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Thermal Casimir-Polder forces on a V-type three-level atom
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We study the thermal Casimir-Polder (CP) forces on a V-type three-level atom. The competition between
the thermal effect and the quantum interference of the two transition dipoles on the force is investigated. To
shed light onto the role of the quantum interference, we analyze two kinds of initial states of the atom, i.e., the
superradiant state and the subradiant state. Considering the atom being in the thermal reservoir, the resonant CP
force arising from the real photon emission dominates in the evolution of the CP force. Under the zero-temperature
condition, the quantum interference can effectively modify the amplitude and the evolution of the force, leading
to a long-time force or even the cancellation of the force. Our results reveal that in the finite-temperature case,
the thermal photons can enhance the amplitude of all force elements, but have no influence on the net resonant
CP force in the steady state, which means that the second law of thermodynamics still works. For the ideal
degenerate V-type atom with parallel dipoles under the initial subradiant state, the robust destructive quantum
interference overrides the thermal fluctuations, leading to the trapping of the atom in the subradiant state and
the disappearance of the CP force. However, in terms of a realistic Zeeman atom, the thermal photons play a
significant role during the evolution of the CP force. The thermal fluctuations can enhance the amplitude of the
initial CP force by increasing the temperature, and weaken the influence of the quantum interference on the
evolution of the CP force from the initial superradiant (subradiant) state to the steady state.
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I. INTRODUCTION

Casimir-Polder (CP) forces, firstly predicted by Casimir and
Polder in 1948 [1], are long-range electromagnetic interactions
between neutral polarizable particles and a macroscopic ob-
ject. It is a purely quantum mechanical effect which originates
from the zero-point fluctuations of the electromagnetic field
and dipole moments [1–5]. As an observable quantum effect,
the CP force attracts much fundamental attention. With the
development in trapping and manipulating cold atoms or polar
molecules near surfaces [6,7], the CP force also becomes an
important subject in the applied research. Recently, it was
predicted that Rydberg atoms would be effectively excited by
the CP interactions combined with optomechanics [8].

Although the CP force is tiny, a number of precise experi-
ments had demonstrated such a quantum phenomenon [9–13].
Aside from the zero-point fluctuations, thermal fluctuations
also contribute to the CP force. As the experiments were typi-
cally performed at room temperature, the impact of the thermal
photons on CP forces has attracted particular interest. In 2007,
the temperature-dependent CP force was firstly observed out
of thermal equilibrium [14]. Meanwhile, theoretical studies on
thermal CP forces have covered various configurations such
as spheres [15], cylinders [15–18], planar [19,20], cylindrical
[19,21], graphene [22], and carbon nanotubes [23] in order to
explore the entangled position and temperature dependences of
thermal CP forces. For instance, Ellingsen et al. demonstrated
that the thermal CP potentials of a molecule near a metal
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surface can be entirely independent of temperature even if the
thermal photon number is large [24].

The studies of CP forces mentioned above are mainly
focused on the ground-state atoms in which only the virtual
photon fluctuations appear. The CP forces on the excited
atoms also inspired a great number of investigations [25–32]
owing to the significant amplification compared with those
on the ground-state atoms. It is generally recognized that
the CP force on an excited atom originates mainly from
the real photon emission, exhibiting an oscillatory spatial
behavior. In other words, the CP force on an excited atom
is dominated by the electromagnetic mode at the atomic
transition frequency. Thus it is feasible to control the force
by tailoring the electromagnetic property of the material at the
atomic frequency. For instance, the metamaterials have been
used to trap atoms and produce a long-time force [33].

Though there were some studies concerning the CP force
on the excited two-level atom system or multilevel systems
[20,30,31,33], the quantum interference effect was rarely
in discussion due to the premise that these atom systems
had the ladder-type level structures. As a significant fun-
damental quantum effect, the quantum interference in the
atom among different transition channels has aroused great
attention, leading to many fascinating phenomena such as
coherence trapping of population, lasing without inversion,
electromagnetic induced transparency, and gain without in-
version [34]. Recently, the quantum interference effect on
the CP force on a three-level V-type atom was analyzed
[35], which revealed that the quantum interference plays an
important role on the CP force. However, the CP force was
investigated under the condition of zero temperature, where
thermal photons are out of consideration. Thus it is of great
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FIG. 1. (a) Scheme of an atom near the structure made of a LHM slab mounted on a metal substrate. (b) The level scheme of the V-type
three-level atom.

interest for us to analyze both the thermal and the quantum
interference effects in one system to discover how the CP force
behaves.

