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The quantum internet holds promise for accomplishing quantum teleportation and unconditionally secure
communication freely between arbitrary clients all over the globe, as well as the simulation of quantum many-body
systems. For such a quantum internet protocol, a general fundamental upper bound on the obtainable entanglement
or secret key has been derived [K. Azuma, A. Mizutani, and H.-K. Lo, Nat. Commun. 7, 13523 (2016)]. Here
we consider its converse problem. In particular, we present a universal protocol constructible from any given
quantum network, which is based on running quantum repeater schemes in parallel over the network. For arbitrary
lossy optical channel networks, our protocol has no scaling gap with the upper bound, even based on existing
quantum repeater schemes. In an asymptotic limit, our protocol works as an optimal entanglement or secret-key
distribution over any quantum network composed of practical channels such as erasure channels, dephasing
channels, bosonic quantum amplifier channels, and lossy optical channels.
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I. INTRODUCTION

In the internet, if a client communicates with a far distant
client, the data travel across multiple networks. At present, the
nodes and the communication channels in the networks are
composed of physical devices governed by the laws of classical
information theory, and the data flow obeys the celebrated
max-flow min-cut theorem [1,2] in graph theory. However,
in the future, such classical nodes and channels should be
replaced with quantum ones, whose network follows the
rules of quantum information theory, rather than the classical
one. This network, called quantum internet, could accomplish
tasks that are intractable in the realm of classical information
processing, and it “provides opportunities and challenges
across a range of intellectual and technical frontiers, including
quantum computation, communication and metrology [3].”

So far, the main interest in the quantum internet has been
the realization of quantum repeaters, especially specialized to
linear networks [4–20]. On the other hand, it must be one of
the most fundamental trials to grasp the full potential of a
general quantum internet. Along this line, recently, Azuma,
Mizutani, and Lo derived [21] a general fundamental upper
bound—called the AML bound—on the performance for its
use for supplying two clients with entanglement or a secret
key, by generalizing the Takeoka-Guha-Wilde bound [22,23].
Interestingly, this AML bound can be estimated and applied to
any private-key or entanglement distillation scheme that works
over any network topology composed of arbitrary quantum
channels with arbitrary local operations and unlimited classical
communication (LOCC). For the case of linear networks
composed of lossy optical channels, it has been shown [21] that
existing intercity quantum key distribution protocols [24–26]
and quantum repeater schemes [9,11,16,18,19] have no scaling
gap with the AML bound. In addition, in the case of a multipath
network composed of a wide range of teleportation stretchable
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quantum channels [27–29] (including lossy optical channels),
Pirandola has provided [30] a protocol that determines a single
path to supply two clients with a secret bit or an entangled pair
by minimizing the number of uses of the paths between them.
However, it remained as a highly nontrivial open problem to
find a universal protocol (beyond quantum repeaters) which
works over any network topology (rather than only linear or
multipath networks) composed of arbitrary quantum channels
and with no scaling gap with the AML bound. This is
because, in general, there is a huge conceptual gap in com-
plexity of the problem between linear networks and arbitrary
networks.

In this paper, however, we present such a universal quantum
internet protocol working over any network topology, inspired
by the form of the AML bound analogous to the max-flow min-
cut theorem. In particular, we provide a protocol constructible
from any given quantum network, which runs quantum
repeater schemes in parallel over the network to provide
entanglement to two clients. The performance of this protocol
is derived from Menger’s theorem [31] in graph theory. By
this, it is shown that our protocol based on existing quantum
repeater schemes has no scaling gap with the AML bound
for arbitrary lossy optical channel networks. This is notable
in the sense that the existing repeater schemes—proposed as
feasible in the near future—have already had the potential to
be comparable with the best quantum internet protocols for
two clients—which have, though, not yet been discovered in a
practical form. Moreover, in an asymptotic limit, our protocol
is shown to be optimal for any quantum network composed
of practical channels such as erasure channels, dephasing
channels, bosonic quantum amplifier channels, and lossy
optical channels, irrespective of its purpose, i.e., entanglement
distribution or secret-key distribution. This means that our
protocol achieves a quantum or private capacity of such
practical networks. In general, the optimality of our protocol is
associated with outstanding problems in quantum information
theory such as additivity questions for quantum channels and
questions on the existence of a gap between the quantum
capacity and the private capacity.
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FIG. 1. Quantum network. The network is associated with a
directed graph G = (V,E) with set V of vertices and set E of
edges, where V is composed of Alice’s node A, Bob’s node B, and
intermediate nodes C1,C2, . . ., and Cn (n = 5 here) and a directed
edge e = X → Y in E for X,Y ∈ V specifies a quantum channel N e

to send a subsystem in node X to node Y . The goal here is to give
Alice and Bob pbits or ebits by using quantum channels {N e}e∈E and
LOCC.

