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Certain nonuniformly coupled spin chains can exhibit perfect transfer of quantum states from end to end.
Motivated by recent experimental implementations in evanescently coupled waveguide arrays, we extend the
simplest such chain to next-to-nearest-neighbor couplings. It is shown analytically that perfect state transfer can
be maintained under the extension and that end-to-end entanglement generation (fractional revival) can occur.
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I. INTRODUCTION

A. Background

The transfer of quantum states between remote sites is an
important issue in the development of quantum technologies.
Theoretical studies have shown that over short distances spin
chains could achieve this task with a minimum of control
operations (see Ref. [1] and the recent review Ref. [2]). Indeed,
with properly engineered couplings, the intrinsic dynamics of
the chain can realize the transfer with unit probability, in which
case one speaks of perfect state transfer (PST) [3–5]. Another
phenomenon, known as fractional revival (FR) [6], can also be
observed in spin chains [4,7–11] and exploited for quantum
communication purposes. In this case, an excitation on one end
of the chain splits into a superposition of an excitation at each
end, resulting in entanglement between the ends of the chain.

The class of spin chain Hamiltonians that has been
principally examined in this connection is that of type XX

with nearest-neighbor (NN) couplings,

H = 1
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where the σ
x/y/z

l denote the corresponding Pauli matrix acting
on site l. Owing to rotational symmetry about one axis, the
total spin projection is conserved in these models and the
space of states decomposes into a sum of subspaces labeled
by the number of excitations. PST is then determined by the
one-excitation dynamics. Restricting to this dynamics, H takes
the form of a tridiagonal matrix given by

⎛
⎜⎜⎜⎝

B0 J1

J1 B1 J2

J2 B2 ⋱

⋱ ⋱ JN

JN BN

⎞
⎟⎟⎟⎠. (2)

Families of orthogonal polynomials that have the matrix
entries as their recurrence coefficients provide the exact
eigenfunctions. Consequently, the correspondence between
orthogonal polynomials has been investigated and many chains
with PST have been found using this correspondence [5,12–
14]. The simplest and thus paradigmatic model in this context
is associated to the Krawtchouk polynomials. The couplings

in this case follow an elementary parabolic distribution,

Jn = an ≡ 1
2

√
n(N − n + 1), (3)

and there are no Zeeman terms, Bn = 0. The Krawtchouk chain
does not exhibit fractional revival, but models that do have been
found and indeed been analyzed systematically [10,11,15].

B. Recent experiments

Perfect state transfer has been demonstrated recently in
different technological platforms. Perfect state transfer and
the stronger mirror inversion have been observed using nuclear
magnetic resonance techniques [16]. Since the time evolution
of a single excitation is mathematically equivalent to an
excitation in a lattice of oscillators in the tight binding
formalism with nearest-neighbor approximation (only when
multimodes are considered differences between fermions and
bosons appear), photonic lattice implementations of perfect
state transfer have been considered [17–20]. Indeed, it has
been demonstrated experimentally that quantum states can be
transported with high fidelity through arrays of evanescently
coupled waveguide elements [21–23]. The present paper is
largely motivated by these advances. Since the evanescent
couplings of the wave guides in an optical array depend on
the separation between the components, interactions always
extend beyond the nearest neighbors and a better approximate
description would involve next-to-nearest couplings. It could
also be that manufacturing or setting imprecisions would have
the array in a slight zigzag pattern in which case the NNN
couplings can become even more significant relative to the
NN couplings [24]. The same could happen, of course, if the
quantum network is bent [25].

These considerations call for an examination of PST in
models with NNN interactions in addition to the NN ones.
Such a study would provide a framework to better estimate the
errors made when the NNN couplings are neglected, it could
inform the situations when these couplings are really required
and, finally, it could unveil new dynamical possibilities when
NNN interactions are present. The question of PST beyond
NN couplings has been addressed in Ref. [26], where it
has been shown that inverse spectral problem methods can
be applied to obtain Hamiltonians with interactions beyond
the nearest neighbors that exhibit PST. See also Ref. [27] in
this connection. This work, however, is numerical and, to our
knowledge, no such analytic models have been identified so far.
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C. Our contribution

The purpose of this paper is precisely to fill that lacuna
and to offer a simple analytic model with PST and also FR
that naturally extends the Krawtchouk model. The nearest-
neighbor couplings J (1)

n of this model remain the same as those
of the Krawtchouk XX spin chains with a scaling factor β,

J (1)
n = Jn = βan,

the next-to-nearest neighbor couplings J (2)
n involve an addi-

tional parameter α and nonuniform magnetic fields are present:

J (2)
n = αan−1an, Bn = α

(
a2

n + a2
n+1

)
. (4)

PST will be shown to happen when α
β

is rational. For some
of these values, it might be necessary to have an odd or even
number of sites. If α

β
is an integer, it will be seen that the

minimal time for PST in the NNN chains is the same as the
one with the NN couplings.

It will further be seen that, in many instances, the model
with the NNN couplings will exhibit FR. This is in contrast
with the fact that this phenomenon does not take place in the
Krawtchouk chain with only nearest-neighbor couplings.

D. Paper structure

The paper is structured as follows. In Sec. II we introduce
the basics of the nonuniform XX chain and review in more
detail mirror symmetry in the nearest-neighbor situation. We
also introduce the special class of next-to-nearest-neighbor
chains we will consider in this paper. In Sec. III, we study
general conditions for perfect state transfer in XX chains
and discuss in detail the well-known Krawtchouk case for
nearest-neighbor couplings. We then characterize as one main
result of this study perfect state transfer in the next-to-nearest-
neighbor extension of the Krawtchouk case. In Sec. IV we turn
our attention to fractional revival and give also here an exact
characterization of our Krawtchouk extension. In Sec. V we
offer a conclusion and an outlook.

