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Bayesian view of single-qubit clocks, and an energy versus accuracy tradeoff
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We bring a Bayesian approach to the analysis of clocks. Using exponential distributions as priors for clocks,
we analyze how well one can keep time with a single qubit freely precessing under a magnetic field. We find
that, at least with a single qubit, quantum mechanics does not allow exact timekeeping, in contrast to classical
mechanics, which does. We find the design of the single-qubit clock that leads to maximum accuracy. Further, we
find an energy versus accuracy tradeoff—the energy cost is at least kBT times the improvement in accuracy as
measured by the entropy reduction in going from the prior distribution to the posterior distribution. We propose
a physical realization of the single-qubit clock using charge transport across a capacitively coupled quantum dot.
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I. INTRODUCTION

A clock is a device that couples a periodic or approximately
periodic motion to a counter that increments upon “ticks” of
the periodic motion. Classical mechanics allows harnessing
periodic motion from a simple harmonic oscillator [1] to
build perfectly accurate clocks, at least in principle and in
the absence of noise. Do the laws of quantum mechanics
allow clocks with perfect inter-tick durations? One difficulty
manifests immediately. Though a quantum system may display
periodic motion, quantum measurement only provides partial
information about the full quantum state. The first question we
address here is the following: what are the limits to accuracy
of intertick durations for resource-limited quantum systems?

In classical mechanics, in the absence of noise, clocks need
not dissipate any energy. The rotation of the earth may be set
forward as an example that comes very close to this ideal. In
practice, man-made clocks require energy: wall clocks run on
batteries; mechanical pendulum clocks and watches run down
and need to be wound up. Do the laws of quantum mechanics
require clocks to be dissipating? This is the second question
we address.

We make a step towards addressing these questions by
describing clocks as information processing devices that
employ Bayesian inference, and use this framework to analyze
the case of a clock constructed from a single qubit.

Our approach in Sec. II brings to the fore the role of informa-
tion processing in the keeping of time. In Sec. II A, we connect
the problem of timekeeping to Bayesian inference. In Sec. II B,
we describe the time between ticks in the language of random
variables, and argue for treating exponential random variables
as free resources, and hence as reasonable Bayesian priors.

The minimal example of periodic motion in quantum
mechanics is a precessing spin modeled by a single qubit.
We show in Sec. III how to construct the most accurate
clock possible given the resource constraint of a single
precessing spin and a process that generates events with
exponential interarrival times. Our results show that within
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these resource constraints quantum mechanics does not allow
perfectly accurate timekeeping.

We show in Sec. IV that there is an energy versus accuracy
tradeoff for keeping time with a single qubit. The smaller the
desired spread of uncertainty around the time of a tick, the
greater the amount of energy required. Specifically we prove
in Theorem 1 that the amount of energy required is at least kBT

times the accuracy gain as measured by reduction in entropy
of the intertick distribution.

Our results encourage us to speculate on two principles
for quantum timekeeping. First, our results of Sec. III lead us
to speculate that resource-constrained quantum systems may
not allow perfect timekeeping. Second, Theorem 1 leads us to
speculate that there may be an energy versus accuracy tradeoff
for timekeeping which manifests in a form reminiscent of the
Szilard-Landauer principle (Sec. IV), except that the relevant
entropy is defined on the time variable.

In Sec. V, we suggest a physical implementation of
our proposal via a charge transport setup involving two
capacitively coupled quantum dots in an attempt to outline
a scheme for estimating tunneling times.

II. AN INFORMATION PROCESSING VIEW OF CLOCKS

A. Bayesian inference

There is an apparent paradox at the heart of timekeeping.
Two readings of a clock face inform us of the duration of time
only up to a periodic factor, yet we are never confused about
the actual time elapsed. Consider this thought experiment. We
make two observations on a typical wall clock with markings
from 1 to 12 that is assumed to be functioning correctly. The
first observation reports the hour hand on 7 and the minute
hand on zero, and the second observation (1 h later) reports
the hour hand on 8 and the minute hand on zero. According to
this clock, going strictly by the observation, the time elapsed
equals 12n + 1 h where n is a natural number. The natural
number n has to be determined using means external to the
clock. In practice, we are not often confused about the value
of n, and can confidently assert that 1 h has elapsed between
the two observations. Why is this so? Where did we get the side
information that allows us to confidently assert that n = 0?
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The answer is that we have an a priori sense of the passage
of time, which comes from observing various events or “ticks”
that are constantly happening around us. Observation of the
clock face allows us to refine this prior and infer how much
time has elapsed. In this view of timekeeping, clocks refine
our a priori notion of time. A clock is then fully described by
specifying the prior notion of time, as well as a new observation
that allows us to update this prior notion of time, and a counter
to accumulate successive estimates of time elapsed. We thus
sidestep the question “what is a clock,” and focus on the
question of improving a given clock with the help of side
information.