II. QUANTUM INTERNET PROTOCOL
FOR TWO CLIENTS

Let us begin by reviewing quantum internet protocols for
two clients [21]. The quantum internet protocol will serve a
subnetwork to two clients, called Alice and Bob, to provide
resources for quantum communication, private bits (pbits) or
Bell pairs (ebits). The subnetwork is associated with a directed
graph G = (V,E) with set V of vertices and set E of edges
(see Fig. 1 as an example), where V is composed of Alice’s
node A, Bob’s node B, and intermediate nodes C1,C2, . . .,
and Cn and an edge e = X → Y in E for X,Y ∈ V specifies a
quantum channel N e(= NX→Y ) to send a subsystem in node
X to node Y . In general, the protocol begins by sharing a
separable state and then by using a quantum channel N e1

with e1 ∈ E. This is followed by LOCC among all the nodes,
giving an outcome k1 and a quantum state ρ̂

ABC1C2,...,Cn

k1
with

probability pk1 . In the ith round (i = 2,3, . . .), depending
on the previous outcome ki−1 = ki−1 · · · k2k1 (with k0 := 1),
the protocol may use [32] a quantum channel N eki−1 with
eki−1 ∈ E, followed by LOCC providing a quantum state

ρ̂
ABC1C2,...,Cn

ki
corresponding to an outcome ki with probability

pki |ki−1 . In a final round, say an lth round, the protocol provides

a quantum state ρ̂AB
kl

:= TrC1C2,...,Cn (ρ̂ABC1C2,...,Cn

kl
) close to a

target state τ̂ AB
dkl

in the sense ‖ρ̂AB
kl

− τ̂ AB
dkl

‖1 � ε with ε > 0,
from which log2 dkl

ebits for quantum teleportation or log2 dkl

pbits for the one-time pad are distilled. Therefore, the protocol
provides log2 dkl

ebits or pbits with probability pkl
, where

pki
:= pki |ki−1 · · · pk3|k2pk2|k1pk1 .

In general, the protocol is characterized by the average
numbers {l̄e}e∈E of times quantum channels {N e}e∈E are
used. l̄e with respect to the channel N e is described by
l̄e = ∑l−1

i=0〈δe,eki
〉ki

with the Kronecker delta δi,j , where 〈fki
〉ki

is the average of function fki
over possible outcomes ki of

the protocol, i.e., 〈fki
〉ki

= ∑
ki

pki
fki

for the probability pki
.

Then, the average l̄ of the total number of channel uses is
represented by l̄ := ∑

e∈E l̄e. Note that l̄ could be an average
value rather than a constant in general, because there are
protocols that determine their final round, depending on the
outcome ki (see [32]). Generally, the average obtained ebits

or pbits 〈log2 dkl
〉kl

may increase with l̄e. Hence, it would be
better to define a set {me}e∈E of parameters me associated
with an upper bound on average uses of channel N e, because
we can then focus on the set PQ(ε,{me}e∈E) [PP(ε,{me}e∈E)]
of protocols which present log2 dkl

ebits (pbits) with an error
�ε (in terms of the trace distance) by using quantum channel
N e l̄e times on average for each e ∈ E, satisfying l̄e � me for
any e ∈ E.

III. AGGREGATED QUANTUM REPEATER PROTOCOL

We introduce our protocol belonging to the set
PQ(ε,{me}e∈E), which is referred to as an aggregated quantum
repeater protocol. This protocol is based on running quantum
repeater protocols in parallel over the quantum network by
using quantum channels {(N e)⊗�me	}e∈E , where �z	 represents
the largest integer �z. The quantum repeater protocols used
here are allowed to be existing quantum repeater schemes
[4–20]. In fact, our protocol is defined as long as we have
entanglement generation schemes over channels N e and a
means for entanglement swapping, including probabilistic
ones. Of course, these devices can be more demanding for
achieving better performance, but we will show that our
protocol even based on existing quantum repeater schemes
has pretty good performance for practical quantum networks.

Suppose that we have entanglement generation schemes,
perhaps equipped with quantum error correction or entangle-
ment purification, over quantum channels {N e}e∈E , each of
which provides a state ρ̂e close to �me	Re

δ copies of a Bell

pair |�+〉e, i.e., ‖ρ̂e − |�+〉〈�+|⊗�me	Re
δ

e ‖1 � δ with δ > 0,
by using quantum channel (N e)⊗�me	 and LOCC. By running
these protocols all over the edges e ∈ E, we obtain a state⊗

e∈E ρ̂e with∥∥∥∥∥
⊗
e∈E

ρ̂e −
⊗
e∈E

|�+〉〈�+|⊗�me	Re
δ

e

∥∥∥∥∥
1

� |E|δ, (1)

where |E| is the cardinality of set E. Let us regard each of
the Bell pairs

⊗
e∈E |�+〉〈�+|⊗�me	Re

δ
e , a Bell pair |�+〉e for

instance, as an undirected edge e′ with the same two ends of
e, and let E′ be the set composed of all such edges e′. Then,
the Bell-pair network, i.e.,

⊗
e∈E |�+〉〈�+|⊗�me	Re

δ
e , can be

associated with an undirected graph defined by G′ := (V,E′)
(see Fig. 2 as an example). Here we invoke Menger’s theorem
in graph theory.

