function of �1/G0,0 for m = 4 and modulation
of E1. The values of indexes (T ,S) are indicated alongside the
curves in different regimes. (b) Same as (a) but for the simultaneous
modulation of E1 and E2 with the same frequency. In the dispersive
regime (d) we set �2 = 6G0,0sgn(�1). In the mixed regime (m) the
lines (0,D) and (0, − D) are very close, so for the sake of compactness
they are not discerned separately. We do not show the transition rate
near |�1| = 0, since all the population differences P (m,T ,S) are
negative in this case. Notice the increment by at least one order of
magnitude of the transition rate in the double-resonant regime (r)
[compared to the qubit’s case (2L)] for |�1| � G0,0.
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regimes the transition rates can be slightly higher than for the
qubit; the rate for the transition (D, − D)m is substantially
higher than for the qubit; however this transition is not useful
for ADCE due to small population difference P (m,D, − D).
We also note that in the dispersive regime one can induce
the transition |ϕm,0〉 → |ϕm−2,2〉 for modulation frequency
η(res) ≈ 4ω0 − �02, which corresponds approximately to
the four-photon transition |0,m〉 → |2,m − 4〉. However the
associated transition rate is even smaller than the ADCE rate
for a qubit, hindering practical applications of such process.

In the dispersive regime the transition rate and the popu-
lation difference for the process |ϕm,0〉 → |ϕm−2,1〉 [denoted
as (0,1)d in the figures] is roughly the same as the process
|ϕm,D〉 → |ϕm−2,−D〉 for a qubit [denoted as (D, − D)2L].
Therefore, the behavior of multilevel atoms with respect
to ADCE is similar to the one for a qubit, provided all
the transitions are far-detuned from the cavity frequency.
Moreover, for the mixed regime and large detuning |�1|
the population differences P (m,0,D) and P (m,0, − D) are
roughly the same as for the qubit, while the transition rates are
several times larger, so the implementation of ADCE would
be facilitated.

The main finding of the paper is the observation that in
the double-resonant regime the ADCE rate is at least one
order of magnitude larger than for the qubit, and the difference
increases for larger |�1|, as can be seen from Fig. 2(a). Besides,
in this regime the population differences P (m,D, − D) and
P (m,0, − D) also increase proportionally to |�1|, achieving
sufficiently large values for |�1| ∼ 8G0,0 (see Fig. 1). Thus,
it seems that one could speed up ADCE by at least one order
of magnitude using three-level atoms in the double-resonant
configuration instead of qubits, provided the detuning |�1| is
large enough.

In real circuit QED setups it might be tricky to modulate
only one parameter at a time, while keeping the other parame-
ters constant. So in Fig. 2(b) we consider the simultaneous
modulation of E1 and E2 (with the same modulation fre-
quency η(res) = λ̃m,T − λ̃m−2,S ) assuming parameters εE,1 =
5 × 10−2�01, εE,2 = 5 × 10−2�12, φE,1 = 0, and φE,2 = π .
Conveniently the ADCE transition rates increase even more
when compared to an isolated modulation of either E1 or E2.

To give a rough estimation of the gain in the ADCE
transition rate we evaluated analytically the � coefficients
for the simultaneous modulation of E1 and E2, assuming
similar coupling strengths (G0,0 ∼ G0,1) and large detunings
(|�1| � G0,0

√
m). For the qubit we recover the formula

obtained in [34]

∣∣�(j )
m,−D,D

∣∣ � G0,0

2

(
G0,0

�1

)2√
m(m − 1)(m − 2)

× ω0 + �1

ω0

εE,1w
(j )
E,1

2ω0 + �1
,

while for the qutrits in the double-resonant regime we find

∣∣�(j )
m,−D,0

∣∣ � G0,0
√

m

2
R(j )

m ,

|�(j )
m,−D,D| � G0,1

√
m − 1

2
R(j )

m ,

R(j )
m ≡ G0,1

√
m − 2√

mG2
0,0 + (m − 1)G2

0,1

×
∣∣εE,1w

(j )
E,1 − εE,2w

(j )
E,2e

i(φ(j )
E,2−φ

(j )
E,1)

∣∣
2ω0 + �1

.

