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Using transversal gates is a straightforward and efficient technique for fault-tolerant quantum computing. Since
transversal gates alone cannot be computationally universal, they must be combined with other approaches such
as magic state distillation, code switching, or code concatenation to achieve universality. In this paper we propose
an alternative approach for universal fault-tolerant quantum computing, mainly based on the code concatenation
approach proposed in [T. Jochym-O’Connor and R. Laflamme, Phys. Rev. Lett. 112, 010505 (2014)], but in
a nonuniform fashion. The proposed approach is described based on nonuniform concatenation of the 7-qubit
Steane code with the 15-qubit Reed-Muller code, as well as the 5-qubit code with the 15-qubit Reed-Muller
code, which lead to two 49-qubit and 47-qubit codes, respectively. These codes can correct any arbitrary single
physical error with the ability to perform a universal set of fault-tolerant gates, without using magic state
distillation.
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I. INTRODUCTION

Quantum computers harness physical phenomena unique to
quantum mechanics to realize a fundamentally new mode of in-
formation processing [1]. They can overcome the limitations of
classical computers in efficiently solving hard computational
problems for some tasks such as integer factorization [2] and
database search [3].

Unfortunately, quantum computers are highly susceptible to
noise due to decoherence and imperfect quantum operations
that lead to the decay of quantum information [1,4]. Unless
we can successfully mitigate the noise problem, maintaining
large and coherent quantum states for a long enough time
to perform quantum algorithms will not be readily possible.
Quantum error correction codes were developed to address
this problem [5–7]. To do so, data are encoded into a
code and gates are applied directly on the encoded quantum
states without a need to decode the states [1]. The encoded
gates are applied fault-tolerantly in a way that they do not
propagate errors in the circuit. Furthermore, quantum codes
can be concatenated recursively to increase their ability to
correct errors even further. In this way, almost perfectly
reliable quantum computation is possible with polylogarithmic
overhead using noisy physical devices as long as the noise level
is below a threshold value [8].

A straightforward and efficient technique for fault-tolerant
quantum computing is using transversal gates. An encoded
gate which can be implemented in a bitwise fashion is known as
a transversal gate [1]. No quantum code with a universal set of
transversal gates exists [9]. So a common solution for applying
nontransversal gates is by using a special state prepared by
the magic state distillation (MSD) protocol [10]. However,
the overhead of state preparation using MSD remains one
of the drawbacks of this approach [11]. The distillation
overhead scales as O(logγ (εin/εout)), where γ is determined
by the distillation protocol and εin and εout are the input state
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accuracy and desired output accuracy, respectively [12]. There
have been several efforts to reduce the overhead of this scheme
such as [12–14].

A work on universal fault-tolerant quantum computing
without MSD using only one quantum error correcting code
was proposed by Paetznick and Reichardt [15]. In this
approach, all of the gates from the considered universal set,
e.g., {Pauli gates, H,CCZ} were implemented transversally,
where H and CCZ are Hadamard and controlled-controlled-Z,
respectively. However, as applying the transversal H gate
disturbs the code space, additional error correction and
transversal measurements are needed to recover the code space
after the application of this gate.

Recently, similar approaches for universal quantum com-
puting without using MSD have been proposed. These ap-
proaches are based on combining two different codes, say C1

and C2, where each nontransversal gate in C1 has a transversal
implementation on C2 and vice versa. This approach is pursued
in two different ways: (1) by combining C1 and C2 based on
code switching [16–18] and (2) by combining C1 and C2 in
a uniform concatenated fashion [19]. We call a concatenated
code uniform if it uses only one quantum code in each level to
encode all of the qubits of that level.

In the code-switching scheme, since the two selected codes
have different sets of transversal gates, one can implement
a universal set of gates transversally by switching to C2 for
transversal implementation of a gate, which is nontransversal
in C1. However, a fault-tolerant switching circuit is needed,
which imposes an additional cost and thus, in some cases, it
may incur a higher cost compared to MSD [18]. On the other
hand, in the uniform code concatenation method, the logical
information is encoded by C1 where each qubit of C1 is, in
turn, encoded into the code of C2. Therefore, the number of
necessary physical qubits to code the logical information is
relatively large (the product of the number of qubits for the
two codes). For instance, if 7-qubit Steane and 15-qubit Reed-
Muller codes are used a code [[105, 1, 9]] will be produced.
However, the code has the ability to correct only one arbitrary
single error because of the error propagation in a codeword
during T and H implementation, where T = diag(1,e

iπ
4 ).
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Recently, Yoder et al. [20] proposed the pieceable fault-
tolerant concept to provide universal fault-tolerance by de-
veloping nontransversal, yet still fault-tolerant gates. In this
approach a nontransversal circuit is broken into fault-tolerant
pieces and rounds of intermediate error correction is applied
in between to correct errors before they become uncorrectable
by propagating in the circuit.