The Bayesian approach to modeling uncertainty is to
introduce probability distributions. We will describe our prior
notion of time by means of a random variable T taking values
in the positive reals, for example representing the time that
elapses between consecutive observations of a clock. Just
before we make a new observation, we are uncertain about
exactly what the time is, with the uncertainty described by the
spread of the distribution of T . For example, in our thought
experiment, T represents our uncertainty about the time at
the second instant when we decided to look at the clock, just
before we noted the hour hand on 8 and the minute hand on
zero. We do not know that exactly 1 h has elapsed, but it is
likely that most of the probability is concentrated around the
1-h mark, and very little probability is around 12n + 1 h for
larger values of n. This is the side information we are using to
decide that n = 0 with high probability.

The physical experiment that we perform to refine our
notion of time—for example, reading the face of the clock—
gives us a finite number of outcomes. Let S be a random
variable taking values in a finite set. Suppose we get to observe
S, and find that the event S = s is true. We have obtained some
information about the random variable T from the correlation
between the random variables T and S. The random variable
Ts := T |(S = s) is obtained from T by conditioning on this
information. For an interval I ⊆ R�0, the posterior probability
Pr[Ts ∈ I ] = Pr[T ∈ I |S = s] is computed by Bayes’s law:

Pr[T ∈ I |S = s] = Pr[S = s|T ∈ I ] Pr[T ∈ I ]

Pr[S = s]
. (1)

B. Clocks as random variables

Consider a random variable T that takes values in R�0

and has expected value E[T ] = 1/λ. The best such random
variable for accuracy of timekeeping is a delta distribution
δ1/λ, because this corresponds to complete certainty. The
worst such random variable for accuracy of timekeeping is
the one with a distribution as spread out as possible. If
we use differential entropy to measure the amount that the
probability density f (t) = Pr[T ∈ (t,t + dt)] is spread out,
we need to find the random variable T ∗ that maximizes the
differential entropy h[T ] = − ∫ ∞

t=1 f (t) ln f (t)dt subject to the
constraint that E[T ] = 1/λ, where ln x denotes the natural
logarithm of x. It is well known that the unique solution to this
maximum entropy problem is the exponential distribution T ∗
which obeys Pr[T ∗ > t] = e−λt and has probability density
Pr[T ∈ (t,t + dt)] = λe−λtdt .

In our resource-theoretic treatment of clocks, we will treat
exponential random variables as free resources, since they
correspond to the weakest assumption we can make on our
prior sense of time. This is reminiscent of the heat bath which
is a free resource in thermodynamics, and is modeled by an
exponential distribution (the Gibbs distribution), and is in the
spirit of the MaxEnt philosophy [2].

Apart from the differential entropy, we will find it useful to
introduce another metric to report on the spread of a probability
distribution. For random variables T taking values in the
positive reals, we define the quality factor Q[T ] as

Q[T ] = E[T ]√
E[T 2] − (E[T ])2

.

A higher quality factor would imply a narrower distribution
and thus a higher probability for the outcome of the random
variable to be close to the mean. The quality factor is a
dimensionless quantity. In particular, it is invariant to change of
the units by which we measure time. For exponential random
variables T the quality factor is Q[T ] = 1. If T1,T2, . . . ,Tn

are n independent identically distributed exponential random
variables, then their sum T = T1 + T2 + . . . Tn has quality
factor

√
n.

Thus one way to obtain accurate timekeeping is by keeping
count of events with independent and identically distributed
interarrival times, and declaring n events to be one tick. This
is the idea behind water clocks. Though the duration for each
single drop to fall is highly random, the duration for the entire
vessel to be emptied has a much higher quality factor. Another
way is to couple the random variable T to some periodic
motion, which we explore in the next section.

III. THE SINGLE-QUBIT CLOCK

Given a prior sense of time, we want to couple it with some
physical experiment that will refine our estimate of time. It is
natural to consider an experiment corresponding to a physical
system that is undergoing periodic motion, so that we can
exploit the periodicity to get an accurate time estimate.

