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Dynamical Casimir effect in stochastic systems: Photon harvesting through noise
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We theoretically investigate the dynamical Casimir effect in a single-mode cavity endowed with a driven
off-resonant mirror. We explore the dynamics of photon generation as a function of the ratio between the cavity
mode and the mirror’s driving frequency. Interestingly, we find that this ratio defines a threshold—which we
referred to as a metal-insulator phase transition—between exponential growth and low photon production. The
low photon production is due to Bloch-like oscillations that produce a strong localization of the initial vacuum
state, thus preventing higher generation of photons. To break localization of the vacuum state and enhance the
photon generation, we impose a dephasing mechanism, based on dynamic disorder, into the driving frequency of
the mirror. Additionally, we explore the effects of finite temperature on the photon production. Concurrently, we
propose a classical analog of the dynamical Casimir effect in engineered photonic lattices, where the propagation
of classical light emulates the photon generation from the quantum vacuum of a single-mode tunable cavity.
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I. INTRODUCTION

One of the most fundamental results of quantum theory is
that vacuum space is not really empty. Along these lines, in
1948, Casimir [1] predicted that two parallel mirrors placed in
empty space would experience an attractive force as a result
of the spatial mismatch between the vacuum modes contained
in the cavity and those outside of the mirrors. Remarkably, if
the mirrors are allowed to move nonadiabatically, the vacuum
mode mismatch may occur in time rather than space. In such
a situation, the cavity field does not remain in the vacuum
state but gives rise to the generation of photons out of vacuum
fluctuations [2,3]. This fascinating phenomenon, termed the
dynamical Casimir effect (DCE), can be understood as a
parametric amplification of vacuum fluctuations [4–6]. Indeed,
it has been shown that a cavity field can be parametrically
excited when the cavity length is periodically modulated [7,8].
Particularly in the case where the cavity field is initially in
the vacuum state, one can show that its evolution leads to a
squeezed vacuum state [9,10], which—unlike a pure vacuum
state—contains real photons [11].

To date, several experimental schemes to observe the DCE
have been proposed [12–18], but only a few have succeeded
[19,20]. The main limitation is because a non-negligible pho-
ton production can only be attained when the mirror’s speed be-
comes comparable to the speed of light. Consequently, obser-
vations of DCE’s represent a very challenging task. Clearly, of
importance will be to identify equivalent systems upon which
nonadiabatic changes of boundary conditions can be mapped
to other physical variables. For instance, in Refs. [19,20], the
equivalent action of a quickly moving mirror is mimicked
by an inductance variation of a superconducting quantum
interference device (SQUID) controlled by a quickly oscil-
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lating magnetic flux. Unlike actual mirrors, the inductance of
a SQUID can be driven at high frequencies (>10 GHZ), which
enables an experimentally detectable photon production.

In this paper, we put forward an experimental setup, based
on a semi-infinite waveguide array, in which the propagation
of classical light emulates the generation of photons from
the quantum vacuum of a single-mode tunable cavity. Using
such waveguide configurations, we are able to emulate and
explore the dynamics of photon generation as a function
of the ratio between the fundamental cavity mode and the
driving frequency. Interestingly, through this optical analog,
we find a threshold at which the exponentially increasing
photon production abruptly drops down. This effect occurs
due to the emergence of Bloch-like oscillations that produce
strong localization of the initial vacuum state and prevents
the generation of photons. In order to break such localization
and enhance the photon generation, we propose a dephasing
mechanism based on dynamic disorder or noise. Finally,
we explore the effects of finite temperature on the photon
production and provide a proposal for its implementation.

II. DYNAMICAL CASIMIR EFFECT

We start by considering the effective quantum Hamiltonian
describing the dynamics of the electromagnetic field contained
in an ideal one-dimensional cavity with a movable mirror,
whose position is described by the function q(t) [21,22]:

Heff(t) =
∑
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ωk(t)a†

kak + iχk(t)
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k

)}

+
∑

k,j,k �=j

i

2
μkj (t){a†

ka
†
j + a

†
kaj − ajak − a

†
j ak},

(1)

where ak and a
†
k are the bosonic operators for the kth

field, ωk(t) = kπ/q(t) is the instantaneous cavity frequency,
χk(t) = ω̇k(t)[4ωk(t)]−1 is an squeezing coefficient that
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FIG. 1. (a) Schematic representation of a nonstationary optical
cavity, in which the dynamical Casimir effect is manifested. (b) Pro-
posed semi-infinite squeezed-like waveguide array for the simulation
of photon production from vacuum.

multiplies terms that create photon pairs from vacuum, and
μkj (t) = (−1)k+j 2k

√
kj q̇(t)[(j 2 − k2)q(t)]−1 represents the

intermode interaction. Here the dot stands for the time
derivative, and we have set h̄ = c = 1 along with the dielectric
permittivity.