II. PRELIMINARIES

A. Spin chains of X X type

Consider the following Hamiltonians of type XX on
(C2)⊗(N+1) where each of the (N + 1) spins interacts with
its M neighbors on the left and M neighbors on the right:

H (M) = 1

2
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The constant J
(k)
l+k is the coupling strength between the site l

and l + k and is taken to be nonnegative; the constant Bl is the
value of the magnetic field at the site l.

Since, the z component of the total spin is conserved,[
H (M),

1

2

N∑
l=0

(
σ z

l + 1
)] = 0, (5)

the eigenstates of H (M) belong to subspaces labeled by the
number of spins over the chain that are up, i.e., that are
eigenstates of σ z with eigenvalue +1. The state of H (M) with
all the spins down has energy zero. It will suffice for our
purposes to consider states with only one spin up (for a detailed
explanation of this point, see Ref. [4]). A natural basis for that
subspace (equivalent to C(N+1)) is given by the vectors

|n〉 = (0,0, . . . ,1, . . . ,0)T (6)

n = 0, . . . ,N , with the only 1 in the nth position corresponding
to the only spin up at the nth site. The action of H (M) on those
states is given by

H (M)|n〉 = J
(M)
n+M |n + M〉 + J

(M−1)
n+M−1|n + M − 1〉 + . . .

+ J
(1)
n+1|n + 1〉 + Bn|n〉 + J (1)

n |n − 1〉
+ · · · + J (M)

n |n − M〉. (7)

The conditions J
(k)
l = 0 for l � k − 1 and J

(k)
N+1 = 0 are

assumed.
In the following we shall consider models whose non-

nearest-neighbor couplings are constructed from the interac-
tion strengths between the nearest neighbors. At one point, we
shall spell out a model with M = 2, but the way for extending
to arbitrary M will be clear in principle. We shall hence make
much use of the description of the single excitation dynamics
when only nearest neighbors are coupled; its essentials are
summarized in the next subsection.

B. Nearest-neighbor interactions

This subsection offers background on the relevant elements
of orthogonal polynomial theory and establishes some nota-
tion.

When M = 1, there are only nearest-neighbor interactions.
Let us denote by J the restriction of H (1) to the single-
excitation eigensubspace. It is readily seen that Eq. (7)
specializes to

H (1)|n〉 ≡ J |n〉 = Jn+1|n + 1〉 + Bn|n〉 + Jn|n − 1〉,
(8)

where we have replaced J (1)
n by Jn for simplicity. We thus

see that in the occupation basis, J can be represented by the
(N + 1) × (N + 1) tridiagonal matrix Eq. (2) given above.

Introduce the normalized eigenvectors |xs〉 of J :

J |xs〉 = xs |xs〉, s = 0,1, . . . ,N. (9)

The eigenvalues xs are real and nondegenerate: xs �= xt if s �=
t , for positive couplings. Let us expand the eigenstates |xs〉 in
terms of the basis vectors |n〉:

|xs〉 =
N∑

n=0

Wsn|n〉, (10)

and write the expansion coefficients as follows:

Wsn = Ws0χn(xs), (11)
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with χ0(xs) = 1 by construction. Set
√

ws = Ws0. Relation
Eq. (10) becomes

|xs〉 =
N∑

n=0

√
wsχn(xs)|n〉. (12)

It follows from Eq. (8) that the coefficients χn(x) obey the
three-term recurrence relation

Jn+1χn+1(x) + Bnχn(x) + Jnχn−1(x) = xχn(x) (13)

and are hence orthogonal polynomials with the initial condition
χ−1 = 0 added. Since the eigenbasis and the occupation basis
are both orthonormal and given that the expansion coefficients
are real, these elements form an orthogonal matrix and provide
the inverse relations

|n〉 =
N∑

s=0

√
wsχn(xs)|xs〉. (14)

Now the fact that 〈n|m〉 = δnm implies that

N∑
s=0

wsχn(xs)χm(xs) = δnm, (15)

showing that the polynomials χn(x) are orthogonal over the
finite set of eigenvalues xs of J with weight ws . From the
eigenvalues xs , s = 0,1, . . . ,N one can form the characteristic
polynomial PN+1(x) of degree N + 1:

PN+1(x) = (x − x0)(x − x1) . . . (x − xN ), (16)

which is obviously orthogonal to all χn(x) n = 0,1, . . . ,N

according to Eq. (15). It is known from the theory of orthogonal
polynomials [28] that the discrete weights ws can be expressed
as

ws =
√

hN

χN (xs)P ′
N+1(xs)

s = 0,1, . . . ,N, (17)

where √
hN = J1J2 . . . JN (18)

and where P ′
N+1(x) stands for the derivative of PN+1(x). If one

takes the eigenvalues in increasing order,

x0 < x1 < · · · < xN, (19)

it is easy to see that

P ′
N+1(xs) = (−1)N+s |P ′

N+1(xs)|. (20)

The class of mirror-symmetric couplings and field strengths
satisfying

Jn = JN+1−n, Bn = BN−n (21)

is central in PST considerations (see, for instance,
Refs. [4,5,12]). In terms of the matrix J given in Eq. (2),
the conditions Eq. (21) amount to the requirement that J be
reflection invariant with respect to its main antidiagonal and
thus satisfy RJ = JR with