In this paper, we analyze the amplitude and the evolution of
the CP force acting on a V-type three-level atom in a thermal
reservoir with temperature T . Two kinds of V-type atoms are
investigated and compared. The first is an ideal degenerate
V-type atom with two parallel transition dipoles, while the
other is a Zeeman V-type atom whose two transition dipoles
are left rotation and right rotation, respectively. We discuss the
evolution of the CP force starting from two kinds of initial
states of the atom, i.e., the subradiant and the superradiant
state, in order to study the influence of quantum interference.
The atom is considered to locate near a structure made of the
left-handed metamaterials (LHMs) and metal, similar to the
previous work [33,35]. This paper is organized as follows: in
Sec. II we introduce the model and give the explicit derivation
of the thermal CP force on a V-type atom. In Sec. III, we
analyze in detail the thermal CP force on a V-type atom with
two kinds of initial states. The effect of the thermal fluctuations
as well as quantum interference on the CP force is especially
discussed. In Sec. IV, we summarize the results.

II. MODEL AND FORMULAS

We consider a V-type atom located in the vicinity of a
slab with thickness dA made of LHM with permittivity εA and
permeability μA, shown in Fig. 1(a). The LHM slab is mounted
on a metal substrate with permittivity εM . The V-type atom
located at position rA = (0, 0, zA) has two nearly degenerate
upper states |1〉 and |2〉, and one ground state |3〉, as illustrated
in Fig. 1(b). The frequencies and the dipole moments of two
transition channels are ωi3 and di3 (i = 1,2), respectively. Note
that the dipole transition between |1〉 and |2〉 is forbidden.

The Hamiltonian of the whole system is [36]

Ĥ =
∑

λ=e,m

∫
d3r

∫ ∞

0
dωh̄ω f̂

†

λ(r,ω) · f̂ λ(r,ω) + h̄ω13|1〉〈1|

+ h̄ω23|2〉〈2| − d̂ · Ê(rA). (1)

Here f̂ λ(r,ω) and f̂
†

λ(r,ω) are the generalized bosonic
structure-assisted operators satisfying the commutation re-

lationship of [ f̂
†

λ(r,ω), f̂ λ′(r ′,ω′)] = δλλ′δ(r − r ′)δ(ω − ω′).

The atomic electric-dipole operator is defined as d̂ =
d13Â13 + d31Â31 + d23Â23 + d32Â32. Here, dmn = 〈m|d̂|n〉
is the transition dipole moment and Âmn = |m〉〈n| is the atomic
flip operator [36]. The time-dependent atomic density matrix
σ̂ = ∑

m,n σmn|m〉〈n| is closely related to Âmn by

〈Âmn(t)〉 = σnm(t), m,n = 1,2,3. (2)

The electric field operator Ê(r) can be expressed in terms of
the fundamental bosonic operators f̂ λ(r,ω) and the classical

Green tensor
↔
G(r,r ′,ω) (see Eq. (8) in Ref [33].) as

Ê(r) =
∫

d3r ′
∫ ∞

0
dω

↔
G(r,r ′,ω)

·
[
ω

√
h̄ε0

π
Imε(r ′,ω) f̂ e(r ′,ω)

+ ∇ ×
√

− h̄

πμ0
Im

1

μ(r ′,ω)
f̂ m(r ′,ω)

]
+ H.c. (3)

Throughout this paper, the atom is initially prepared in the
superposition state:

|ψA(0)〉 = c1|1〉 + c2|2〉. (4)

The density matrix of the thermal field at temperature T is
given by [34,36]

ρ̂T = exp[−ĤF /(kBT )]

Tr{exp[−ĤF /(kBT )]} . (5)

Here kB is the Boltzmann constant. ĤF is the
Hamiltonian of the electromagnetic field; i.e., ĤF =∑

λ=e,m

∫
d3r

∫ ∞
0 dωh̄ω f̂

†

λ(r,ω) · f̂ λ(r,ω). The nonvanish-
ing thermal averages of the electric field are given by [36]

〈Ê
†
(r,ω)Ê(r ′,ω′)〉T = h̄μ0

π
nω2Im

↔
G(r,r ′,ω)δ(ω − ω′). (6)

Here n is the average number of thermal photons in
accordance with the Bose-Einstein statistics:

n = 1

eh̄ω/(kBT ) − 1
. (7)

In the long-wavelength approximation, the CP force is the
expectation value of the operator of electromagnetic force on
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the atom [27]:

F(rA,t) =
〈
∇[d̂ · Ê(r)] + d

dt
[d̂ × B̂(r)]

〉
r=rA

. (8)

The first term refers to the dipole force and the second
term refers to the Lorentz force. It should be noticed that the
Lorentz force can be rigorously canceled under the condition
of ω13 = ω23 = ω0 [27,35]. We do make this approximation,
i.e., ω13 ≈ ω23 = ω0, in this paper.