A minimal example of periodic motion in quantum me-
chanics is a spin freely precessing around an axis, described
by a single qubit evolving with respect to a time-invariant
Hamiltonian. Another motivation for considering a single-
qubit system is the hope that general quantum clock systems
can be described in terms of multiple qubits, so the current
analysis may serve as a building block.

Given an arbitrary time-invariant Hamiltonian acting on
a single qubit, let us call its ground state |0〉 and its other
eigenstate |1〉, so that, without loss of generality,

Ĥ = h̄ω

2
|1〉〈1| − h̄ω

2
|0〉〈0|, (2)

where h̄ is the reduced Planck’s constant. The qubit’s unitary
evolution can be visualized along the Bloch sphere [3] (Fig. 4).
The point (θ,φ) corresponds to the state |ψ〉 = cos(θ/2)|0〉 +
eiφ sin(θ/2). Through evolution, the angle θ remains constant,
so that the circles of latitude are invariants of motion. The
Bloch sphere “spins” anticlockwise around the z axis with an
angular velocity of ω.
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Imagine an event with exponentially distributed interarrival
times, with each arrival of the event perfectly coupled to a
projective measurement of the qubit. For example, whenever
a radioactive decay occurs, the spin gets measured. The
coupling between the spin measurement and the event may be
achieved via electrostatic coupling, exchange interaction, or
any other mechanism dictated by the coupling Hamiltonian,
the details of which need to be carefully considered while
designing a physical apparatus. Assume that these interactions
are “instantaneous” and ideal, resulting in a simultaneous
measurement of the qubit state when the event triggers.

Our first task is to infer the time as best we can, from the
observation of the measurement outcome. Our next task is to
figure out how to tune the angular velocity ω, the arrival rate
λ of the exponential process, the initial position of the qubit,
and the measurement axis for the projective measurement to
get the best clock possible with a single qubit coupled to an
exponential random variable via a projective measurement. In
Sec. III A, we will analyze a special case where the precessing
spin is on the equator of the Bloch sphere, and the projective
measurement states are also on the equator of the Bloch sphere.
In Sec. III B, we will argue that our solution to this special case
is, in fact, the optimal clock possible.

A. Equatorially precessing qubit

Suppose the precessing spin starts on the equator of the
Bloch sphere (Fig. 1) so the state is |ψ(0)〉 = 1√

2
(|0〉 + eiφ|1〉).

Then the qubit’s state at time t is given by

|ψ(t)〉 = e−iĤ t/h̄|ψ(0)〉
= 1√

2
(e−iωt/2|0〉 + ei(ωt/2+φ)|1〉). (3)

Suppose after an unknown passage of time t the qubit were
measured by orthogonal projection to states |+〉 = 1√

2
(|0〉 +

|1〉) and |−〉 = 1√
2
(|0〉 − |1〉). Then, according to the Born

rule, the outcome of this measurement will be a spin random

FIG. 1. A spin precesses with angular velocity ω on the equator
of the Bloch sphere. Arrival of the exponential random variable with
rate λ triggers a projective measurement in the {|+〉,|−〉} basis. The
time reported depends on the measurement outcome.

variable S(ωt) taking values “+” and “−” with

Pr[S(ωt) = +] = cos2 φ + ωt

2
,

Pr[S(ωt) = −] = sin2 φ + ωt

2
.

Our task is to infer the time t from the observation of S(ωt).
Let T be an exponential random variable with rate λ. If T

triggers the measurement of the spin then we want to consider
the distribution of the random variable S(ωT ):

Pr[S(ωT ) = +] =
∫ ∞

t=0
λe−λt Pr[S(ωt) = +]dt

=
[

1

2
+ cos φ − (ω/λ) sin φ

2[1 + (ω/λ)2]

]
, (4)

Pr[S(ωT ) = −] =
[

1

2
− cos φ − (ω/λ) sin φ

2[1 + (ω/λ)2]

]
. (5)

Let T+ = [T |S(ωT ) = +] be the poste-
rior random variable upon measurement of
spin “+′′, and let T− = [T |S(ωT ) = −] be the posterior
random variable upon measurement of spin “−′′. Immediately
after the measurement, the state of the qubit has collapsed
to either |+〉 or |−〉. The qubit evolves under the unitary
dynamics of its Hamiltonian until the next event occurs with
an exponential waiting time. Upon the occurrence of this
event, the qubit is again measured, but now with respect to
a new “rotated” basis {|+′〉,|−′〉} which is at an angle φ

clockwise to the previous measurement basis. This is how
successive ticks are obtained. After n measurements, if “+′′
was the measurement outcome a total of n+ times, and “−′′
was the measurement outcome a total of n − n+ = n− times,
then we declare the time to be n+E[T+] + n−E[T−].