R =

⎛
⎜⎝

0 . . . 0 1
0 . . . 1 0
⋰

1 0 . . . 0

⎞
⎟⎠ (22)

the matrix transcription of the reflection defined by R|n〉 =
|N − n〉. Observe that R2 = 1. When J and R commute, they
can be diagonalized simultaneously and since the eigenstates
|xs〉 are nondegenerate, we have then

R|xs〉 = εs |xs〉, (23)

with εs = ±1. Moreover, from Eq. (12) we obtain

R|xs〉 =
N∑

n=0

√
wsχn(xs)|N − n〉

=
N∑

n=0

√
wsχN−n(xs)|n〉. (24)

Equations (23) and (24) thus yield

χN−n(xs) = εsχn(xs). (25)

It can also be shown [12] that in the presence of mirror
symmetry the weights are given by

ws =
√

hN

|P ′
N+1(xs)| . (26)

Comparing Eq. (26) with the general formula Eq. (15) and
using Eq. (20) allows us to show that

χN (xs) = (−1)N+s (27)

is equivalent to the condition that the matrix J be mirror-
symmetric. Setting n = 0 in Eq. (25), one further concludes
that

εs = (−1)N+s (28)

and then obtains from Eq. (25) the following property of
orthogonal polynomials associated to mirror-symmetric Jacobi
matrices:

χN−n(xs) = (−1)N+sχn(xs). (29)

C. From nearest-neighbor to non-nearest-neighbor couplings

As seen from Eq. (7), the couplings and magnetic field
strengths of the Hamiltonians H (M) are in fact determined
from the restriction of H (M) to the one-excitation subspace. In
the following, we shall consider a special class of H (M) where
the non-nearest-neighbor couplings are prescribed from those
between the nearest neighbors. We shall define these special
Hamiltonians by demanding that their restriction to states with
only one spin up takes the form

H (M)|n〉 = QM (J̄ )|n〉, (30)

where QM is a polynomial of degree M < N in a fiducial
tridiagonal matrix J̄ of the same form as Eq. (2) with entries
that can be viewed as basic nearest-neighbor couplings and
field strengths. From the action of J̄ on |n〉 given by Eq. (8)
with Jn and Bn replaced by J̄n and B̄n, respectively, it is
straightforward to compute QM (J̄ )|n〉 and to identify the
couplings J

(k)
l of H (M) (see Sec. III D for an explicit example

in the case M = 2).
This will provide families of Hamiltonians where the spin at

site n interacts with its M neighbors on the left and on the right;
we shall henceforth limit our considerations to this special
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class of systems with non-nearest-neighbor interactions. Note
that the multiexcitation states of spin chains with interactions
beyond nearest neighbors, such as those considered here, will
not be mapped onto free fermion states by the Jordan-Wigner
transformation.

The formalism developed above applies generally to tridi-
agonal matrices and hence to J̄ . In the following, we shall wish
to distinguish between J̄ and J (1) = J . Typically, we shall
have J = βJ̄ with β a constant determined by experimental
parameters. For clarity, when using the results of Sec. II as
they pertain to J̄ , we shall denote by x̄s the eigenvalues of J̄ ,
by χ̄n the orthonormalized polynomials associated to J̄ , etc.

III. PERFECT STATE TRANSFER

A. General considerations

Let us now explore the conditions for the transfer with
probability one, after time T , of a spin up from one end of
the chain to the other, when the dynamics is governed by the
special Hamiltonians H (M) defined by Eq. (30). This PST will
be realized if

e−iT H (M) |0〉 = eiφ|N〉, (31)

where φ is some phase. With the help of the expansion Eq. (14)
and with a bar over the attributes of J̄ , we see that condition
Eq. (31) amounts to

e−iφ exp[−iT QM (x̄s)] = χ̄N (x̄s), (32)

which entails restrictions on the spectrum of J̄ .
The analysis of Eq. (32) indicates that mirror symmetry or

equivalently Eq. (27) remains a necessary condition for PST in
this situation beyond NN couplings. Given mirror symmetry
and hence the relation Eq. (21), the PST condition Eq. (32)
becomes

e−iφ exp[−iT QM (x̄s)] = (−1)N+s . (33)

The arguments leading to these results are given below and
could be skipped at first read.

Since the right-hand side of Eq. (32) only takes real values,
we must have

χ̄N (x̄s) = ±1 s = 0,1, . . . ,N. (34)

Let {pk} be a sequence of orthogonal polynomials; for y1 <

y2 < · · · < yn and z1 < z2 < · · · < zn−1, the zeros of pn and
pn−1, respectively, it is well known [29] that one has

y1 < z1 < y2 < z2 < · · · < zn−1 < yn, (35)

a property called the interlacing of the zeros of pn and pn−1.
Applying this result to P̄N+1 and χ̄N , one sees that a zero of
χ̄N must be encountered between each of the pairs (x̄s−1,x̄s),
s = 1,2, . . . ,N and, hence, in view of Eq. (34), the sign of
χ̄N must alternate at successive eigenvalues x̄s . Once this is
established, it follows from Eqs. (17) and (20) that we must
have χ̄N (x̄s) = (−1)N+s for the weights w̄s to be positive. This
is precisely Eq. (27), which as noted in Sec. II, is tantamount
to J̄ being mirror-symmetric. We thus conclude that for the
special class of chains with non-nearest-neighbor couplings
we are considering, a necessary condition for PST is that the
underlying Jacobi matrix satisfies J̄R = RJ̄ . This of course

implies that the one-excitation restriction of QM (J̄ ) of H (M)

itself commutes with R and that the couplings satisfy

J (k)
n = J

(k)
N−n+k, k = 1, . . . ,M.