To the best of our knowledge, there is no general analyt-
ical solution to the corresponding Schrödinger equation for
arbitrary q(t) in the above Hamiltonian. As a result, one
must perform several approximations to derive a solution.
For instance, in Ref. [23], the authors report approximated
solutions describing photon generation in cavities endowed
with a movable mirror obeying sinusoidal trajectories and a
resonance condition, where the mirror’s frequency is twice
the frequency of some unperturbed cavity mode. In this
scenario, the photon generation rate in the fundamental cavity
mode rapidly reaches a constant value while the total number
of created photons in all modes Ntot = ∑∞

n=1 Nn increases
quadratically with time [6], where Nn is the average photon
number in the nth mode.

In what follows, we consider a single-mode cavity [see
Fig. 1(a)] such that the intermode interaction term in Eq. (1)
vanishes [3]. In this regime, the system is governed by
an effective Hamiltonian of the form Heff(t) ≈ ω(t)a†a +
iχ (t)(a†2 − a2). Furthermore, we assume a harmonic time-
dependent frequency ω(t) = ω0[1 + ε sin(νt)], where ω0 is the
fundamental mode frequency and ε and ν are the amplitude
and frequency of modulation, respectively. Typically, the
amplitude satisfies the condition ε � 1, so the squeezing
parameter can be approximated as χ (t) � (εν/4) cos(νt) and
the cavity frequency becomes ω(t) � ω0 [24].

To explore the dynamics of the system in a general, off-
resonance regime we take ν = 2ω0 + K , with K representing
a small frequency shift. This allows us to perform the unitary
transformation T1 = exp(−iνta†a/2) and switch to the quasi-
interaction picture HI = −Ka†a/2 + iχ (t)[a†2 exp (itν) −
a2 exp (−itν)]. After applying the rotating-wave approxi-
mation, we obtain the time-independent Hamiltonian [24]:

H = (iεω0/4)(a†2 − a2) − Ka†a/2. Then, we move to a
π/4 rotated frame generated by the transformation T2 =
exp(−iπa†a/4), which yields

H = −(εω0/4)(a†2 + a2) − (K/2)a†a. (2)

Equation (2) represents the simplest effective Hamiltonian
for which the photon production in the DCE can exhibit a
threshold due to the off-resonance condition provided by the
K frequency shift. Now, by inserting H into the Schrödinger
equation, i d

dt
|�(t)〉 = H|�(t)〉, and expanding the state vector

|�(t)〉 in terms of Fock states, |�(t)〉 = ∑∞
m=0 Am(t)|m〉, we

obtain an infinite set of coupled differential equations for the
transition probability amplitudes Am(t):

iȦm(t) + λmAm−2(t) + λm+2Am+2(t) + KmAm(t)/2 = 0,

(3)

where λm = (εω0/4)
√

m(m − 1). The solution of Eq. (3) is
given by the matrix elements 〈m|U (t)|�(0)〉 = Am(t), where
U (t) = exp (−iHt) and |�(0)〉 is an initial pure state. To
compute U (t), it is convenient to disentangle the exponential
operator exp (−iHt). To do so, we introduce the operators
L+ = a†2/2, L− = a2/2, and L0 = a†a/2 + 1/4. Then, by
computing the commutators [L−,L+] = 2L0 and [L0,L±] =
±L±, we see that they close an algebra. Consequently, we
can split the evolution operator, up to a global phase e−iKt/4,
as [25] U (t) = β

1/4
0 exp (βa†2) exp (a†a ln β0) exp (βa2), with

β = iβ
1/2
0 (1/2η) sinh (ηεω0t/2), η =

√
1 − (K/εω0)2, and

β0 = [cosh (ηεω0t/2) − i(K/εω0η) sinh (ηεω0t/2)]−2. Once
we have written the evolution operator as a product of
exponentials, we can readily evaluate its action over any initial
state.