After tedious manipulations, we obtain the CP force on a
V-type three-level atom in a thermal reservoir with temperature
T [27]:

F(rA,t) =
∑
m,n

σnm(t)Fmn(rA), m, n = 1, 2, 3. (9)

It consists of the time-dependent density-matrix elements
σnm(t) and time-independent force amplitude terms Fmn(rA).
The density-matrix elements σnm(t) describe the internal
atomic dynamics, and are governed by the master equations as
[34] follows:

∂

∂t
σ11(t) = −(n + 1)γ1σ11(t) − (n + 1)

κ

2
[σ12(t) + σ21(t)]

+ nγ1σ33(t), (10a)

∂

∂t
σ22(t) = −(n + 1)γ2σ22(t) − (n + 1)

κ

2
[σ21(t) + σ12(t)]

+ nγ2σ33(t), (10b)

∂

∂t
σ12(t) = −1

2
(n + 1)(γ1 + γ2)σ12(t) − 1

2
κ(n + 1)

× [σ22(t) + σ11(t)] + nκσ33(t). (10c)

Here, γ1(γ2) is the spontaneous decay rate from the upper level
|1〉(|2〉) to the ground level |3〉, and κ is the collective damping
rate due to the quantum interference. They have expressions
as follows:

γ1 = 2μ0ω
2
0 d13 · Im

↔
G(rA,rA,ω0) · d31/h̄, (11a)

γ2 = 2μ0ω
2
0 d23 · Im

↔
G(rA,rA,ω0) · d32/h̄, (11b)

κ = 2μ0ω
2
0 d13 · Im

↔
G(rA,rA,ω0) · d32/h̄. (11c)

Equation (10) reveals that the thermal photon number n

plays a significant role in the evolution of the V-type atom.
The time-independent force amplitudes Fmn(rA) in Eq. (9)
are given by

F11(rA) = −μ0kBT

π

∞∑
j=0

′ξ 2
j ∇tr{[↔

α11(iξj ) + ↔
α11(−iξj )] ·

↔
G(1)(r,rA,iξj )}r=rA

+ {
(n + 1)μ0ω

2
0∇[d13 ·

↔
G(1)(r,rA,ω0) · d31] + c.c.

}
r=rA

, (12a)

F22(rA) = −μ0kBT

π

∞∑
j=0

′ξ 2
j ∇tr{[↔

α22(iξj ) + ↔
α22(−iξj )] ·

↔
G(1)(r,rA,iξj )

}
r=rA

+ {
(n + 1)μ0ω

2
0∇[d23 ·

↔
G(1)(r,rA,ω0) · d32] + c.c.

}
r=rA

, (12b)

F12(rA) = F21(rA) = −μ0kBT

π

∞∑
j=0

′ξ 2
j ∇tr{[↔

α12(iξj ) + ↔
α12(−iξj )] ·

↔
G(1)(r,rA,iξj )}r=rA

+ {
(n + 1)μ0ω

2
0∇[d23 ·

↔
G(1)(r,rA,ω0) · d31] + c.c.

}
r=rA

, (12c)

F33(rA) = −μ0kBT

π

∞∑
j=0

′ξ 2
j ∇tr{[↔

α33(iξj ) + ↔
α33(−iξj )] ·

↔
G(1)(r,rA,iξj )}r=rA

− {
nμ0ω

2
0∇[d13 ·

↔
G(1)(r,rA,ω0) · d31] + nμ0ω

2
0∇[d23 ·

↔
G(1)(r,rA,ω0) · d32] + c.c.

}
r=rA

. (12d)

Here, ξj = j2πkBT /h̄ denotes the Matsubara frequencies
[27,36] and “c.c.” means the complex conjugate.

↔
G(1) is the

scattering part of the Green tensor (see Eq. (9) in Ref. [33])
and

↔
α is the atomic polarizability tensor [36] given by

↔
αmn = 1

h̄

∑
k

(
dnkdkm

ωkm − ω
+ dkmdnk

ωkn + ω

)
, m,n,k = 1,2,3.