Bn = BN−n, k � n � N. (36)

Obviously, when N = 1, this amounts to Eq. (21), which
is known to be one of the necessary conditions for PST
when only nearest-neighbor interactions are present. Given
the requirement that Eq. (27) be satisfied, condition Eq. (32)
becomes Eq. (33), which translates into

T QM (x̄s) = −φ + π (N + s + 2Ls) s = 0, . . . ,N, (37)

where Ls are arbitrary integers that may depend on s. Equation
(37) leads to restrictions on the spectrum of J̄ and the
coefficients of QM ; together with the mirror symmetry of J̄ ,
it provides the necessary and sufficient conditions for PST in
the case under study. In fact, these requirements ensure the full
mirror inversion of the one-excitation states after time T . To
see this, consider the matrix elements 〈k|e−iT H (M) |l〉 and use
the expansion Eq. (14) over the eigenstates of J̄ , one has

〈k|e−iT H (M) |l〉 =
N∑

s=0

e−iT QM (x̄s )w̄sχ̄k(x̄s)χ̄l(x̄s). (38)

Using Eq. (33), Eq. (29) and the orthogonality relation Eq. (15)
(for the polynomials χ̄n), one obtains

〈k|e−iT H (M) |l〉 = eiφ

N∑
s=0

w̄sχ̄k(x̄s)χ̄N−l(x̄s)

= eiφδk,N−l , (39)

which implies as announced that

e−iT QM (J̄ ) = eiφR. (40)

We shall now further restrict the set of models that we
will consider by fixing the matrix J̄ and examining PST first
for nearest-neighbor and then when next-to-nearest-neighbor
couplings are added, that is when M = 2.

B. The Krawtchouk chain

The simplest possible spectrum that can be posited for a
mirror-symmetric Jacobi matrix is the linear one where

x̄s = s − N

2
, s = 0,1, . . . ,N. (41)

The entries of the corresponding matrix J̄ are provided by
the coefficients

J̄n = an, B̄n = 0, (42)

with

an = 1
2

√
n(N − n + 1). (43)

It is immediate to check that these J̄n and B̄n verify Eq. (21)
and hence define a mirror-symmetric J̄ .

The methods of inverse spectral problems can be used to
establish the correspondence between the spectrum in Eq. (41)
and J̄ . This matrix can also be obtained through simple
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observations that are given in the Appendix, where the name
Krawtchouk chain will be justified.

C. The nearest-neighbor case

When M = 1 and the Hamiltonian H (1) is defined from
Eq. (22) by taking

Q1(J̄ ) = βJ̄ (44)

with β an arbitrary positive real number, it is immediate to
recover the well known fact that the Krawtchouk model with
nearest-neighbor couplings admits PST. Indeed, condition
Eq. (37) reads then

Tβ
(
s − N

2

) = −φ + π (N + s + 2Ls). (45)

This shows that the integer numbers Ls must necessarily
depend linearly on s and thus take the form Ls = ls + m with
l and m integers. With φ appropriately chosen to take care of
the constant terms, Eq. (45) reveals that PST will be achieved
at times T given by

T = π

β
(2l + 1) l = 0,1, . . . (46)

Hence, the minimal time for PST in the NN model is T = π
β

.
Note that the PST time can be reduced by increasing β

but that this comes at the expense of increasing the norm of
the Hamiltonian and thus energy in the system. Let us further
remark that T (or equivalently β), the time for PST, and the
integer N that determines the length of the chain, are treated
as two independent parameters. These two quantities are tied
together however within the expression for the couplings:
Jn = β

2

√
n(N − n + 1). The time T can thus be kept fixed

for different N at the expense of changing the Hamiltonian.
Note in this connection that the middle couplings grow with N .
Therefore, to keep the couplings relatively small, we can either
take T proportional to N or, keeping T and N independent,
consider chains where N is not too large. The latter view is
typically the one adopted with the idea that spin chains are
devices aimed at quantum transport over short distances [1].

D. The next-to-nearest-neighbor extension

We are now ready to provide an analytic NNN extension of
the Krawtchouk chain and to determine the specifications for
which this spin chain will possess PST.

Let M = 2 and take Q2(J̄ ) to be

Q2(J̄ ) = αJ̄ 2 + βJ̄ , (47)

with α an arbitrary positive real number and β a nonnegative
number. According to Eq. (30), H (2) has the following action
on the one-excitation states |n〉:

H (2)|n〉 =αan+1an+2|n + 2〉 + βan+1|n + 1〉
+ α

(
a2

n + a2
n+1

)|n〉 + βan|n − 1〉
+ αan−1an|n − 2〉. (48)

This defines a spin chain with NNN interactions that extends
the Krawtchouk chain with NN links. The couplings and
magnetic field strengths of the Hamiltonian H (2) can be read

off from Eq. (48) by comparing it with Eq. (7); one finds

J (1)
n = Jn = βan, (49a)

J (2)
n = αan−1an. (49b)

Note that the NN Hamiltonian H (1) is recovered when α = 0,
observe moreover that H (2) has magnetic field strengths Bn

given by

Bn = α
(
a2

n + a2
n+1

)
, (50)

in contrast to H (1), where Bn = 0.
The analysis of this NNN model will lead us to results

regarding PST that can be summarized as follows. For β > 0,
H (2) will generate PST if α

β
is a rational number, that is, if

α
β

= p

q
where p and q are two co-prime integers. Moreover if

p is odd, q and N will need to be of the same parity. PST will
then be observed at T = πq

β
. For PST to happen in the NNN

chain at the same time π
β

as in the NN model, we must have
α
β

= p, p ∈ N, with the odd p only admissible when N is odd.
For β = 0, there will be PST for even N with minimal time
T = π

α
, but no PST for odd N .