To estimate the photon production (average photon number)
from vacuum, we compute the expectation value 〈a†a〉0 =∑∞

m=0 m|Am(t)|2 = 〈0|U †(t)a†aU (t)|0〉 = −4β2β−1
0 , which

yields the closed-form expression [26]

〈a†a〉0 = sinh2(ηεω0t/2)/η2. (4)

Interestingly, Eq. (4) exhibits three regimes depending on
whether the ratio K/εω0 is less, greater, or equal to one.
In the case where K/εω0 < 1, the photon generation grows
exponentially. This is a pure manifestation of the quantum
vacuum fluctuation amplification, which in the particular case
of K = 0 yields the well-known expression 〈a†a〉0|K=0 =
sinh2 (εω0t/2) [13,23]. In contrast, for K/εω0 > 1, the pho-
ton production becomes oscillatory, vanishing at εω0t/2 =
nπ/

√
(K/εω0)2 − 1, with n ∈ N. Third, at K/εω0 = 1 the

photon production is quadratic 〈a†a〉0 = (εω0t/2)2, indicating
a threshold between the exponential and the oscillatory
behavior. Figure 2 shows a landscape of the photon pro-
duction 〈a†a〉0 evaluated in the three different regions. The
threshold is marked by a dashed line that separates the
exponential from the oscillatory behavior. To understand
these effects, we explore the spectrum of the system. In
particular, for K/εω0 > 1, we see that H can be diago-
nalized using the transformation S(r) = exp[r(a†2 − a2)/2],
with r = 1

4 ln [(K − εω0)/(K + εω0)]. Hence, the transfor-

mation 2S†(r)HS(r) = −εω0

√
(K/εω0)2 − 1(a†a + 1/2) +

K/2 clearly indicates an equally spaced spectrum. This implies
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FIG. 2. Photon generation from the vacuum state, 〈a†a〉0, pro-
duced by a vibrating cavity. The dashed line indicates the threshold
of the system that separates the exponential photon growth (above)
from the oscillatory behavior (below). Solid lines show the values
where the photon production vanish.

that any initial state is expected to undergo periodic revivals
at particular instants given by the zeros of the function
describing the photon production (average photon number).
As depicted in Fig. 2, the zeros are elucidated by the gaps
(dark areas). On the other hand, for K/εω0 < 1 the system
exhibits a continuous spectrum which results in a significant
photon production. Finally, at the threshold, all the eigenvalues
coalesce.

III. SIMULATION OF DCE IN PHOTONIC LATTICES

To translate concepts of the DCE to the optical domain,
we map the matrix elements of the H operator over the in-
terchannel couplings and propagation constants of engineered
waveguide arrays; see Fig. 1(b). Within the nearest-neighbor
regime, the normalized mode field amplitudes {En(z)}∞n=0 are
governed by the set of equations [27–30]:

idEn(z)/dz + CnEn−1(z) + Cn+1En+1(z) + αnEn(z) = 0, (5)

where z represents the propagation distance. To establish a
one-to-one connection between the field amplitudes in the
waveguide system, Eq. (5), and the probability amplitudes
described by Eq. (3), we define the coupling coefficients to
be Cn = C1

√
2n(2n − 1), for n � 0, where C1 stands for the

coupling between the zeroth and first waveguide. Moreover,
the site energies αn correspond to the waveguide propaga-
tion constants obeying a transverse ramped refractive index
[31–36]. Notice that in a real waveguide array, the evanescent
coupling between sites n and n − 1, separated by a distance dn,
is given by Cn = C1 exp[−(dn − d1)/s], with d1 and s being
parameters of C1 that depend on the waveguide width and the
associated optical wavelength [30,37].

For the system considered here, the full state-space repre-
sentation is the harmonic oscillator space divided into even
and odd subspaces. However, due to the quadratic nature of
H, the equations of motion for the system only connect states
with the same parity. Since we are interested in the evolution

of the system prepared in the vacuum state (an even state),
the waveguide array shown in Fig. 1(b) is the proper one to
simulate the dynamics of the DCE, provided that C1 → εω0/4
and α → K/2, with z playing the role of time. Under these
premises, Eq. (5) and the even terms of Eq. (3) are equivalent.
Conversely, to simulate the odd terms of Eq. (3), one would
require an independent photonic lattice. Indeed, the full system
could be simulated by designing both arrays, one on top
of the other, with a sufficient separation to neglect possible
interactions between them [28].

To perform the DCE’s photonic simulation, we excite
the first waveguide (|0〉 state). Accordingly, the field ampli-
tude at site m, Em(z), can be obtained by writing Em(z) =
〈2m|U (z)|0〉. One can then find that the intensity at the mth
waveguide is

Im(z) = |Em(z)|2 = (2m)!

