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One-loop binding corrections to the electron g factor
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We calculate the one-loop electron self-energy correction of order α (Z α)5 to the bound-electron g factor.
Our result is in agreement with the extrapolated numerical value and paves the way for the calculation of the
analogous, but as yet unknown, two-loop correction.
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I. INTRODUCTION

The g factor of a bound electron is the coupling constant
of the spin to an external, homogeneous magnetic field. In
natural units h̄ = c = ε0 = 1, it is defined by the relation

δE = − e

2 m
〈�σ �B〉 g

2
, (1)

where δE is the energy shift of the electron due to the
interaction with the magnetic field �B, m is the mass of the
electron, and e is the electron charge (e < 0). It was found
long ago [1] that in a relativistic (Dirac) theory, the g factor
of a bound electron differs from the value g = 2 due to the
so-called binding corrections. For an nS state, they are given by

g = 2

3

(
1 + 2

E

m

)
= 2 − 2

3

(Z α)2

n2

+
(

1

2 n
− 2

3

)
(Z α)4

n3
+ · · · , (2)

where E is the Dirac energy. In addition, there are many QED
corrections, and the dominant one comes from the so-called
electron self-energy. When expanded in powers of Z α the one-
loop electron self-energy correction reads (for the nS state)

gSE = α

π

[
1 + (Z α)2

6 n2
+ (Z α)4

n3

(
32

9
ln[(Z α)−2] + b40(n)

)

+ (Z α)5

n3
b50 + (Z α)6

n3
(b62 ln2[(Z α)−2]

+ b61(n) ln[(Z α)−2] + b60(n)) + · · ·
]
, (3)

where b40(1S) = −10.236 524 32 [2,3], b50 = 23.6(5) [4],
and higher-order coefficients remain unknown. What is
approximately known, however, is the sum of b50 and
higher-order terms for individual nuclear charges from
all-order numerical calculations [4–7]. The subject of this
work is the one-loop electron self-energy correction of the
order of α (Z α)5, namely, the coefficient b50. Although it has
been obtained by extrapolation of numerical results, we aim to
calculate it directly, in order to find out the best approach for
the analogous two-loop contribution, which currently is the
main source of the uncertainty of theoretical predictions. Due
to extremely accurate measurements in hydrogenlike carbon
[8], the bound-electron g factor is presently used for the most
accurate determination of the electron mass [9], and in the
future it can be used for determination of the fine structure
constant [10] and for precision tests of the standard model.

II. α (Z α)5 CORRECTION TO THE LAMB SHIFT

Before turning to the g factor we present a simple derivation
of the analogous correction to the Lamb shift as proof
of concept because the computational approach for the g

factor will be very similar. The one-loop electron self-energy
contribution to the Lamb shift is

ESE = e2
∫

d4k

(2 π )4 i

1

k2
〈ψ̄ |γ μ 1

�p+ �k − γ 0 V − m
γμ|ψ〉,

(4)

where V = −Z α/r . The (Z α)5 contribution is obtained from
the hard two-Coulomb exchange

E
(5)
SE = e2 φ2(0) (Z α)2

∫
d3q

(2 π )3

f (�q 2)

�q 4
, (5)

f (�q 2) =
∫

d4k

i π2

1

k2
Tr

[
(T1 + 2 T2 + T3)

(
γ 0 + I

4

)]
, (6)

where

T1 = γ μ 1

� t+ �k − m
γ 0 1

� t+ �k+ �q − m
γ 0 1

� t+ �k − m
γμ,

T2 = γ 0 1

� t+ �q − m
γ μ 1

� t+ �k+ �q − m
γ 0 1

� t+ �k − m
γμ,

T3 = γ 0 1

� t+ �q − m
γ μ 1

� t+ �k+ �q − m
γμ

1

� t+ �q − m
γ 0,

(7)

and where t = (m,0,0,0), t q = 0, and q2 = −�q 2. Equation
(5) as it stands is divergent at small �q 2. One subtracts
leading terms in small �q 2, which correspond to lower-order
contributions to the Lamb shift, so f (�q 2) ∼ �q 2, and

f (�q 2) = �q 2
∫

d(p2)
1

p2 (�q 2 + p2)
f A(p2), (8)

function f can be expressed in terms of its imaginary part f A

on a cut �q 2 < 0,

f A(p2) = f (−p2 + i ε) − f (−p2 − i ε)

2 π i
. (9)