Let us now explain how this is found by examining if there
are values of the parameters α and β for which H (2) will
generate PST. The general condition Eq. (37) for PST becomes

T

[
α

(
s − N

2

)2

+ β

(
s − N

2

)]
= −φ + πN + πs + 2πLs, (51)

when Q2 is given by Eq. (47). Since the left-hand side of
Eq. (51) is a quadratic polynomial in s, we need to take Ls to
be also quadratic. Let

Ls = ξs2 + ηs + ζ. (52)

It is easy to show that Ls will be an integer for all s =
0,1, . . . ,N when ζ is an integer and ξ and η are simultaneously
integers or half-integers. Using Eq. (52) and equating the
coefficients of the various powers of s in Eq. (51) leads to
the relations

αT = 2πξ, (53a)

2πη + π = −αT N + βT , (53b)

αT
N2

4
− β

N

2
= −φ + πN + 2πζ. (53c)

Equation (53c) does not imply any restrictions as it merely
provides a relation between the coefficient ζ and the phase φ.
From Eqs. (53a) and (53b) we see that

β

α
= 2η + 1

2ξ
+ N, (54)

which indicates that the ratio β

α
should be a rational number

(depending on the choice of ξ and η). From here onwards we
will analyze the cases β > 0 and β = 0 separately, starting
with β > 0.

The time T for PST is given by

T = 2π

β

[
Nξ + η + 1

2

]
. (55)
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Because of the limitations on the values of ξ and η, it is clear
that only two cases are possible:

(i) T = 2πj

β
,

(ii) T = π

β
(2j + 1),

with j some integer. Indeed, when both ξ and η are integers
only case (ii) is realized; when ξ and η are half-integers case
(i) occurs when N is even and case (ii) happens when N is
odd. The smallest time T for which PST can be obtained arises
from case (ii) when j = 0. This yields the same minimal PST
time as for the NN model which is T = π

β
. Equation (55)

shows that this implies

η = −Nξ. (56)

When N is odd, Eq. (56) shows that ξ and η can both be
chosen to be integers or half-integers. When N is even, then
necessarily ξ and η must be integers. Whether N is even or
odd, we always have owing to Eq. (56),

α

β
= 2ξ. (57)

We thus arrive at the following results. In the NNN chains with
parameters α and β, PST is achieved at the same time T = π

β

as in the NN chain (with parameter β) if α is in the following
relation with β:

(i)
α

β
= 1,2,3, . . . for N odd

(ii)
α

β
= 2,4,6, . . . for N even.

There are other circumstances when PST can be achieved of
course. Recall that Eq. (44) simply required α

β
to be rational.

In general, if α
β

= p

q
where p and q are coprime integers, take

ξ = p

2
and η = 1

2 [q − Np − 1], (58)

so that Nξ + η + 1
2 = q

2 and Eq. (54) is satisfied. If p is even,
q must be odd; ξ and η are then both integer. If p is odd, ξ is
half-integer; η will also be half-integer either for q odd and N

odd or, for q even and N even. In all cases, T = πq

β
.

Let us now look at β = 0, in which case Eqs. (53a) and
(53b) yield

2η + 1 = −2ξN (59)

and

T = 2πξ

α
. (60)

Recall that ξ and η are either both integers or both half-integers.
In the former case, the left-hand side of Eq. (59) is odd while its
right-hand side is even. This contradiction rules out the option
ξ,η integers. When ξ and η are both of the form ξ = u/2
and η = v/2 with u and v odd integers, we see that Eq. (59)
becomes u + 1 = −vN , which can only be fulfilled if N is
even. The minimal PST time in this instance is T = π

α
, which

is obtained for ξ = 1/2.

Note that perfect state transfer will not occur if α
β

is
not rational. This is to be contrasted with the fact that for
the NN-Hamiltonian (α = 0), PST is always observed. The
possibilities of almost perfect state transfer (APST) (see
Refs. [30,31]), when α

β
is irrational remain to be investigated.

It is known that quantum walks generated by spin chains and
classical birth and death processes are intimately connected
[32]. Let us mention in this respect that our construction
of the analytic Hamiltonian H (2) has similarities with the
generalization of the Ehrenfest urn model developed in
Ref. [28]. This last paper offers an exact solution of a Markov
process that involves nearest and next-to-nearest neighbors.
Although the analysis in Ref. [28] is framed in terms of matrix
orthogonal polynomials, the pentadiagonal one-step transition
probability matrix is in fact obtained, up to a constant term,
as a quadratic expression with fixed coefficients in the Jacobi
matrix of unnormalized Krawtchouk polynomials.

Furthermore, the method proposed in Ref. [33] to produce
multiparticle entangled states of ions in an ion trap is based on
the use of J 2

x as Hamiltonian. From our discussion at the end
of Sec. III B, we see that this relates to the case β = 0. The
study in Ref. [33] thus has connections to our considerations.