(2mm!)2

〈a†a〉m0
(1 + 〈a†a〉0)m+ 1

2

, (6)

which resembles the probability distribution for a thermal state.
In this optical context, the photon production 〈a†a〉0 can be
expressed as 〈a†a〉0 = sinh2 (2C1zηx)η−2

x , with η2
x = 1 − x2

and x = α/2C1. Alternatively, one can write the photon
production in terms of the intensity at the mth waveguide as
〈a†a〉clas

0 = 2
∑N

m=0 mIm(z). This last expression constitutes
the classical analog of photon generation from the vacuum
state at a distance z, where the factor 2 comes from considering
only the even states, and N is the maximum number of
waveguides.

Figure 3 shows the intensity distributions Im(z) for two
waveguide arrays—designed using realistic experimental pa-
rameters [31,38]—above and below the threshold. For x < 1

FIG. 3. Light propagation in the waveguide array depicted in
Fig. 1(b), as a function of the scaled propagation distance Z (see main
text for details), when the first site (vacuum state) is initially excited;
ramping constant α = 0.5 cm−1. (a) Extended propagation of the
initial excitation (metal phase) with C1 = 0.26 cm−1. (b) Localization
of the excitation (insulator phase) with C1 = 0.2 cm−1.
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[Fig. 3(a)], the propagation of the initial excitation, as a
function of the scaled distance Z = 2C1z, shows a rapid
delocalization throughout the array. In contrast, for x >

1 [Fig. 3(b)] the system spectrum forms a Wannier-Stark
ladder [38], causing spatial mode localization, giving rise
to Bloch-like revivals at Zrev = nπ/

√
x2 − 1. Indeed, such

localization effects can be understood by noticing that the
condition x > 1 implies that α > 2C1. Physically, this entails
that the transition amplitudes propagate under the influence
of a ramping potential, sloped by the parameter α, which
produces an equidistant Bloch-like spectrum that ultimately
leads to localization of the vacuum state [39].

Interestingly, the spectral changes between an extended and
localized excitation resemble a kind of metal-insulator phase
transition [28], with a threshold at x = 1. In that sense, Fig. 3(a)
shows the dynamics of the system in the metal phase, while
Fig. 3(b) illustrates the insulator phase. Importantly, it should
be stressed that photons produced in the metallic phase of the
DCE can be easily detected, while their corresponding obser-
vation in the insulator phase is very challenging. Therefore, it
is of interest to envision new approaches that may allow us to
access the insulator phase of the DCE.

IV. ENHANCING PHOTON PRODUCTION
THROUGH NOISE

As discussed above, when the DCE system is at the
insulator phase, the initial excitation remains localized around
the first waveguide, i.e., the vacuum state. This results in a
low photon production that could be measured only at very
specific distances. To overcome this situation, we introduce
a pure-dephasing mechanism, which simulates the effect of a
Markovian environment interacting with the photonic system.
This interaction results in the delocalization of the excitation,
thus leading to an enhancement of photon production, a
phenomenon called environment-assisted quantum transport
[40–46]. Indeed, to implement such mechanism in a waveguide
array, one needs to include Gaussian fluctuations in the
propagation constant of individual waveguides. This can be
experimentally implemented by randomly changing the speed
at which each waveguide is inscribed; see Refs. [47,48] for
details on the fabrication of such system. Remarkably, in the
context of a non-stationary cavity field mode, this phenomenon
could be observed by adding stochastic fluctuations to the
frequency shift K .

Under different considerations over the random fluctua-
tions, it entails to consider a pure-dephasing process for the
field density operator ρ [40,49,50]. Thus, we can study the
action on ρ of the generator D[x] defined in the Lindblad form
as D[x]ρ = xρx† − (x†xρ + ρx†x)/2, for which the master
equation to solve takes the form ρ̇ = −i[H,ρ] + γD[a†a]ρ,
where γ is the dephasing rate. By inspecting the term
〈n|D[a†a]ρ|m〉 = −(n − m)2ρn,m/2, we can see that only
the nondiagonal elements of the density matrix are directly
affected by the random fluctuations, a footprint of the pure-
dephasing process.