In this paper, we propose an alternative method for
universal fault-tolerant quantum computing mainly based on
the code concatenation approach proposed in [19], but in a
nonuniform fashion. The proposed method opens a perspective
of code concatenation for universal fault-tolerant computation
by considering the structural details of nontransversal gates
and reduces the overhead of the uniform code concatenation
method proposed by the authors of [19].

II. NONUNIFORM CODE CONCATENATION

The proposed approach is based on the nonuniform code
concatenation of C1 and C2. In this approach, a logical qubit
is encoded using C1 in the first level of the coding hierarchy.
However, in the second level, only some of the C1 qubits
are encoded using C2 depending on the implementation of
the nontransversal gates in C1, as opposed to the method
employed in [19] which encoded all of the C1 qubits using
C2 in the second level of concatenation. The remaining qubits
can be encoded using C1 or kept unchanged. In contrast with
uniform concatenated codes, we call such a code nonuniform,
which uses more than one code in at least one level of its
coding hierarchy. The idea of nonuniform code concatenation
is motivated by the observation that the application of a
nontransversal gate in C1 does not necessarily involve all of
the C1 qubits. Therefore, it is not necessary to encode all of
the C1 qubits using C2. The C1 qubits can be partitioned into
two nonoverlapping sets: the set B1 which contains qubits that
are coupled during the application of a nontransversal gate in
C1 and B2 which contains the uncoupled qubits. Indeed, we
only need to encode qubits of B1 using C2 and can leave the
B2 qubits unchanged. If there is more than one nontransversal
gate in C1, the set B1 will contain the union of all involved
qubits in the implementation of each nontransversal gate.
Figure 1 depicts a schematic overview of the proposed
approach.

C1 and C2 must have the same properties as stated in [19]
for the uniform code concatenation approach: (i) C1 and C2

must have at least a distance of three. (ii) For any logical gate in
the universal gate set with nontransversal implementation on
C1, there must exist an application of this gate using only
gates that are transversal in C2. (iii) The error correction
operations and syndrome measurement on C1 and C2 must be
globally transversal in the concatenated code space. However,
for our method to produce superior results compared to [19],
it is necessary to have |B2| > 0. Fortunately, for a stabilizer
code [[n,1,d]], there is a useful family of gates which can
be implemented by coupling only d qubits of each code
block.

Theorem. For a stabilizer code [[n,1,d]], a logical CkZ(θ )
gate can be implemented nontransversally by coupling only d

qubits of each code block as shown in Fig. 2, where Z(θ ) =
diag(1,eiθ ) and k ∈ {0,1,2, . . .}.
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FIG. 1. The schematic overview of the nonuniform code concate-
nation approach. Logical information is encoded by C1. In the second
level of concatenation each qubit of B1 is, in turn, encoded into the
code of C2 and the B2 qubits are left unchanged without encoding.
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FIG. 2. (a) Staircase of CNOTs. (b) Nontransversal application of
CkZ(θ ) gate for a stabilizer code by involving only d qubits of each
code block, where d is the code distance. SC is an acronym for
staircase of CNOTs and LC is a circuit containing only local Clifford
gates which transform the original logical Z operator into a form
consisting of only Pauli Z’s and I ’s. Note that only the qubits of B1

are shown.
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Proof. When the code distance is d, there is a Pauli operator
in the normalizer of the stabilizer group (that does not belong
to the stabilizer group itself) with weight d, where the weight
of an n-qubit Pauli operator is defined as the number of
its nonidentity members. The d qubits corresponding to the
nonidentity members of this operator are the only qubits that
are coupled during the application of CkZ(θ ) and therefore
belong to B1. For simplicity and without loss of generality, we
suppose that the qubits of B1 are the last qubits of the code
block, as shown in Fig. 1.