IV. FRACTIONAL REVIVAL

A. General considerations

Fractional revival (FR) can also be observed in certain spin
chains. In fact, PST can be viewed as a special case of FR,
a phenomenon that sees the time evolution of a wave-packet
generate periodically a number of “smaller reproductions” of
the initial state at specific locations. In the PST situation,
only one unscathed reproduction is observed at given times
at the ends of the chain. We shall examine in this section the
possibility of FR at two sites in the NNN spin chains on which
we have focused so far. To avoid confusion with PST, we shall
denote by τ the FR time. FR at the sites 0 and N will be
realized at time τ if

e−iHτ |0〉 = μ|0〉 + ν|N〉, (61)

where the complex amplitudes μ and ν are subjected to the
condition

|μ|2 + |ν|2 = 1. (62)

Relation Eq. (61) indicates that the initial state with one
spin up at site 0 evolves after time τ into a state that
is described by a linear combination of two state vectors
associated, respectively, to a spin up at site 0 and another
spin up at site N . PST corresponds to μ = 0 (|ν| = 1) and
when ν = 0 (|μ| = 1), we have a perfect return. Replacing
the entries 0 and 1 by ↑ and ↓ in the vectors Eq. (6) (and
forgetting the transposition), it is readily recognized that when
μ = ν = 1/

√
2, the state into which |0〉 evolves, namely

|0〉 + |N〉√
2

= | ↑↓ . . . ↓〉 + | ↓ . . . ↓↑〉√
2

,

is maximally entangled.
The conditions for fractional revival at two sites in NN spin

chains of XX type have been thoroughly analyzed in Ref. [11].
In general, the one-excitation Hamiltonian is only required to
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be an isospectral deformation of a mirror-symmetric Jacobi
matrix. Here we wish to study the occurrence of FR in spin
chains with non-nearest-neighbor interactions that belong to
the special class introduced in Sec. II and that have couplings
built from polynomials in a mirror-symmetric matrix J̄ [see
Eq. (30)]. In fact, we want to concentrate in the end on the
NNN model with H (2)|n〉 = (αJ̄ 2 + βJ̄ )|n〉 and J̄ defined
by Eqs. (43) and (42), to determine for what values of the
parameters α and β will FR occur.

Under the assumption that J̄ is mirror-symmetric,
the associated polynomials χ̄n(xs) n = 0,1, . . . ,N satisfy
Eq. (27), that is χ̄N (xs) = (−1)N+s . Using the expansion
Eq. (14) as in Sec. II and H (M)|n〉 = QM (J̄ )|n〉, we see that
Eq. (61) amounts to

e−iτQM (xs ) = eiφ[μ′ + ν ′χ̄N (xs)], (63)

where μ = eiφμ′ and ν = eiφν ′. Note that μ′ can be taken
real once a global phase term eiφ has been factored. Taking
the modulus of both sides of Eq. (63) and using χ̄2

N (xs) = 1,
we find that

Re(μ′ν ′) = 0. (64)

Since μ′ is taken to be real, ν ′ must be an imaginary number.
In view of Eq. (62), we shall write

μ′ = cos θ ν ′ = i sin θ, (65)

and given that χ̄N (xs) = (−1)N+s , Eq. (63) will read

e−iτQM (xs ) = eiφ[cos θ + i(−1)N+s sin θ ]. (66)

In this parametrization, up to integer multiples of π , θ = π
2 cor-

responds to PST and θ = 0 implies a perfect return at time τ .
Let us now focus our attention on the model discussed

before with xs = s − N
2 , s = 0, . . . ,N .

B. The nearest-neighbor Krawtchouk chain

We shall first observe that FR at two sites cannot happen in
the Krawtchouk NN model.

Let M = 1 with Q1(J̄ ) = βJ̄ . Condition Eq. (66) becomes

e−iτβ(s− N
2 ) = eiφ[cos θ + i(−1)N+s sin θ ]. (67)

This equation splits into the following two relations according
to the parity of s:

βτ

(
2s − N

2

)
= −φ − (−1)Nθ + 2πL(0)

s , (68a)

βτ

(
2s + 1 − N

2

)
= −φ + (−1)Nθ + 2πL(1)

s , (68b)

where L(i)
s , i = 0,1, are two a priori independent sequences

of integers that must be of the form

L(i)
s = γis + δi, i = 0,1, (69)

with γi and δi integers. It follows from Eqs. (68a) and (68b)
that γ0 = γ1 = 1,2 . . . and that

τ = π
γ0

β
. (70)

Moreover, apart from a relation determining the phase φ in
terms of the parameters, one finds that θ is given by

θ = (−1)N
[γ0

2
+ (δ0 − δ1)

]
π. (71)

Therefore, up to sign and integer multiples of π , θ can only
take two distinct values, namely 0 and π

2 . This means that
only PST and perfect return are possible and as stated at the
beginning of this subsection there is no genuine FR.

C. The next-to-nearest-neighbor Krawtchouk chain

We shall here concentrate on the NNN case and find that in
contradistinction to the NN situation, balanced FR is possible.

Set M = 2 and take Q2(J̄ ) = αJ̄ 2 + βJ̄ . If α �= 0, bal-
anced FR will happen if α

β
= p

q
with p and q coprime integers,

p odd and N of the same parity as q. We shall now explain
how this is obtained.