We define the expected quality factor as

Q[T |S(ωT )] = Pr[S(ωT ) = +] Q[T+]

+ Pr[S(ωT ) = −] Q[T−]. (6)

Note that Q[T |S(ωT )] is periodic in φ with a fundamental
period of π . This is because changing φ by π is equivalent to
interchanging |+〉 with |−〉. But since the choice of calling one
of the basis vectors |+〉 and the other |−〉 was purely arbitrary,
they cannot affect any aspect of physical reality, and hence
all the metrics that we extract from this experiment would
essentially remain the same.

By Bayesian inference (1), the densities of T+ and T− are
(Fig. 2)

Pr[T+ ∈ (t,t + dt)] = 2(1 + (ω/λ)2)λe−λt cos2 φ+ωt

2 dt

1 + (ω/λ)2 + cos φ − (ω/λ) sin φ
,

Pr[T− ∈ (t,t + dt)] = 2(1 + (ω/λ)2)λe−λt sin2 φ+ωt

2 dt

1 + (ω/λ)2 − cos φ + (ω/λ) sin φ
.

The expected quality factor Q[T |S(ωT )] is a function
of the ratio ω/λ and φ. Figure 3 shows an intensity plot
of Q[T |S(ωT )] as a function of ω/λ and φ. The quality
factor attains a maximum value of 1.2184 at ω/λ = 0.80654
and φ = 0.246576. This is an improvement over the quality
factor Q[T ] = 1 for the exponential random variable T .
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FIG. 2. Probability density functions for the prior T and the two
posteriors T+ and T− at ω/λ = 0.80654 and φ = 0.246576. The time
axis has the units of 1

λ
, and the distributions are plotted by setting λ

to unity. The declared time for a measurement “−′′ is the mean of T−,
which is significantly different from the mean of T .

In the next subsection, we argue that this is the best quality
factor attainable, even when a more general initial state and
measurement basis are considered.

B. General single-qubit clock

The qubit starts in a general initial state |θ0,φ0〉, which
in the computational basis is cos(θ0/2)|0〉 + sin(θ0/2)eiφ0 |1〉.
Through time it traces a circle of latitude on the Bloch sphere

FIG. 3. Intensity plot of expected quality factor Q[T |S(ωT )]
shows the maximum at ω/λ = 0.81,φ = 0.24.

(Fig. 4). The state at time t is given by

|ψ(t)〉 = cos(θ0/2)e−iωt/2|0〉 + sin(θ0/2)ei(ωt/2+φ0)|1〉.
We denote the measurement basis by the antipodal points
on the Bloch sphere |θm,φm〉 and |π − θm,π + φm〉. The
probabilities now are

Pr[S(ωt) = +] = | cos(θm/2) cos(θ0/2) + sin(θm/2) sin(θ0/2)e−i(φ+ωt)|2, (7)

Pr[S(ωT ) = +] =
∫ ∞

t=0
λe−λtP r[S(ωt) = +]dt

=
[

(1 + (ω/λ)2)[1 + cos(θ0) cos(θm)] + [sin(θ0) sin(θm)][cos(φ) + (ω/λ) sin(φ)]

2[1 + (ω/λ)2]

]
(8)

with φ = φ0 − φm. Maximizing Q[T |S(ωT )] over ω/λ,θ0,θm,
and φ, we find that θ0 = θm = π/2 (see the Appendix for
details). Thus the maximum quality factor attainable in the
most general case with a single qubit can already be obtained
with the system analyzed in the previous section.

Since Bayesian inference makes optimum use of the
information available from coupling the random variables T

and S(ωT ), we conclude that with these resource constraints
no further improvement is possible. In particular, with these
resource constraints, quantum mechanics disallows perfectly
accurate timekeeping.

IV. ENERGY-ACCURACY TRADEOFF

Does it require energy to keep time? Specifically, must it
require more energy to keep time more accurately? We show
in this section that the answer is yes for our system. Further
the excess energy required is lower bounded by kBT times the
improvement in accuracy, where kB is Boltzmann’s constant

and T is temperature. We first describe our metrics for accuracy
and energy.