(13)

We neglect the shift and width of the atomic transition
frequency in Eqs. (12) and (13) due to the weak coupling

between the atom and the field. It should be noticed that σ13

and σ23 as well as F13(rA) and F23(rA) are neglected here
owing to the inhibition of the transition between |1〉 and |2〉.
As a consequence, there are five density-matrix elements [i.e.,
σ11, σ22, σ12, σ21, and σ33] as well as five time-independent
force amplitudes [i.e., F11(rA), F22(rA), F12(rA), F21(rA),
and F33(rA)] contributing to the CP force.

Equations (12a)–(12d) show that all force amplitudes can
be decomposed of the dispersion (off-resonant) part and the
resonant part. The dispersion part from virtual photons is
characterized by the summation of Matsubara frequencies
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∑ ′ξ 2
j (· · · ). The prime in the Matsubara sum indicates the half

weight for the term j = 0. On the other hand, the resonant part
is due to the real photon emission or absorption.

From Eqs. (10a)–(10c) it is clear that the quantum
interference (κ) as well as thermal photons (n) can alter the
evolution of the CP force by changing the time-dependent parts
σmn(t). Furthermore, Eqs. (12a)–(12d) demonstrate that the
time-independent amplitudes Fmn(rA) are also changed by the
above two effects. For instance, Eq. (12c) reveals that F12(rA)
and F21(rA) arise from the quantum interference effect due to
the cross coupling between d13 and d23 [35]. Simultaneously,
the thermal photons enhance all the resonant-force elements,
such as changing the prefactor of Fij (rA) (i,j = 1,2) from 1 in
the zero-temperature case to (n + 1) in the finite-temperature
case. On the other hand, thermal fluctuations change the disper-
sion part of the CP force from integral in the zero-temperature
case to the Matsubara summation in the finite-temperature
case. Additionally, F33(rA), i.e., Eq. (12d), exhibits the
resonant force arising from thermal fluctuation photons, which
is different from the zero-temperature case [35] where only
the dispersion force appears. As a consequence, the CP forces
on the V-type atom in the finite temperature would exhibit dif-
ferent behavior from those in the zero-temperature condition.

III. ANALYSIS

We now analyze in detail the effect of thermal fluctuations
on the CP force. To get a complete picture of the role of
thermal photons, we study two versions of the V-type systems:
an ideal atom with two parallel dipoles and a Zeeman atom
with two perpendicular dipoles. The aforementioned two
kinds of superposition states, i.e., the subradiant state and the
superradiant state, are assumed as the initial states to obtain
the maximum quantum interference. Thus the competition
between thermal photons and the quantum interference on
the evolution of the CP force can be discussed.

A. Ideal atom with two parallel dipoles, d13 ‖ d32 = d0

In terms of the atom with two parallel transition dipoles,
d13 and d32 are equal to each other; i.e., d13 ‖ d32 = d0.
Such an atom system was extensively studied in the pre-
vious works concerning the quantum interference [37,38].
Whether the environment is involved or not, the corre-
sponding decay rates and the collective damping of the two
channels are the same; i.e., γ1 = γ2 = κ = γ . By virtue of
d13 = d32 = d0, the time-independent force amplitudes are
given by

F11(rA) = F22(rA) = F12(rA) = F21(rA)

= −μ0kBT

π

∞∑
j=0

′ξ 2
j ∇ tr{[↔

α11(iξj ) + ↔
α11(−iξj )] ·

↔
G(1)(r,rA,iξj )}r=rA

+ 2(n + 1)μ0ω
2
0 Re∇{d0 ·

↔
G(1)(r,rA,ω0) · d0}r=rA

, (14a)

F33(rA) = −μ0kBT

π

∞∑
j=0

′ξ 2
j ∇tr{[↔

α33(iξj ) + ↔
α33(−iξj )] ·

↔
G(1)(r,rA,iξj )}r=rA

− 4nμ0ω
2
0 Re∇{d0 ·

↔
G(1)(r,rA,ω0) · d0}r=rA

. (14b)

The resonant parts as well as the dispersion parts of the
forces are the same in terms of F11(rA), F22(rA), F12(rA),
and F21(rA), revealing that thermal photons make the same
contributions to these four elements. Especially, Eq. (14b)
demonstrates that the resonant part of F33(rA) completely
originates from thermal photons, characterized by the mean
thermal photon number n.