The correction to energy in terms of f A becomes

E
(5)
SE = e2 φ2(0) (Z α)2

∫
d p

2 π

f A(p2)

p2
. (10)

The imaginary part f A is much easier to evaluate because
it does not involve any infrared or ultraviolet divergences in
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k and has a much simpler analytic form than the f itself.
The calculations go as follows. Traces are performed with
FEYNCALC package [11]. The resulting expression is a linear
combination of fractions with the numerator containing powers
of k2, q2, k t , and k q, while q t vanishes. Any k in the numer-
ator can be reduced with the denominator with the help of

k q = 1
2 [(k + q + t)2 − (k + t)2 − q2] ,

k t = 1
2 [(k + t)2 − k2 − q2] . (11)

The resulting expression is a linear combination of

1

i π2

∫
d4 k

1

[k2]n [(k + t)2 − 1]m [(k + t + q)2 − 1]l
, (12)

with integers n,m,l � 0. Next, the powers n,m,l are reduced
to 1 or 0 using integration by parts identities
∫

d4 k
∂

∂kμ

pμ

[k2]n [(k + t)2 − 1]m [(k + t + q)2 − 1]l
= 0,

(13)

with p = k,q,t . The resulting expression contains the integral

J = 1

i π2

∫
d4 k

1

k2 [(k + t)2 − 1] [(k + t + q)2 − 1]
(14)

and simpler integrals without any of these denominators.
Analytic expressions for all such integrals can be taken from
[12], but it is much easier to calculate the imaginary part
using Feynman parameters. For example, the imaginary part
of the J integral is

JA(p2) = 1

p

[
arctan(p) − �(p − 2) arccos

(
2

p

)]
. (15)

Using JA and simpler formulas for other integrals, the result
for f A is

f A(p2) = 7

3
− 16

p2
− 1

1 + p2
+

(
16

p3
+ 4

p
− p

)
arctan(p)

+ 4

(
1 + 1

p2
− 12

p4

)
�(p − 2)√
1 − 4/p2

−
(

16

p3
+ 4

p
− p

)
�(p − 2) arccos

(
2

p

)
. (16)

The one-dimensional integration in Eq. (10) leads to∫
d p

2 π

f A(p2)

p2
= 139

128
− ln 2

2
≡ C. (17)

Finally, the result for the α (Z α)5 electron self-energy contri-
bution to the Lamb shift

E
(5)
SE = m

α (Z α)5

n3
4 C (18)

is in agreement with the well-known value [9,13]. The same
integration technique is used in the next section for the
evaluation of the analogous correction to the g factor.

III. α (Z α)5 CORRECTION TO THE g FACTOR

The one-loop correction to the g factor is similar to Eq. (4)

δE = e2
∫

d4k

(2 π )4i

1

k2

×〈ψ̄ |γ μ 1

�p+ �k − e �A − γ 0V − m
γμ|ψ〉, (19)

where ψ is the electron wave function which includes
perturbation due to external magnetic field A, and p0 includes
the corresponding energy shift

p0 = E + 〈ψ̄ |e �A|ψ〉. (20)

The (Z α)5 contribution is given in analogy to the Lamb shift, by the hard two-Coulomb exchange

δE(5) = e2
∫

d4k

(2 π )4 i

1

k2
〈ψ̄ |γ μ 1

�p+ �k − e �A − m
γ 0 V

1

�p+ �k − e �A − m
γ 0 V

1

�p+ �k − e �A − m
γμ

+ 2 γ 0 V
1

�p − e �A − m
γ μ 1

�p+ �k − e �A − m
γ 0 V

1

�p+ �k − e �A − m
γμ

+ γ 0 V
1

�p − e �A − m
γ μ 1

�p+ �k − e �A − m
γμ

1

�p+ �k − e �A − m
γ 0 V |ψ〉, (21)

and by the expansion in A and in the momentum carried by
A. The expansion of ψ in A is not very trivial. Since only the
low momenta of the wave function ψ contribute to (Z α)5 we
apply the Foldy-Wouthuysen transformation in the presence
of the magnetic field

S = − i

2 m
�γ · �π, (22)

and the wave function can be represented as

|ψ〉 = e−i S

∣∣∣∣φ0
〉

=
(

I − 1

2 m
�γ �π + e

8 m2
�σ �B

)∣∣∣∣φ0
〉
, (23)

where φ is the spinor wave function which corresponds to the
transformed Hamiltonian