In this section, we will describe the accuracy of an intertick
duration by its differential entropy. Thus improvement in
accuracy is measured by the decrease in differential entropy.
More precisely, if T is an exponential random variable
of mean 1/λ, a straightforward calculation shows h[T ] =
1 − ln λ. After the spin random variable S(ωT ) is observed,
the conditional differential entropy h[T |S(ωT )] is, by defi-
nition, Pr[S(ωT ) = +] h[T+] + Pr[S(ωT ) = −] h[T−]. The
increase in accuracy is measured by the decrease in entropy
h[T ] − h[T |S(ωT )] caused by observing the coupled spin.

For energy accounting, we focus on the energy required
to measure the spin. Let p = Pr[S(ωT ) = +]. Then the
spin random variable has an entropy H [S(ωT )] = −p ln p −
(1 − p) ln(1 − p). By the Szilard-Landauer principle [4–6],
we declare kBT H [S(ωT )] as the energy cost for the spin
measurement. The dissipation of this energy happens when the
spin collapses from its pure state to the mixed state described
by p |+〉〈+| + (1 − p) |−〉〈−|. Work is done on the system
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FIG. 4. A spin precesses on a circle of latitude making angle θ

with the north pole. Arrival of the rate-λ exponential random variable
triggers a projective measurement in direction (θm,φm). We maximize
the quality factor against φ,φm,θ,θm,ω,λ and find θ = θm = π/2.

when learning the outcome of the measurement, which takes us
from the mixed state to the pure state |+〉 or |−〉 as reported by
the measuring device. Learning the outcome of the measured
spin corresponds to an “erasure” since the entropy of the qubit
must decrease from H [S(ωT )] to zero.

There may be other energy costs to the device apart from the
measurement of the spin. Here we ignore other costs, so that
our metric forms a lower bound on the true energy requirement.
The next theorem states that the energy expenditure is at least
as much as the accuracy improvement.

Theorem 1. H [S(ωT )] � h[T ] − h[T |S(ωT )].
Proof. The measurement of spin can be viewed as a channel

establishing (differential) mutual information I (T ; S(ωT ))
between T and S(ωT ). Expanding I (T ; S(ωT )) two ways,
we get

I [T ; S(ωT )] = H [S(ωT )] − H [S(ωT )|T ]

= h[T ] − h[T |S(ωT )].

To conclude the proof, note that H [S(ωT )|T ] � 0.
This simple theorem has an interesting physical interpreta-

tion. It is well known in thermodynamics that to reduce entropy
in phase space requires work to be done on a system. Theorem
1 suggests that even to reduce entropy along the time axis, i.e.,
when our timekeeping devices are described by time-valued
random variables, there may be a similar principle at work.
In other words, it suggests that entropy over the time variable
also obeys a Szilard-Landauer principle. If such a statement
can be proved in much greater generality, it could lead to a
thermodynamic theory of clocks. It would also be pleasing
from the point of view of relativity theory, which requires
treating space-time together rather than separately.

Taking the thermodynamic analogy further, consider the
efficiency

η := {h[T ] − h[T |S(ωT )]}/H [S(ωT )]

defined as improvement in accuracy per unit energy cost.
Lemma 1. η is a function of ω/λ.
Proof. As in the proof of Theorem 1, we can rewrite η =

{H [S(ωT )] − H [S(ωT )|T ]}/H [S(ωT )]. Now H [S(ωT )] is a

function of Pr[S(ωT ) = +], which is a function of ω/λ and
φ from Eq. (8). It remains to show that H [S(ωT )|T ] is also a
function of ω/λ. For every t ∈ R�0, we have

Pr[S(ωT ) = +|T ∈ (t,t + dt)] = Pr[S(ωt) = +],

Pr[S(ωT ) = −|T ∈ (t,t + dt)] = Pr[S(ωt) = −].

Hence H [S(ωT )|T ] is given by∫ ∞

t=0
{− Pr[S(ωt) = +] ln Pr[S(ωt) = +]

− Pr[S(ωt) = −] ln Pr[S(ωt) = −]}λe−λtdt. (9)

Changing the variable of integration to κ = ωt , we get

H [S(ωT ) |T ] =
∫ ∞

κ=0
{− Pr[S(κ) = +] ln Pr[S(κ) = +]

− Pr[S(κ)=−] ln Pr[S(κ)=−]} λ

ω
e− λ

ω
κdκ,

which is clearly a function of ω/λ since κ disappears after
integration.