In the previous work [35], this model was discussed in
the condition of T = 0 K. It was found that when the atom
is prepared initially in the subradiant state |ψ(t = 0)〉 =
(|1〉 − |2〉)/√2, it is immune from the CP force by virtue
of the destructive quantum interference. In contrast, for the
initial superradiant state |ψ(t = 0)〉 = (|1〉 + |2〉)/√2, due to
the constructive quantum interference, the amplitude of the CP
force is double enhanced and decays twice as fast than in the
case of a two-level atom.

Here we extend the previous research to the finite-
temperature case. When the atom is initially prepared in
the subradiant state |ψ(t = 0)〉 = (|1〉 − |2〉)/√2, the initial

density-matrix elements read

σ11(0) = σ22(0) = −σ12(0)

= −σ21(0) = 1/2; others are zero. (15)

Substituting them into Eqs. (10a)–(10c), these density-
matrix elements remain constant because of the destructive
interference. It reveals that the destructive interference effect
leads to the trapping of the atom in the subradiant state
regardless of thermal photons. In this case, the atom is immune
from the CP force since

F(rA,t) = σ11(t)F11(rA) + σ22(t)F22(rA) + σ21(t)F12(rA)

+ σ12(t)F21(rA) + σ33(t)F33(rA)

= [σ11(t) + σ22(t) + σ21(t) + σ12(t)]F11(rA) = 0.

(16)

It implies that although all the force elements Fmn(rA) are
enhanced by thermal fluctuation photons, the net CP force
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FIG. 2. (a) The resonant Casimir-Polder forces Fr on the ideal V-type atom as a function of the atomic position at different temperatures
T and time t . The black and pink (gray) curves refer to temperatures T = 500 K and 0 K, respectively. The dash, dash-dot, and solid curves
refer to the evolution times t = 0, 1/�0, and 2/�0 respectively. (b) The dispersion Casimir-Polder forces Foff on this atom at the initial time as
a function of the atomic position. The dashed (blue), dash-dot (orange), and solid (red) curves refer to the temperatures T = 0 K,300 K,500 K,
respectively. The atom is prepared initially in the superradiant state. ez denotes the unit vector in the z direction. �0 is the decay rate of a
two-level atom with frequency ω0 in free space.

still disappears due to their superposition. Thermal fluctuation
photons thus do not have any impact on the net CP force as
a result of the domination of the strong destructive quantum
interference.

On the other hand, when the atom is prepared in the
superradiant state initially, i.e., |ψ(t = 0)〉 = (|1〉 + |2〉)/√2,
the corresponding initial density-matrix elements are given by

σ11(0) = σ22(0) = σ12(0) = σ21(0) = 1/2; others are zero.

(17)

With the time evolution, the time-dependent density-matrix
elements take the following expressions:

σ11(t) = σ22(t) = σ12(t) = σ21(t)

= (n + 1)/(4n + 2)e−(4n+2)γ t + n/(4n + 2),

σ33(t) = −(n + 1)/(2n + 1)e−(4n+2)γ t + (n + 1)/(2n + 1).

(18)

It reveals that the thermal photon number has a significant
influence on the evolution of the atom. It can be seen from
the exponential part that the prefactor of the decay rate is
enhanced from 2 to (4n + 2). Thus in the finite-temperature
case, thermal photons can accelerate the evolution of the
CP force. When the atom evolves into the steady state, the
two upper states still have populations arising from thermal
fluctuations. By recalling Eq. (9), it might give us a hint that
the net resonant CP force may not disappear in the steady
state, since the time-dependent parts σij (∞) do not vanish
anymore. For comparison, it is generally recognized that in
the zero-temperature case, the resonant force always vanishes
in the steady state.