H ′ = ei S (H − i ∂t ) e−i S

= p2

2 m
− Z α

r
− e

2 m
�σ �B

(
1 − p2

2 m2
+ Zα

6 m r

)
. (24)

We are now ready to perform an expansion in �A of Eq. (21),
and split δE(5) in four parts

δE(5) = E1 + E2 + E3 + E4 . (25)
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E1 comes from the last term in Eq. (23)

E1 = e

4 m2
〈�σ · �B〉 E(5) = − e

2 m
〈�σ · �B〉 g1

2
, (26)

where

g1 = −E(5)

m
= −α (Z α)5

n3
4 C . (27)

E2 comes from perturbation of φ due to the last term in the
transformed Hamiltonian (24)

E2 = e

m
〈�σ · �B〉C α (Z α)5

〈
5

6 r

1

(E − H )′
4 π δ(3)(r)

〉
, (28)

where p2/2 is replaced by 1/r . Since

1

(E − H )′
1

r
φ = − ∂

∂α
φ, (29)

the above matrix element is〈
1

r

1

(E − H )′
4 π δ(3)(r)

〉
= − 6

n3
, (30)

and g2 becomes

g2 = α (Z α)5

n3
20 C . (31)

E3 comes from expansion of Eq. (21) in p0 − m =
−e 〈�σ �B〉/(2 m),

E3 = − e

2 m
〈�σ · �B〉 e2 φ2(0) (Z α)2 C ′ , (32)

where

C ′ = ∂

∂E

∣∣∣∣
E=1

∫
d3q

(2 π )3

1

�q 4

∫
d4k

i π2

1

k2

× Tr

[
(T1 + 2 T2 + T3)

(
γ 0 + I

4

)]

= −659

256
+ ln(2) , (33)

and where Ti are defined in Eq. (7) with t = (E,0,0,0). The
corresponding correction to the g factor is

g3 = α (Z α)5

n3
8 C ′ . (34)

The last term E4 comes from the expansion of δE(5) in �γ · �A. A typical contribution is of the form

E4 = e2
∫

d4k

i π2

1

k2

∫
d3p

(2 π )3

Z α

(− �p − �q/2)2

Z α

( �p − �q/2)2
φ2(0) e i εijk σ k

×Tr

[
γ μ 1

� t+ �k − m
γ 0 1

� t+ �p+ �q/2+ �k − m
�A(q)

1

� t+ �p− �q/2+ �k − m
γ 0 1

� t+ �k − m
γμ

(γ 0 + I )

16
[γ i , γ j ]

]
+ · · · ,

(35)

where by dots we denote all other diagrams. In addition, we
perform an expansion in the momentum �q transferred by A

and obtain

E4 = e2 (Z α)2 φ2(0) C ′′ (Ai qj − Aj qi) e i εijk σ k

= −2 e2 (Z α)2 φ2(0) C ′′ e �σ �B, (36)

where

C ′′ = 281

1024
+ ln(2)

12
. (37)

The corresponding correction to the g factor is

g4 = α (Z α)5

n3
32 C ′′ . (38)

The total α (Z α)5 contribution to the bound-electron g factor
is the sum of individual corrections, namely,

g(5) = g1 + g2 + g3 + g4

= α (Z α)5

n3
(16 C + 8 C ′ + 32 C ′′)

= α (Z α)5

n3

(
89

16
+ 8 ln(2)

3

)
. (39)

The numerical value for the coefficient multiplied by π is
b50 = 23.282 005, in agreement with Yerokhin’s very recent

result of 23.6(5) [4]. However, what is not in agreement is
the difference for b50(2S) − b50(1S), which according to our
calculations vanishes, but Yerokhin et al. [4] give 0.12(5). All
the assumptions in performing the fit in Ref. [4] were correct,
so this small discrepancy needs further investigation.

IV. SUMMARY

We have calculated the one-loop electron self-energy
contribution of order α (Z α)5 to the bound-electron g factor,
and found that it is state independent. The principal result,
however, is a presentation of the computational approach,
which can be extended to the yet unknown two-loop correction.
This correction is presently the main source of theoretical
uncertainty. The extension of the direct one-loop numerical
calculation to the two-loop case is presently out of reach. In
contrast, the analytic approach with an expansion in Z α is
technically as difficult as the two-loop self-energy correction
to the Lamb shift, which has been known for some time [13].
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