Hence under the lone modulation of E1 the utilization of qutrits
instead of qubits increases the ADCE rate by a factor of the
order of magnitude of

G =
√

2

2m − 1

(
�1

G0,0

)2
ω0

ω0 + �1
. (20)

Moreover, for the simultaneous modulation of E1 and E2, with
εE,1w

(j )
E,1 ∼ εE,2w

(j )
E,2, there is an additional rise by a factor of

2 provided that φ
(j )
E,2 − φ

(j )
E,1 ≈ π .

In Sec. III of the Supplemental Material [62] we illustrate
in detail the transition rates and the population differences for
different values of G0,1 and isolated modulations of E2,G0,
and G1. It is found that the modulation of G0 does not
speed up significantly the transition rate in comparison to
a qubit, whereas the modulation of E2 or G1 does increase
the transition rate in the double-resonant regime by at least
one order of magnitude. We also verified that under the
simultaneous modulation of all the parameters (E1, E2,G0,
and G1) the total transition rate is still substantially higher
than for a qubit, provided the phases are properly adjusted.
Hence, the simultaneous modulation of several parameters is
not an issue from the experimental point of view, provided
one can manage the phases φ

(j )
l corresponding to different

modulation components.

V. NUMERICAL VERIFICATION

Now we proceed to the numerical verification of the
phenomenon predicted in the previous section, namely, the
enhancement of the ADCE rate in the double-resonant
regime. We solved numerically the Schrödinger equation
for the Hamiltonian (1) using the initial local thermal
state ρ̂0 = |0〉〈0| ⊗ ρ̂th and parameters m = 4,G0,0 = 6 ×
10−2ω0,G0,1 = 1.2G0,0, n̄ = 1.5, and �1 = −�2 = −8G0,0.
(Recall that m denotes the subset of dressed states |ϕm,T 〉 with
m excitations from which the excitations will be annihilated.
Since the state ρ̂th has a nonvanishing overlap with the Fock
state |4〉, relevant transitions will be involved in the dynamics.)
One downside of using the double-resonant regime for qutrits
is clear from Fig. 1: both the populations differences (0, − D)r
and (D, − D)r , involved in the ADCE, are roughly twice
smaller than the population difference (D, − D)2L for the
qubit. Hence, considering the connection between ADCE
and quantum thermodynamic processes recently analyzed in
Ref. [55], we can say that the work extraction would be half
smaller if one used qutrits instead of qubits. This nuisance can
be readily surpassed by employing 2-tone modulation with fre-
quencies η(1) = λ̃m,0 − λ̃m−2,−D and η(2) = λ̃m,D − λ̃m−2,−D

that drives simultaneously the transitions |ϕm,0〉 → |ϕm−2,−D〉
and |ϕm,D〉 → |ϕm−2,−D〉.

In Fig. 3(a) we illustrate the dynamics of the average
photon number nph = 〈n̂〉, the average number of atomic
excitations nat = 〈∑2

k=1 kσ̂k,k〉, and the total average num-

032509-6



SPEEDING UP THE ANTIDYNAMICAL CASIMIR EFFECT . . . PHYSICAL REVIEW A 96, 032509 (2017)

FIG. 3. Exact numerical dynamics of ADCE obtained for the
Hamiltonian (1) and the initial local thermal state ρ̂0 in the double-
resonant regime. (a) 2-level atom and harmonic modulation of E1.
(b) 3-level atom and 2-tone modulation of E1. (c) 3-level atom and
2-tone double modulation of E1 and E2. Notice that in all cases the
number of annihilated excitations ntot is roughly the same, while the
duration of the process in (c) is roughly 40 times smaller than in (a).

ber of excitations ntot = nph + nat for a qubit (setting
momentarily G1 = 0) with modulation depth εE,1 = 5 ×
10−2�01. We observe the sinusoidal oscillation of nph, nat ,
and ntot with typical period τ ≈ 4 × 103G−1

0,0. The coherent
annihilation of excitations does take place, but since the
initial population of the state |ϕ4,D〉 was P4,D ≈ 5 × 10−2, the
average number of annihilated excitations is ∼2Pm,D ≈ 0.1,
in agreement with the numerical data.