The mentioned Pauli operator is a logical operator and can
be thought of as a logical Z gate. This logical Z operator can be
transformed into a form consisting of only Pauli I ’s and Z’s
with positive sign (I⊗n−d ⊗ Z⊗d ) by applying some single-
qubit Clifford gates, namely LC. The application of a staircase
of contolled-NOT (CNOT) gates (SC), on these d qubits (as
shown in Fig. 2), changes the logical Z gate from I⊗n−d ⊗ Z⊗d

to I⊗n−1 ⊗ Z as CNOT maps ZZ to IZ under conjugation.
The ability to perform a logical Z gate by applying a single
physical Z gate on a qubit (for example, the last qubit) implies
that the new logical state |0〉 is an eigenstate of Zn and |1〉 is
an eigenstate of −Zn. Therefore, these new logical states must
have the form |0〉 = |φ0〉|0〉 and |1〉 = |φ1〉|1〉, where |φ0〉 and
|φ1〉 are some (n − 1) qubit stabilizer states. Consequently,
if we apply a phase gate U = Z(θ ) to the last qubit, we
get

|0〉 → |φ0〉(U |0〉) = |φ0〉|0〉 = |0〉,
|1〉 → |φ1〉(U |1〉) = |φ1〉(eiθ |1〉) = eiθ |1〉.

Similarly, if we apply a multiqubit phase gate U = CkZ(θ )
to the last qubit of k + 1 logical qubits, we have

|t〉 →
{|t〉 t ∈ {0,1,2, . . . ,2k+1 − 2}
eiθ |t〉 t = 2k+1 − 1 = 11 . . . 1,

where we use binary notation to denote the k + 1-qubit
state |t〉.

Therefore, the codespace is preserved and a logical U is
implemented. Then, one can simply invert the SC and LC

circuits to take the new logical states back to the original ones.
It is worth noting that while the theorem holds for any

Z rotation, transversal single-qubit Z rotations are restricted
to be inside the Clifford hierarchy for any code, specifically
for C2 [21]. The fault-tolerant application of nontransversal
gates in C1, nontransversal gates in C2, and error correc-
tion procedure in the proposed code are described in the
following.

A. Fault-tolerant implementation of the nontransversal
gates in C1

A single physical error on one of the qubits of B1, occurring
in the nontransversal application of these gates on C1 only
propagates between the qubits of B1, which are themselves
encoded blocks of C2. Since implementations of these gates on
C1 consist of only transversal gates in C2, this single physical
error only propagates to a single physical error in each of the
B1 qubits. As these qubits are encoded using C2, this single
physical error can be corrected by error correction procedure
on C2 code blocks.

A single physical error on the B2 qubits during the
application of these nontransversal gates in C1 does not
propagate to any other qubits of C1 code block and can be
corrected using the error correction procedure on C1.

B. Fault-tolerant implementation of the nontransversal
gates in C2

These gates have transversal implementation on C1 and
therefore, a single physical error on one of the C1 qubits, does
not propagate to any other qubits of C1, during the application
of these gates. However, as they are nontransversal in C2, a
single error on a particular C2 code block (qubits of B1) can
propagate to a noncorrectable set of errors on that code block
which introduces a C2 logical error. However, this error only
leads to a single error on one of the qubits of C1 which can be
corrected using the error correction procedure on C1.

C. Error correction procedure

Regarding the third necessary condition for code concate-
nation, the correction procedure is globally transversal and
therefore fault-tolerant in the concatenated code space. This
feature is essential not only for preventing error propagation
during the error correction procedure, as described in [19],
it also makes the nonuniform code concatenation possible.
Indeed, this feature guarantees that there is no interaction
among qubits of the sets B1 and B2 which are encoded blocks
of different codes during error correction procedure.

Although straight concatenation of the two codes
[[n1,k,d1]] and [[n2,1,d2]] leads to a code [[n1n2,k,d1d2]] [22],
our code concatenation scheme reduces the effective distance
of the concatenated code to achieve universal fault tolerance.
By effective distance we mean the code distance considering
the error propagations that occur during application of the
nontransversal gates.

While the proposed approach is general and can be applied
to any code combination that satisfies the mentioned condi-
tions, in the rest of paper we will focus on the 7-qubit Steane
and 5-qubit quantum error correction codes (the smallest
quantum codes with a distance of three), as C1, in combination
with the 15-qubit Reed-Muller (RM) code (the smallest known
quantum code with a distance of three and transversal T and
CCZ gates), as C2.