To analyze this strictly, we write the net CP force at an
arbitrary time according to Eq. (9) as

F(rA,t) = 4

[
n + 1

4n + 2
e−(4n+2)γ t + n

4n + 2

]
F11(rA)

+
[
− n + 1

2n + 1
e−(4n+2)γ t + n + 1

2n + 1

]
F33(rA). (19)

To better understand the effect of thermal photons on
the CP force, we focus on the resonant force, since the
dispersion (off-resonant) force can be neglected compared
with the resonant force when the distance between the atom
and the surface is larger than the atomic transition wavelength
λ. To prove it, we assume that the atomic transition frequency
is ω0 = 1.0×1014 rad/s, and the orientations of the dipoles
are both along the x axis. By recalling Eq. (7), the thermal
photon numbers at 300 and 500 K are 0.085 and 0.277,
respectively. The parameters of the LHM slab are the same
as the previous work [35] where the indices are εA(ω0) =
μA(ω0) ≈ −1.001 + 0.006i, and the thickness is dA = 2λ.
Figures 2(a) and 2(b) illustrate the resonant force Fr and the
dispersion (off-resonant) force Foff on this ideal V-type atom
for different temperatures, respectively. The unit of force is
B = μ0|d0|2ω4

0/4π2c2. As the temperature increases from 0
to 500 K, the dispersion force increases by nearly two orders
of magnitude. This is in agreement with the previous results
that thermal fluctuations can enhance the dispersion CP force
[36]. However, the value of the dispersion force exhibits an
exponential decrease as the distance between the atom and
the slab increases. This makes the dispersion force negligible
compared with the resonant force when we focus on the
distance comparable to the atomic resonant wavelength λ. For
convenience, we only focus on the resonant part of the CP
force in the following.

According to Eq. (19), the resonant force on the atom at the
initial time is given by

Fr(rA,t = 0) = 2Fr
11(rA) = 2(n + 1)F‖(rA). (20)

Here F|| = 2μ0ω
2
0d

2
0 Re∇[G(1)

xx (r,rA,ω0)]r=rA
is the reso-

nant part of the CP force on the dipole parallel to the slab. It
reveals that the thermal photons enhance the force at the initial
time, changing the prefactor from 2 in the zero-temperature
case to 2(n + 1) in the finite-temperature case; cf. Fig. 2(a). Be-
sides, Fig. 2(a) demonstrates that the forces exhibit a faster de-
crease as the atom evolves at higher temperatures. The reason
is that thermal photons accelerate the decay of the upper states,
and shorten the life of the CP force. When the atom evolves
into the steady state (t → ∞), the density-matrix elements
given by Eq. (18) are reduced to σ11 = σ22 = σ12 = σ21 = n/
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(4n + 2) and σ33 = (n + 1)/(2n + 1). Substituting these ele-
ments into Eq. (9), we obtain an interesting result— the net
resonant force in the steady state vanishes:

Fr(rA,t →∞) = 4σ11(t)Fr
11(rA) + σ33(t)Fr

33(rA) = 0. (21)

Contrary to what we expected above, the superposition of
all elements of the resonant forces leads to the vanishment of
the net force. Strictly, it should be mentioned here that the
disappearance of the resonant net CP force is a result based on
the statistical averages.

As a conclusion, for the ideal V-type atom with two parallel
transition dipoles, when the atom is initially prepared in the
subradiant state, the destructive interference will override the
effect of thermal fluctuation photons. As a result, the atom
is immune from both the dispersion and resonant CP force,
i.e., still a free atom. On the other hand, when the atom is
initially prepared in the superradiant state, thermal photons
will enhance the resonant force at the initial time. With the
decay of the atom, the force at higher temperatures decreases
faster by virtue of the contribution to the decay constant from
thermal photons. However, when the atom evolves to the steady
state, the net resonant force disappears even though the atom
still has populations in the upper states.

B. Zeeman atom with two perpendicular dipoles, d13 ⊥ d32

From the realistic perspective, the V-type atom with two
perpendicular dipoles is more relevant to the experiments.
Two transition dipoles with nearly the same frequency can
be achieved through the Zeeman splitting of a two-level
atom under an applied magnetic field. These two dipoles are
perpendicular to each other naturally; i.e., one is left-rotating
polarized and the other is right-rotating polarized. Such an
atom is called a Zeeman atom, and its atomic dipole moments
are represented by d13 = d0ε+ and d23 = d0ε−. Here, ε+ =
(ez + iex)/

√
2 and ε− = (ez − iex)/

√
2 refer to the right-

rotating and the left-rotating unit vectors, respectively.
As two transition dipoles are perpendicular to each other,

there is no quantum interference in free space. However,
Agarwal mentioned that the anisotropic environment can
revive the quantum interference within the Zeeman atom [39].
In terms of the structure shown in Fig. 1(a), the anisotropy is
embodied by the difference between the diagonal elements

of the Green tensor, Gxx(rA,rA,ω0) and Gzz(rA,rA,ω0).
Correspondingly, the decay rates and the collective damping
rate are given by