Because of Lemma 1, we can study efficiency η as a function
of ω/λ and φ. We obtain a maximum efficiency of η = 0.5103
at ω/λ = 1.701,θ = θm = π/2, and φ = 0.43. In comparison,
if we had operated at the maximum accuracy point by setting
ω/λ = 0.80654 and φ = 0.246576 we would obtain a slightly
lower efficiency of η = 0.49.

V. NANOSCALE CLOCK SETUP

We now propose a possible physical realization of the
single-qubit clock. This is a mesoscopic setup comprising two
capacitively coupled quantum dots labeled QD1 and QD2 as
shown in Fig. 5. A similar setup has been implemented in the
context of charge sensing [7] and single-electron memristors

FIG. 5. Setup for a quantum dot single-qubit clock based on a
capacitively coupled quantum dot pair QD1 and QD2. As per our
proposal, the exponential prior is the tunneling event in QD1 and the
precessing spin is housed inside QD2. Measurement is enabled when
the freely precessing spin inside QD2 is “disturbed” by the tunneling
event in QD1 via the mutual Coulomb repulsion U12. This leads to the
spin in QD2 tunneling into either ferromagnetic contact, respectively,
kept at a chosen quantization axis, leading to the measurement step.
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[8]. The dot QD1 is coupled weakly to a macroscopic reservoir
which we will refer to as the contact. The dot QD2 is coupled to
two ferromagnetic contacts the magnetizations of which point
along the desired measurement axes. We shall now describe
how this setup functions as the clock the goal of which is to
estimate the tunneling time of the electron from the contact
to QD1 conditioned on the measurement of a precessing spin
housed in QD2.

The entire setup at equilibrium is held at a chemical
potential μ0. The tunnel coupling of the dot QD1 to the
reservoir is represented via a rate γD and the tunnel coupling of
the dot QD2 to the two ferromagnetic contacts is represented
via the rates γL and γR . The dot QD2 houses the single
qubit undergoing stable precession until it is “disturbed” by a
tunneling event in QD1. This happens due to the long-range
mutual Coulomb repulsion U12 between the electrons in QD1
and QD2. Due to this, the single-particle energies of either dot
are ε and ε + U12, depending on whether the other dot has an
occupied electron. A very large self-charging energy of either
quantum dot is assumed which prevents further tunneling of
electrons from the reservoir, unless the chemical potential μ0

of the reservoir is raised above the energy that permits double
occupation.

For the dot QD1, the tunneling times between the contact
and the dot are exponentially distributed with a time constant of
γ −1

D . To ensure the sequential nature of the electron tunneling,
which is referred to as the sequential tunneling limit in
mesoscopic physics [7,9,10], the mutual Coulomb interaction
energy U12 should be much larger than both the coupling
energy and the ambient thermal energy, i.e., U12 >> kBT and
h̄γD . An electron tunneling event typically occurs when the
dot ground-state energy ε is positioned below the chemical
potential μ of the reservoir. This positioning may be tuned via
an application of a potential VG at the gate electrode held close
to the dot QD1. We remark that such setups are very common
within current experimental capabilities and are commonly
used in spin based quantum computing [7].

The dot QD2 with the two ferromagnetic contacts in
the lower half of the schematic serves as the measurement
apparatus. Before the tunneling event into QD1 takes place,
the electron in QD2 is stable since its ground-state energy
is lower than the chemical potential of the bottom system.
This electronic qubit is made to precess with the application
of a magnetic field along an appropriate axis [11]. Once the
electron tunnels into QD1, the energy level in QD2 is raised
by an amount equal to U12. If U12 is such that the qubit
energy level floats above the chemical potential in the bottom
half, the precessing electron tunnels into either ferromagnetic
contact. Thus we achieve the desired instantaneous coupling
between the event, namely, the tunneling process in QD1,
and the measurement in QD2. Care must be taken that the
coupling between QD2 and its reservoirs, γL and γR , is larger
than that of QD1, to ensure the desired sequence of events.
A quantum point contact detector [7] is stationed near each
electrode to “sense” whether an electron tunneled to the left
or the right contact, thereby allowing one to evaluate the
necessary probability distributions required to perform the
Bayesian inference of the tunneling time. Figure 4 depicts a
close-up of the physical axes of precession and measurement,
with the contacts being oriented along the measurement axes.