D. Nonuniform concatenation of the Steane and 15-qubit
Reed-Muller codes

The universal set {H, S, T , CNOT} is chosen as the gate
library in this section, where S = T 2. S,H , and CNOT and
therefore, any gates from the Clifford group have transversal
implementation on the Steane code. The T gate remains the
only nontransversal gate from the set. As shown in Fig. 3, for
this code B1 = {1,2,7} and B2 = {3,4,5,6}. On the other hand,
the T gate is transversal in the RM code but the Hadammard
gate is not [19]. Both of these codes have distances of three
and the combination of their set of transversal gates produces
a universal gate set. Based on the nonuniform approach, there
is no need to encode all of the Steane qubits using the RM
code. We need only to encode qubits of B1 using the RM
code and can leave the B2 qubits unencoded. In doing so, a
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FIG. 3. Fault-tolerant application of the T gate for the proposed
49-qubit nonuniform concatenated code. A logical qubit is encoded
by Steane where qubits 1, 2, and 7 are themselves encoded blocks of
RM code and the other four qubits are left unchanged.

49-qubit code is constructed which has the ability to correct
any single physical error like the 105-qubit code proposed
in [19], but with a substantial improvement in resource
overhead as the number of qubits and operations are reduced
significantly.

As both the Steane and RM quantum codes have the same
property that the S and CNOT gates can be implemented
transversally, then for the proposed 49-qubit code they have
also transversal implementation. Additionally, all syndrome
measurements and Pauli corrections will be transversal within
both codes [19] and therefore the error correction procedure
on the Steane and RM code blocks are globally transversal and
fault-tolerant in the 49-qubit code space.

The CCZ = C2Z(π ) can also be applied fault-tolerantly
for the proposed 49-qubit code, as its implementation on the
Steane code has the same structure as T and it is transversal
in the RM code.

E. Concatenation of the 5-qubit code with the 15-qubit
Reed-Muller code

The stabilizers and logical Pauli operators of the 5-qubit
code can be written as follows [20]:

S5 =

�
ZZXIX

XZZXI

IXZZX

XIXZZ

�

,

Z5 = −XIZIX, X5 = −YIXIY.

Let M = {T = C0Z(π
4 ), S = C0Z(π

2 ),CZ = C1Z(π ),CCZ =
C2Z(π )}. The gates of M are transversal in RM and along with
H provide a universal set (but not a minimal) for quantum
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FIG. 4. Nontransversal implementation of the CkZ(θ ) gate for
the 5-qubit code. The circuit specified by the dotted box shows the
implementation of this gate for the 5′-qubit code. Note that while
this circuit generally holds for the 5-qubit code, not every CkZ(θ )
can be applied fault-tolerantly for the proposed 75- and 47-qubit
concatenated codes, as they may be nontransversal in RM. Indeed,
from the CkZ(θ ) gates, only the gates of M = {T ,S,CZ,CCZ}, which
are transversal in RM, can be applied fault-tolerantly for the proposed
75- and 47-qubit concatenated codes.

computation. H is transversal for the 5-qubit code but by
permutation [20]. However, this permutation is in contrast
with the proposed concept of nonuniform code concatenation,
which makes it unusable for our nonuniform construction. The
gates of M [generally CkZ(θ )] can be applied nontransversally
on the 5-qubit code block (not the codes constructed by
concatenation of the 5-qubit and 15-qubit RM codes) as shown
in Fig. 4, where K = S.H . Note that K is not transversal in
the RM code. Therefore, the nontransversal implementation
of the gates of M on the 5-qubit code does not involve only
gates that are transversal in RM and thus, violates the second
necessary condition for code concatenation.

032337-4



NONUNIFORM CODE CONCATENATION FOR UNIVERSAL . . . PHYSICAL REVIEW A 96, 032337 (2017)

Consequently, the 5-qubit code in its standard form is not
suitable for the proposed nonuniform code concatenation with
RM. However, one can alter this code to an equivalent code,
namely the 5′-qubit code, by applying KIYIK on the 5-qubit
code block [20]. This new code has the following set of
stabilizers:

S5′ =

�−YZXIZ

−ZZZXI

−IXZZZ

−ZIXZY

�

,

where the logical Pauli operators are defined as

Z5′ = ZIZIZ, X5′ = XIXIX.