γ1 = γ2 = μ0

h̄
ω2

0d
2
0 [ImGxx(rA,rA,ω0) + ImGzz(rA,rA,ω0)],

κ = μ0

h̄
ω2

0d
2
0 [ImGzz(rA,rA,ω0) − ImGxx(rA,rA,ω0)]. (22)

In the anisotropic environment, the collective damping rate
κ has a nonzero value arising from Gzz �= Gxx , leading to
the appearance of the quantum interference. By recalling
Eqs. (12a)–(12d), the corresponding resonant CP forces are
given by

Fr
11(rA) = Fr

22(rA) = (n + 1)μ0ω
2
0d

2
0 Re∇

× [
G(1)

zz (r,rA,ω0) + G(1)
xx (r,rA,ω0)

]
r=rA

= (n + 1)(F⊥ + F||)/2, (23a)

Fr
12(rA) = Fr

21(rA) = (n + 1)μ0ω
2
0d

2
0 Re∇

× [
G(1)

zz (r,rA,ω0) − G(1)
xx (r,rA,ω0)

]
r=rA

= (n + 1)(F⊥ − F||)/2, (23b)

Fr
33(rA) = −2nμ0ω

2
0d

2
0 Re∇[

G(1)
zz (r,rA,ω0)

+G(1)
xx (r,rA,ω0)

]
r=rA

= −n(F⊥ + F||). (23c)

Here F⊥ = 2μ0ω
2
0d

2
0 Re∇[G(1)

zz (r,rA,ω0)]r=rA
is the reso-

nant part of the CP force on the dipole d0 perpendicular to the
surface, while F|| = 2μ0ω

2
0d

2
0 Re∇[G(1)

xx (r,rA,ω0)]r=rA
is the

one on the dipole parallel to the surface.
Now we consider the influence of thermal fluctuations

on the amplitude as well as the evolution of the CP force.
When the Zeeman atom is initially prepared in the subradiant
state, the resonant CP force at the initial time is Fr(rA,t =
0) = (n + 1)Fr

‖(rA) as found from Eqs. (9) and (23). It is
equivalent to the resonant CP force acting on a two-level atom
with the x-oriented dipole moment. The reason is that the
destructive quantum interference cancels the force component
of the z-oriented dipole [37]. On the other hand, in the case
of the initial superradiant state, the initial resonant force is

FIG. 3. The resonant Casimir-Polder force as a function of the atomic position at different temperatures and evolution time when the Zeeman
atom is prepared initially in (a) the subradiant state and (b) the superradiant state. The black and pink (gray) curves refer to temperatures
T = 500 K and 0 K, respectively. The solid and dashed curves refer to the evolution times t = 0 and t = 1/�0, respectively.
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FIG. 4. The evolution of the resonant elements Fr
mn(rA,t) on the Zeeman atom at different temperatures. (a) The Zeeman atom is prepared

initially in the subradiant state. (b) The Zeeman atom is prepared initially in the superradiant state. The blue (red) curves with open (full)
symbols refer to diagonal terms of Fr

11 and Fr
22 (Fr

33). The black curves with half-open symbols refer to the off-diagonal terms Fr
12 and Fr

21.
The solid, dashed, and dotted curves refer to temperatures T = 500 K, 300 K, 0 K, respectively. The atom is placed at the focus point zA = 2λ.

Fr(rA,t = 0) = (n + 1)Fr
⊥(rA). It resembles the force on the

single dipole perpendicular to the surface, arising from the
constructive quantum interference that cancels the x-oriented
dipole parts. Different from the case of the ideal V-type atom
at the subradiant state, the net CP force on the Zeeman V-type
atom at the initial time still exists owing to the incomplete
quantum interference. Figures 3(a) and 3(b) demonstrate
that thermal photons enhance the initial CP forces as the
temperature T increases from 0 to 500 K for both of the initial
states.

To explore the thermal effect on the evolution of the
CP force thoroughly, it is of great importance to focus on
all elements of the force. From Eq. (9), the element of
the force is determined by the amplitude part Fr

mn(rA) and
the evolution part σmn(t); i.e., Fr

mn(rA,t) = σmn(t)Fr
mn(rA).