In view of the expression for Q2(J̄ ), the FR condition
Eq. (66) yields the two relations:

ατ

(
2s − N

2

)2

+ βτ

(
2s − N

2

)

= −φ − (−1)Nθ + 2πM (0)
s , (72a)

ατ

(
2s + 1 − N

2

)2

+ βτ

(
2s + 1 − N

2

)

= −φ + (−1)Nθ + 2πM (1)
s , (72b)

where anew, M (0)
s and M (1)

s are sequences of integers. In this
case for the two sides of Eqs. (72) to be compatible, we must
take quadratic expressions

M (i)
s = ξis

2 + ηis + ζi, i = 0,1 (73)

where for each i, independently, ξi and ηi can in gen-
eral be simultaneously integer or half-integer while ζi is
integer.

Once Eq. (73) is used, equating the coefficients of the
powers of s in Eq. (72) gives a system of six equations. It
is easy to see that they amount to

ξ0 = ξ1, η1 − η0 = ξ0, (74)

ξ0 = 2ατ

π
, η0 = (β − αN )

τ

π
, (75)

ζ1 − ζ0 = 1

2π
[(α + β)τ − αNτ − 2(−1)Nθ ], (76)

with the sixth equation fixing the phase φ in terms of the
parameters α, β, τ, N, θ, ζ0, and ζ1.

The relations Eqs. (74) imply that all the parameters
ξi, ηi, ζi, i = 0,1 are integers. Indeed, assume that ξ0 and η0

are half-integers; ξ1 = ξ0 and since ξ1 is hence half-integer,
η1 must also be half-integer. Since the difference η1 − η0 of
two half-integers is an integer, we have a contradiction with
η1 − η0 = ξ0. All parameters can therefore only be integers.

From Eqs. (75), one obtains when β > 0 the following
expression for the FR time τ and the relation Eq. (78) between
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α and β:

τ = π

β

(
η0 + N

2
ξ0

)
, (77)

α

β
= ξ0

2η0 + Nξ0
. (78)

When β = 0, one gets

τ = π

2α
ξ0, (79)

η0 = −N

2
ξ0. (80)

From Eq. (76) and using Eq. (65), one finds for θ in both cases

θ = (−1)Nπ

[
ξ0

4
+ η0

2
+ ζ0 − ζ1

]
. (81)

We can now draw some conclusions from these formulas
on the occurrence of FR in the NNN model.

For β > 0: (i) First, we find the same constraint on α and β

for the presence of FR as for PST, namely that α
β

is a rational
number; (ii) second, we observe that the fractional revival
times will be integer multiples of π

2β
which is half the minimal

PST time; (iii) third, and most importantly, we note that FR
at two sites is genuinely possible. Indeed, up to signs and the
addition of integer multiples of π , we see from Eq. (81) that θ

can take the values 0, π
4 , π

2 . We already observed that θ = 0
and θ = π

2 correspond to perfect return and PST respectively.
All possibilities that yield a θ equivalent to π

4 will give rise,
however, to balanced fractional revival where the amplitudes
for finding a spin up at the sites 0 and N are both equal in
magnitude to 1/

√
2. For β = 0, since ξ0 and η0 are integers,

Eq. (80) requires N to be even. Therefore: (i) when N is odd
no FR occurs; (ii) when N is even θ can be equal to π

4 modulo
multiples of π and FR is possible, in this case the minimal FR
time is π

2α
with PST happening at time π

α
.

The realization of a specific scenario will depend on the
characteristics of the NNN model as they are determined
by the integer parameters ξi, ηi , and ζi . From the preceding
discussion, we note that FR at sites 0 and N will occur only if
ξ0 is odd. That is, in view of Eq. (78), FR will be seen only in
the NNN spin chains where α

β
= p

q
with p and q coprime and

p odd. To achieve such a value of α
β

, we may then set

ξ0 = p, η0 = 1
2 (q − Np) (82)

to satisfy Eq. (78). Since p is odd, η0 will be integer as required
either when q and N are both even or when q and N are
both odd. Irrespective, we see from Eq. (77) that the FR time
τ is given by τ = πq

2β
. One observes that this is consistent

with the discussion of the conditions for PST; in that case the
specifications involved the parameters ξ and η that could be
both integers or both half-integers. For p even and q odd, we
note that while PST is possible, there will be no FR. The other
PST cases will exhibit FR in addition. Comparing Eqs. (58)
and (82), we see that

ξ = ξ0

2
, η = η0 − 1

2 . (83)

Since ξ0 and η0 are integers and ξ0 is odd, this makes ξ and η

half-integers in keeping with what was found earlier. Observe

also that the parity considerations on N match. It is then seen
that the PST time T is double the FR time τ : T = 2τ .

This last point can also be understood as follows. From
Eq. (78), it is clear that we can multiply both parameters ξ0

and η0 by the same integer k: ξ0 → kξ0,η0 → kη0 without
changing the ratio α

β
, that is without changing the Hamiltonian

essentially. This transformation, however, will have the effect
of scaling τ as seen from Eq. (77): τ → kτ . Consider now
what happens to θ under that transformation when k = 2:

θ → θ̄ = (−1)N+1π

(
ξ0

2
+ η0 + ζ0 − ζ1

)
. (84)

Assume that we are in a situation of FR and thus that ξ0 is odd.
It follows that cos θ̄ = 0. Such a θ̄ leads to PST since the only
nonzero spin-up amplitude is then at site N .

We thus have the following scenario. If fractional revival
occurs at time t = τ , then at t = T = 2τ we shall observe
PST, at t = 3τ fractional revival will be seen again and finally
at t = 2T = 4τ a perfect return will happen. This cycle will
then repeat itself with period 4τ .