For this code, the K gate can be applied transversally as
(IIZII ).K⊗5. The gates of M can also be implemented as
shown in the dotted box of Fig. 4. This implementation only
consists of the gates that are transversal in the RM code and
therefore satisfies the second condition for code concatenation.

As H = S†.K,K along with the gates of M provide a
universal set of quantum gates. This set is considered as the
gate library for the codes proposed in this section. Considering
the 5′-qubit code as C1 and the RM code as C2 satisfies
the necessary condition for code concatenation regarding this
universal set. The concatenation of these codes uniformly leads
to a 75-qubit code where all of the C1 qubits are encoded blocks
of RM. Furthermore, for the 5′-qubit code B1 = {1,3,5} and
B2 = {2,4}. Therefore, the nonuniform concatenation of them
produces a 47-qubit code where the B1 qubits are encoded
by the RM code in the second level of concatenation and the
qubits of B2 are left unencoded. Both the 75-qubit and 47-qubit
codes have the ability to perform the gates of universal set
fault-tolerantly.

III. DISCUSSION

The proposed nonuniform 47 and 49-qubit codes reduce the
overall distance of their corresponding uniform codes (e.g., 75
and 105-qubit codes, respectively), as they leave the qubits
of B2 unencoded. Nevertheless, the B2 qubits can be encoded
using the C1 code in the second level of concatenation, which
leads to two 55 and 73-qubit codes, respectively. Doing so will
increase the overall distance of the codes to nine, much like the
uniform ones. However, in the worst case, the effective distance
of these codes remains unchanged with the ability to correct a
single physical error. This is because two physical errors on the
qubits of B1 may corrupt all of the B1 qubits during application
of the nontransversal gates, which cannot be corrected using
the C1 error correction procedure and therefore, leads to a
logical error. Table I compares the produced concatenated
codes based on the Steane and RM codes in terms of number
of qubits, overall distance, and effective distance.

Chamberland et al. in their recent follow-up work [23]
performed extensive numerical analysis into the proposed 49-
qubit code and cited the preprint version of this paper. They
obtained a depolarizing noise threshold of 9.69×10−4 for the
49-qubit code which is comparable to the 105-qubit threshold
result of 1.28×10−3, with about one order of magnitude lower
resource overhead.

TABLE I. Comparison of the produced concatenated codes based
on the Steane and RM codes in terms of number of qubits, overall
distance, and effective distance.

Code concatenation overall Effective
method No. qubits distance distance

Uniform [19] 105 9 3
Nonuniform (case I) 49 5 3
Nonuniform (case II) 75 9 3

The 7-qubit Steane and 15-qubit Reed-Muller (RM) codes
have unique features as follows, which make their concate-
nation efficient. The Steane code is the smallest CSS code
with a distance of three and with the ability to implement a
universal set of Clifford gates, transversally. The T gate is a
nontransversal gate in the Steane code which can be applied
by involving only three qubits (Fig. 3) and along with the
Clifford gates provides a universal set of gates. The RM code
is the smallest known code with transversal T gate and also a
CSS code. Therefore, their concatenation leads to the smallest
concatenated CSS code based on the proposed approach with
the ability to perform a universal set of fault-tolerant gates. It
should be noted that the CSS codes have some useful properties
which make them good choices for fault-tolerant quantum
computation [22]. Furthermore, the Steane and RM codes have
the minimum number of unshared transversal gates, e.g., T

and H . While the codes produced using the 5′-qubit code have
fewer qubits, they are non-CSS and also the effective distance
of the concatenated codes is reduced for all of the gates from
the universal set. This is because there are no shared transversal
gates between the 5′-qubit and RM codes.

IV. CONCLUSION

In this paper, a nonuniform code concatenation approach is
proposed for fault-tolerant quantum computing without using
MSD. Four 47, 49, 55, and 73-qubit codes are constructed
based on this approach with the ability to correct an arbitrary
single physical error which outperforms their counterpart
uniform concatenated codes. Introducing the nonuniform code
concatenation concept and exploiting it in the design of a
new universal fault-tolerant quantum computation method by
considering the implementation details of the nontransversal
gates in C1, is the main contribution of the proposed approach.
It is worth noting that, in such code concatenation schemes
(both uniform and nonuniform), the effective distance of
the concatenated code is reduced to make the universal
fault-tolerant computation possible. Although the proposed
approach is described based on the 5-qubit and Steane codes
in concatenation with the 15-qubit Reed-Muller code, one may
pursue this work by investigating other code combinations.
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