We now compute the average value of the number and
quadratic field operators. From the master equation, one can
obtain the corresponding equations of motion: d〈a†a〉/dτ =
i(〈a†2〉 − 〈a2〉), d〈a2〉/dτ = 2K̃γ 〈a2〉 + i(2〈a†a〉 + 1),

FIG. 4. (a) Enhancement of photon generation as a function of the
scaled dephasing rate, 2γ /εω0, at three revival times. (b) Evolution of
the diagonal elements of the system’s density matrix with 2γ /εω0 =
0.04.

and d〈a†2〉/dτ = d〈a2〉∗/dτ , where τ = εω0t/2 and
K̃γ = iK/εω0 − 2γ /εω0. By considering the initial
conditions 〈a†a〉|τ=0 = 〈a2〉|τ=0 = 〈a†2〉|τ=0 = 0, we have
numerically solved the above equations of motion using the
QUTIP package [51].

Figure 4(a) shows the photon production 〈a†a〉 as a function
of the dephasing rate when the system is in the insulator phase
(Bloch oscillator phase) at the specific time where, in the
absence of dephasing, the photon production is minimum (that
is, at the Bloch period). For the case when the dephasing is
weak, or simply absent, the refractive index of the waveguides
are essentially unaffected and Bloch-like oscillations occur.
However, by moderately increasing the dephasing rate, one
can see that the Bloch-like oscillations cease to exist, Fig. 4(b),
resulting in the enhancement of the photon production rate. The
mechanism behind such photon enhancement is that moderate
dephasing breaks the regular equidistant eigenspectrum and
as a result it prevents the manifestation of Bloch oscillations.
To better illustrate the effects of dephasing, in Fig. 4(b)
we monitor the diagonal elements of the density matrix,
〈2n|ρ|2n〉, as a function of time. Owing to the interaction of
the system with an environment, the delocalization from the
first site is broken, thus inducing a larger contribution to the
photon generation. Notice that delocalization is more dramatic
at the Bloch-like revival regions, that is, in points where the
photon production is zero in the absence of dephasing. Finally,
for strong dephasing rates, cross-interference terms between
different sites are completely erased and the state of pure
diffusive propagation—where the probability of the excitation
to remain in its initial state is maximum—is reached [52].
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V. DCE AT FINITE TEMPERATURE

Another mechanism for the enhancement of photon production
considers thermal effects on the creation of photons. To include
thermal effects in our system, we make use of the Hamiltonian
in Eq. (2) to write the average photon number evolution for
an initial thermal field ρth(0) = ∑∞

n=0 Pn|n〉〈n|, where Pn =
n̄n

th/(1 + n̄th)n+1, and n̄th = 1/( exp (h̄ω/kBT ) − 1),

〈a†a〉th =
∑∞

n=0
Pn〈a†a〉n = (1 + 2n̄th)〈a†a〉0 + n̄th. (7)

Here 〈a†a〉n = 〈n|U †(z)a†aU (z)|n〉 = (1 + 2n)〈a†a〉0 + n

stands for the photon production from an initial Fock state
|n〉. Notice that Eq. (7) predicts an enhancement of photon
production that depends on the average photon number of the
thermal field. In the photonic context, a thermal field could
be designed by making use of an independent disordered
waveguide array, where an initially injected coherent state
is thermalized [53]. Because the implementation of both
systems relies on the same integrated-optics technology, they
could be designed in tandem, so the losses in the coupling of
the thermal state to our proposed system would be negligible.

VI. CONCLUSIONS

In this work we have proposed a photonic system for
the classical simulation of the dynamical Casimir effect.
We showed that photon generation from the vacuum state
may exhibit a transition from an exponential growth to an
oscillatory behavior, thus resembling a metal-insulator phase
transition. Furthermore, we found that the insulator phase
appears as a result of the Bloch-like oscillations in the

dynamics of the system. This causes a strong localization of
the initial excitation in the first waveguide, leading to a poor
contribution to the Casimir-like radiation. To overcome this
situation, we discussed two possible solutions. First, we made
use of a dephasing mechanism in which the coherent evolution
of the system is broken by means of its interaction with a
Markovian environment. The reduced coherence of the system
causes a delocalization of the excitation, thus increasing the
photon production by up to two orders of magnitude in the
first Bloch-like revival. In the second mechanism, based on
considering thermal effects in the DCE, we showed that in
this case the photon production is enhanced by a factor that
depends on the average photon number of the thermal field
that is initially injected in the system. Finally, we would like
to point out that DCE modifications due to Kerr nonlinearities,
recently predicted in Ref. [9], could also be tested in our
proposed photonic system by changing the linear refractive
index profile to a quadratic one.
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