VI. RELATED WORK

Quantum clocks have been previously studied in a pioneer-
ing paper by Salecker and Wigner [12]. Their system consists
of orthogonal quantum states, one for each digit on a clock face.
A unitary evolution takes the system through this sequence of
orthogonal quantum states. A projective measurement reports
the digit on the clock face as the time. Such clocks were
reviewed by Peres in 1979 [13] where, in addition, he analyzed
the perturbative effect of coupling the clock to a physical
system. The Salecker-Wigner-Peres clock has found many
applications [14–17].

Compared with a two-state version of the Salecker-Wigner
clock, instead of merely returning the digit on the face of
the clock as the time, we employ Bayesian inference to
estimate the posterior distribution, and return its mean as
the right estimator for the time. Our approach clarifies the
uncertainty involved in timekeeping by explicitly treating
timekeeping devices as random variables, and allows analysis
of the uncertainty in our estimate of time. We also introduce
the idea that it may require energy to keep time. However,
we do not consider the perturbative effects that may be
introduced when coupling our clock to a physical system
to make time measurements. In these aspects, our approach
is complementary to the approach of Salecker, Wigner, and
Peres.

Our approach towards the study of clocks is influenced
by the literature on quantum resource theories and quantum
thermodynamics [18–27]. One key idea in this literature
is to consider thermal equilibrium states as free resources.
Analogously, we treat exponential random variables as free
resources. Another idea we have borrowed is that of “one-shot”
processes where thermodynamic questions are examined for
single quantum systems instead of for an entire ensemble.
The quantum resource theory literature treats questions of
reachability and feasibility. Our paper manifests similar ideas
in the form of limits on accuracy given certain amounts of
resources and energy. Our paper can also be viewed in the
spirit of constructor theory [28,29].

Two ideas have emerged from the results in this paper:
perfectly accurate timekeeping may not be possible with
quantum systems, and reducing uncertainty in time may
require energy. Similar ideas have emerged from the work
of Erker [30] through an analysis of quantum hourglasses.
Sels and Wouters [31] have argued that attributing a cost to the
measurement of time will establish a second-law-like result
for unitary dynamics.

VII. CONCLUSIONS AND FUTURE WORK

It will be of interest to test our ideas against more general
quantum clock constructions. We are tempted to speculate
that the following should be a fundamental physical principle:
keeping time more accurately than an exponential random
variable should require energy proportional to the decrease
in entropy from the exponential random variable of the same
mean.

Comparison of our proposal with state-of-the-art metrology
standards such as atomic and optical atomic clocks [32,33]
seems like another fruitful direction for future work.
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Our paper is quantum only to the extent that we have used
the measurement rule of quantum mechanics. Working with
a single qubit allowed us to explore some ideas with explicit
calculations. However, by working only with a single qubit, we
have completely ignored entanglement, which is a key feature
of quantum mechanics. Many new features of quantum clocks
are likely to emerge when one studies larger number of qubits
and entanglement.

Note added. Recently, the work of Ranković et al. [34]
has come to our attention. They have approached the problem
of quantum clocks from a refreshing direction. They have
tackled head-on a question that we have sidestepped: how
does one provide an operational meaning to the accuracy of a
clock, without relying on any outside absolute notion of time?
They do this by defining a clock’s accuracy as the number of
alternate ticks two noncommunicating copies of the clock can
supply to a third party. They have a notion of an ε-continuous

quantum clock which appears closely related to our notion of
exponential priors. By focusing on a single qubit and on certain
simplifying assumptions, we are able to take our analysis to
completion and obtain results about limits for a single qubit.
In contrast, Ranković et al. focus on correctly formulating the
general problem of timekeeping from an operational point of
view. A synthesis of their abstract approach with our concrete
one is likely to be of interest.

APPENDIX

In this Appendix, we will derive the expression for the
expected quality factor for the general single-qubit clock in
Sec. III B. We define the posterior distributions T+, T−, and
Q[T |S(ωT )] analogously to Sec. III A.