Thermal photons strengthen all time-independent amplitudes
Fr

mn(rA) according to Eqs. (23a)–(23c). In Fig. 4 we plot the
time evolutions of all force elements at different temperatures
when the atom is located at the focal point nearby the LHM

FIG. 5. The evolution of the resonant Casimir-Polder force on the
Zeeman atom at different temperatures. The solid, dashed, and dotted
curves refer to temperatures T = 0 K,300 K,500 K, respectively. The
black and pink (gray) curves refer to the initial subradiant and the su-
perradiant state, respectively. The Zeeman atom is placed at the focus
point zA = 2λ.

structure; i.e., rA = (0,0,2λ). Note that since the excited and
ground states represent two opposite processes of emitting
and absorbing photons, the diagonal elements Fr

11 and Fr
22

(blue curves) are positive and repulsive while Fr
33 (red curves)

are negative and attractive. In addition, Fr
11 and Fr

22 decrease
in absolute value while Fr

33 increases in absolute value. The
absolute values of Fr

21(rA,t) and Fr
12(rA,t) also decrease with

time. In contrast to the zero-temperature case, the diagonal
elements Fr

11, Fr
22, and Fr

33 do not vanish when the atom de-
cays into the steady state at finite temperatures, i.e., T = 300 K
and 500 K. This persistence of the diagonal elements arises
from thermal photon fluctuations which lead to the weak
excitation of the atom in the steady state. On the other hand,
the off-diagonal terms Fr

12(rA,t) and Fr
21(rA,t) arise from the

quantum interference, and their initial values are enhanced as
the temperature rises from 0 to 500 K, shown in Figs. 4(a)
and 4(b). In contrast to the diagonal terms, the off-diagonal
terms vanish in the steady state by virtue of the decoherence
between the two upper states in the V-type atom. In addition,
Fig. 4(a) demonstrates that when the atom is initially prepared
in the subradiant state, the off-diagonal terms exhibit faster
decreases at higher temperatures due to the acceleration of the
decoherence arising from the thermal photons.

Now we consider the net resonant force in the steady state.
By solving the master equations, we get the density-matrix
elements in the steady state as σ11(∞) = σ22(∞) = n/(3n +
1), σ12(∞) = σ21(∞) = 0, and σ33(∞) = (n + 1)/(3n + 1).
Such a steady state is independent of the initial state. It is
interesting to find that the net resonant CP force is Fr(rA,

t → ∞) = 0. As can be seen in Fig. 5, although thermal
photons enhance the initial net CP forces by increasing the
temperature, the net resonant CP forces all trend to zero in the
steady state, regardless of the temperature and the initial state.
As mentioned above, the disappearance of the resonant CP
force in the steady state is a statistical-average result. From our
previous work, in the zero-temperature case, the force on the
atom prepared in the superradiant state decreases faster than
that in the subradiant state owing to the quantum interference
effect [34]. Here, by virtue of the existence of thermal photons,
the force in the subradiant state exhibits a faster decrease as
the temperature increases due to the faster decay of the off-
diagonal elements as analyzed above. On the other hand, for
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the initial superradiant state, the force decreases more slowly
as the temperature increases. It means that the thermal photons
play an important role against the quantum interference in the
evolution of the CP force on the Zeeman atom.

IV. CONCLUSION

In this paper, the thermal CP force of a V-type three-level
atom is studied. We focus on the thermal effect on the
amplitude and the evolution of the force on two versions of
the atomic system. For the ideal degenerate V-type atom with
two parallel dipoles, if the initial state is the subradiant state,
there exists no force on the atom regardless of the temperature
due to the complete quantum interference. On the other hand,
for the initial superradiant state, as the temperature increases,
the force is enhanced by thermal photons initially, and then
decreases faster. Finally the net resonant force vanishes in the
steady state. In terms of the Zeeman atom whose two transition
dipoles are left rotation and right rotation, respectively, the
CP forces on it exhibit different behavior from those on
the ideal atom. For the initial subradiant state, the Zeeman
atom is not immune from the CP force during the evolution
because of the incomplete quantum interference. In addition,
for both sub- and superradiant states, the resonant CP force on
the atom at the initial time is enhanced by thermal photon

fluctuations. When we look closely at all elements of the
resonant CP forces, we find that the diagonal elements of
the force still exist in the steady state, because there are tiny
populations in the upper states due to thermal fluctuations,
which is completely different from the zero-temperature case.
However, the net resonant CP force disappears in the steady
state regardless of the temperature, which means the second
law of thermodynamics still works. Furthermore, it is known
that the quantum interference can accelerate or decelerate the
atomic evolution. Here we find that the thermal fluctuations
always weaken the effect of the quantum interference on the
Zeeman atom.
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