D. SUMMARY

In this section, we have made the following observations.
We have found that while FR does not occur in the NN
Krawtchouk spin chain, the presence of additional NNN
interactions allow this phenomenon to take place. Furthermore,
the only form of FR at sites 0 and N that can be realized is
of the balanced type, which corresponds to the generation of a
maximally entangled state. Finally, when NN interactions are
kept, that is when β > 0, for FR to occur the parameters α and
β of H (2) must satisfy α

β
= p

q
with p and q coprime integers,

p odd and q and N both odd or even; FR will then happen at
time τ = πq

2β
.

V. CONCLUSION

This paper has provided an analytic spin chain with
couplings beyond the nearest neighbors where an exact
description of PST and FR could be given. We focused on
models where the higher-order interactions are related in a
polynomial fashion to those of the nearest neighbors and we
concentrated on the one model in that class that extended with
NNN links, the simplest nonuniform and well-studied XX spin
chain with NN couplings based on angular momentum theory
or the recurrence coefficients of the Krawtchouk polynomials.
This extended model involves two parameters α and β that
tune the intensity of the NNN and NN couplings, respectively.
The case α = 0 corresponds to the absence of second-order
interactions. One recalls that PST is then known to occur first
at time T = π

β
and we indicated that no FR is predicted by this

most simple model.
When α �= 0 and β �= 0, the conditions for PST and FR

can be summarized easily. In order for PST to occur, one must
have α

β
= p

q
where p and q are coprime integers. Furthermore,

if FR is to happen, p must be odd and in that case N must be
of the same parity as q.

This NNN model is motivated by the quantum transport in
arrays of evanescently coupled wave guides where couplings
beyond first order, while generally small, will necessarily
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be present. In such experimental realizations [22,23], the
distances between the wave guides are adjusted to yield
the NN couplings; the formulas in terms of products for
the NNN couplings are thus well adapted to this optical
waveguide context. Our findings may be interpreted as saying
that theoretically FR should occur in photonic lattices and
should provide a mechanism for the generation of maximally
entangled states. This is in contrast with what the simplest
NN Krawtchouk model predicts in this regard. We intend to
discuss further the implementation in an optical set up in a
future report.

On the theoretical side our study may be extended in many
directions. It would be useful to perform various simulations
to probe the robustness of the PST and FR phenomena with
respect to deviations from the specifications of the analytic
model (cf. Ref. [34]). In that regard, it would be worthwhile to
explore in details the conditions for almost perfect transfer and
fractional revival (cf. Refs. [30,31]). Finally, it would be rele-
vant to construct other NNN analytic models so as to offer ex-
perimentalists a wider array of possibilities for tuning and con-
crete realizations. We plan to pursue some of these questions.
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APPENDIX: DERIVATION OF THE
KRAWTCHOUK CHAIN

We briefly indicate in this appendix how one can establish
that the mirror symmetric Jacobi matrix given by Eqs. (42) and
(43) has eigenvalues specified by Eq. (41).

Given Eq. (41), it is seen that |P̄ ′
N+1(x̄s)| = s!(N − s)!. In

view of Eq. (26), the weights will be given by the binomial
distribution

w̄s = N !

s!(N − s)!

(
1

2

)N

, (A1)

where the normalization constant N !( 1
2 )N has been determined

from
∑N

s=0 w̄s = 1. The polynomials orthogonal with respect
to those weights are known to be the normalized symmetric
Krawtchouk polynomials,

K̂n(s) = (−1)n
√(

N

n

)
2F1

[−n, − s

−N
; 2

]
,

n,s = 0, . . . ,N, (A2)

where
(
l

k

) = l!/k!(l − k)! is the binomial coefficient and 2F1

is the hypergeometric series

2F1

[
a,b

c
; z

]
=

∞∑
k=0

(a)k(b)k
(c)k

zk

k!
, (A3)

with (a)k the Pochhammer symbol defined by

(a)0 = 1 (a)k = a(a + 1) . . . (a + k − 1),

k = 1,2, . . . (A4)

Note that 2F1[ a,b

c
; z] terminates when a or b is a negative

integer. One has

∑
s

N !

s!(N − s)!

(
1

2

)N

K̂m(s)K̂n(s) = δnm. (A5)

Now it can be checked directly or by consulting Ref. [35]
that these polynomials K̂n(s) satisfy the three-term recurrence
relation(

s − N

2

)
K̂n(s) = an+1K̂n+1(s) + anK̂n−1(s), (A6)

with an given by Eq. (43). With χ̄n(x̄s) identified as K̂n(s), this
implies that the entries of the matrix J̄ coincide with Eq. (42).

Alternatively, one can also use quantum angular momentum
theory to relate the spectrum Eq. (41) to the matrix J̄ with
elements given by Eqs. (43) and (42). Indeed, observe that
this (N + 1)-dimensional matrix J̄ coincides with that of
the angular momentum operator Jx in the standard basis
|j,m〉 = |N

2 ,s − N
2 〉, s = 0, . . . ,N , where the z-projection

Jz is diagonalized : Jz|j,m〉 = m|j,m〉. Since all angular
momentum components have the same spectrum, it follows
that J̄ has Eq. (41), that is (−N

2 , − N
2 + 1, . . . ,N

2 − 1,N
2 )

as eigenvalues. Now the eigenvectors of Jx are obtained by
transforming the vectors |j,m〉 under a rotation that takes the
z axis into the x axis. Since elements of matrices irreducibly
representing rotations are expressed in terms of Krawtchouk
polynomials [36], their occurrence in our problem is thus
understood.
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