The posterior distributions are derived using Bayes’s rule
(1):

Pr[T+ ∈ (t,t + dt)] = 2e−t [1 + (ω/λ)2]|eit(ω/λ)/2 cos(θ0/2) cos(θm/2) + ei(φ−t(ω/λ)/2) sin(θ0/2) sin(θm/2)|2
1 + (ω/λ)2 + [1 + (ω/λ)2] cos θ0 cos θm + cos φ sin θ0 sin θm + (ω/λ) sin φ sin θ0 sin θm

, (A1)

Pr[T− ∈ (t,t + dt)] = 2e−t [1 + (ω/λ)2](1 − |eit(ω/λ)/2 cos(θ0/2) cos(θm/2) + ei{φ−[t(ω/λ)]/2} sin(θ0/2) sin(θm/2)|2)

1 + (ω/λ)2 − [1 + (ω/λ)2] cos θ0 cos θm − cos φ sin θ0 sin θm − (ω/λ) sin φ sin θ0 sin θm

. (A2)

The means of the posterior distributions are then

E[T+] =
∫ ∞

t=0
t Pr[T+ ∈ (t,t + dt)]dt

= 1

λ

[
[1 + (ω/λ)2]2(1 + cos θ0 cos θm) + (sin θ0 sin θm)[cos φ − (ω/λ)2 cos φ + 2(ω/λ) sin φ]

[1 + (ω/λ)2]{[1 + (ω/λ)2](1 + cos θ0 cos θm) + (sin θ0 sin θm)[cos φ + (ω/λ) sin φ]}
]
, (A3)

E[T−] =
∫ ∞

t=0
t Pr[T− ∈ (t,t + dt)]dt

= 1

λ

[
[1 + (ω/λ)2]2(1 − cos θ0 cos θm) − (sin θ0 sin θm)[cos φ − (ω/λ)2 cos φ + 2(ω/λ) sin φ]

[1 + (ω/λ)2]{[1 + (ω/λ)2](1 − cos θ0 cos θm) − (sin θ0 sin θm)[cos φ + (ω/λ) sin φ]}
]
, (A4)

E[T 2
+] =

∫ ∞

t=0
t2 Pr[T+ ∈ (t,t + dt)]dt

= 1

λ2

[
2{[1 + (ω/λ)2]3(1 + cos θ0 cos θm) + (sin θ0 sin θm)[cos φ − 3(ω/λ)2 cos φ + 3(ω/λ) sin φ − (ω/λ)3 sin φ]}

[1 + (ω/λ)2]2{[1 + (ω/λ)2](1 + cos θ0 cos θm) + (sin θ0 sin θm)[cos φ + (ω/λ) sin φ]}
]
,

(A5)

E[T 2
−] =

∫ ∞

t=0
t2 Pr[T− ∈ (t,t + dt)]dt

= 1

λ2

[
2{[1 + (ω/λ)2]3(1 − cos θ0 cos θm) − (sin θ0 sin θm)[cos φ−3(ω/λ)2 cos φ + 3(ω/λ) sin φ − (ω/λ)3 sin φ]}

[1 + (ω/λ)2]2{[1 + (ω/λ)2](1 − cos θ0 cos θm)−(sin θ0 sin θm)[cos φ + (ω/λ) sin φ]}
]
.

(A6)
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The expected quality factor can then be computed from Sec. II B and Eq. (6). Maximizing the expected quality factor as a
function of θ0 and θm leads to the result θ0 = θm = π/2. In this case, the expected quality factor is

1√
2(1 + γ 2)2

⎡
⎣ (1 + γ 2)2 + (−1 + γ 2) cos(φ) − 2γ sin(φ)√

3+6γ 2+9γ 4+8γ 6+2γ 8−4(1+γ 4+2γ 6) cos(φ)+(1−6γ 2+γ 4) cos(2φ)−4(2+γ 2+γ 6)γ sin(φ)+4(1−γ 2)γ sin(2φ)
(1+γ 2)2[−1−γ 2+cos(φ)+γ sin(φ)]2

+ (1 + γ 2)2 − (−1 + γ 2) cos(φ) + 2γ sin(φ)√
3+6γ 2+9γ 4+8γ 6+2γ 8+4(1+γ 4+2γ 6) cos(φ)+(1−6γ 2+γ 4) cos(2φ)+4(2+γ 2+γ 6)γ sin(φ)+4(1−γ 2)γ sin(2φ)

(1+γ 2)2[1+γ 2+cos(φ)+γ sin(φ)]2

⎤
⎦ (A7)

where γ = ω/λ. Similarly, maximizing the efficiency as a function of θ0 and θm leads to θ0 = θm = π/2.
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