In Fig. 3(b) we consider the qutrit under 2-tone mod-
ulation of E1 with the previous amplitude εE,1 = 5 ×
10−2�01, weights w

(1)
E,1 = 10/17,w

(2)
E,1 = 7/17, and phases

φ
(1)
E,1 = 0, φ

(2)
E,1 = π (the weights were adjusted to equalize

the two transition rates). We see that the total number of
excitations exhibits the same qualitative behavior as for the
qubit, but the transition rate undergoes almost 30-fold increase.
Such gain agrees with the theoretical estimate, Eq. (20), which
gives G ≈ 25 for the present parameters. The behavior of
nph and nat differs drastically from the one observed for
the 2-level atom partly due to the oscillations between the
bare states |0,k〉 ↔ |2,k − 2〉 for k � 2, and partly due to
the oscillations between the dressed states |ϕk,D〉 ↔ |ϕk,0〉,
as will be discussed shortly. In Fig. 3(c) we consider the
simultaneous two-tone modulation of E1 and E2 with pa-
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P(2,- )

P(3,- )

FIG. 4. Dynamics of populations of relevant dressed states for
the 2-tone double modulation of E1 and E2 analyzed in Fig. 3(c).
There is a coherent transfer of populations from the states |ϕ4,D〉
and |ϕ4,0〉 to the state |ϕ2,−D〉. Moreover, one observes periodic
oscillations between the dressed states |ϕk,D〉 ↔ |ϕk,0〉 for k � 2 due
to the counter-rotating terms in the Hamiltonian (1).

rameters εE,1 = 5 × 10−2�01, εE,2 = 9 × 10−2�12, w
(1)
E,1 =

w
(1)
E,2 = 10/17, w

(2)
E,1 = w

(2)
E,2 = 7/17 and phases φ

(1)
E,1 =

φ
(2)
E,2 = 0, φ

(2)
E,1 = φ

(1)
E,2 = π . We see that the ADCE rate suffers

an additional 50% rise compared to the sole modulation of E1,
while the average number of total annihilated excitations is
roughly the same as in the previous cases.

Finally, in Fig. 4 we plot the probabilities of finding the
system in the dressed states P (m,S) = Tr[ρ̂(t)|ϕm,S〉〈ϕm,S |] as
a function of time for the 2-tone double modulation discussed
in Fig. 3(c). As predicted by Eq. (9) there is a simultaneous
periodic transfer of populations from the states |ϕ4,D〉 and
|ϕ4,0〉 to the state |ϕ2,−D〉, which corresponds to the coherent
annihilation of two-system excitations. Other states |ϕk �=2,−D〉
are not affected by the modulation, as illustrated for the
state |ϕ3,−D〉 which undergoes just minor fluctuations due to
off-resonant couplings neglected under RWA. Moreover, one
also observes periodic oscillations between the dressed states
|ϕk,D〉 ↔ |ϕk,0〉 for k � 2. This occurs because for large |�1|
we have λ̃k,0 ≈ λ̃k,D , as seen from Eq. (17); hence the first term
on the right-hand side of Eq. (9) becomes nearly resonant and
couples these states with the strength ∼|ςk,D,0| [this behavior
is due solely to the counter-rotating terms in Eq. (1) and is
independent of modulation].

VI. CONCLUSIONS

In conclusion, we showed that the resonant external
modulation of a three-level artificial atom is highly advan-
tageous for the implementation of the antidynamical Casimir
effect (ADCE) in comparison to a two-level atom, since the
transition rate can suffer almost 50-fold increase while the
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total number of annihilated excitations is roughly the same.
The strongest gain takes place in the double-resonant regime
(when �1 = −�2, so that �02 = 2ω0) and for large detuning
|�1|, though weaker enhancement may occur also in other
regimes. Besides speeding up the ADCE, the use of qutrits also
loosens the requirements for accurate tuning of the modulation
frequency, and reproduces the characteristic ADCE behavior
of a qubit when all the atomic transitions are largely detuned
from the cavity field (and �02 �= 2ω0). However, for the
optimum annihilation of excitations from a thermal state the
usage of qutrits also brings some inconveniences, such as
two-tone driving and the necessity of controlling the phase

difference between different components of the modulation.
Nevertheless, our results indicate that the substantial gain in
the transition rate compensates for the additional complexity in
the external control, favoring the experimental implementation
of ADCE.
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