Menger’s theorem (edge version) [31,33]—In any graph
G′ with two distinguished vertices A and B, the maximum
number of pairwise edge-disjoint AB paths is equal to the
minimum number of edges in an AB cut.

Let us divide the set V of nodes into two disjoint sets, VA

including A and VB including B, satisfying VB = V \ VA. If
e ∈ EVA↔VB

denotes an edge whose two ends belong to VA

and VB , respectively, then the minimum number Mδ of edges
in an AB cut in the graph G′ is described by

Mδ := min
VA

∑
e∈EVA↔VB

�me	Re
δ . (2)

Then, Menger’s theorem states that there are Mδ pairwise edge-
disjoint AB paths in graph G′ (see Fig. 2 for example and see
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FIG. 2. Bell-pair network
⊗

e∈E |�+〉〈�+|⊗�me	Re
δ

e associated
with G′ = (V,E′). This is an example of the Bell-pair network for
Fig. 1. Each undirected edge e′ ∈ E′ represents a Bell pair |�+〉e. The
denominator and the numerator of a fraction describe �me	Re

δ and how
many Bell pairs are used and consumed in the aggregated quantum
repeater protocol, respectively. Dashed edges are unused Bell pairs.
Here the choice of VA = {A,C1,C3} in Eq. (2) gives Mδ = 8.

Ref. [33] for methods to find the paths). Since each Pi of
these AB paths {Pi}i=1,2,...,Mδ

corresponds to a linear chain

of Bell pairs in the Bell-pair network
⊗

e∈E |�+〉〈�+|⊗�me	Re
δ

e ,
the linear chain can be transformed into a Bell pair |�+〉AB

by performing entanglement swapping SPi
(including a Pauli

correction) over the intermediate nodes on Pi . Then, from
Eq. (1), we have

|E|δ �
∥∥∥∥∥
⊗
e∈E

ρ̂e −
⊗
e∈E

|�+〉〈�+|⊗�me	Re
δ

e

∥∥∥∥∥
1

�
∥∥∥∥∥TrC1C2,...,Cn ◦ S

(⊗
e∈E

ρ̂e −
⊗
e∈E

|�+〉〈�+|⊗�me	Re
δ

e

)∥∥∥∥∥
1

= ∥∥ρ̂AB − |�+〉〈�+|⊗Mδ

AB

∥∥
1, (3)

where S := SPMδ
◦ · · · ◦ SP2 ◦ SP1 and ρ̂AB := TrC1C2,...,Cn ◦

S(
⊗

e∈E ρ̂e). Therefore, the protocol, just like aggregating
quantum repeater protocols, provides Mδ ebits with error |E|δ
by using quantum channels {(N e)⊗�me	}e∈E .

IV. THE OPTIMAL PROTOCOL AND
A GENERAL UPPER BOUND

Clearly the aggregated quantum repeater protocol
belongs to the set PQ(|E|δ,{me}e∈E) ⊂ PP(|E|δ,{me}e∈E).
Therefore, for any Z ∈ {Q,P}, we have Mδ �
supPZ (|E|δ,{me}e∈E )〈log2 dkl

〉kl
, i.e.,

min
VA

∑
e∈EVA↔VB

�me	Re
δ � sup

PZ(|E|δ,{me}e∈E )
〈log2 dkl

〉kl
(4)

from Eq. (2). The right-hand side of this inequality rep-
resents the theoretical optimal performance for the set
PZ(|E|δ,{me}e∈E) of protocols. Normally, it is highly non-
trivial to obtain an explicit expression for this optimal perfor-
mance, because the optimization should be taken over arbitrary
protocols in the set PZ(|E|δ,{me}e∈E) which could include
even ones based on multiparty entanglement purification,
quantum network coding, and so on.

On the other hand, there is now the AML bound that upper
bounds the performance of any quantum internet protocol

defined in Sec. II as

〈log2 dkl
〉kl

� min
VA

l−1∑
i=0

∑
ki∈KVA↔VB

pki
Esq(N eki ) + g(ε). (5)

Here g is a continuous function with the property of
limε→0 g(ε) = 0 (see Ref. [21] for the explicit expression),
Esq(NX→Y ) is the squashed entanglement of the channel
NX→Y (see [34] for its definition), and ki ∈ KVA↔VB

repre-
sents that the protocol uses a quantum channel N eki between
a node in VA and a node in VB according to the outcome ki .
Note that the squashed entanglement of the channel in Eq. (5)
is a single-letter formula, that is, it can be evaluated as a
function of a single channel use. In fact, by using this feature,
upper bounds on the squashed entanglement for various noisy
quantum channels have been derived [22,23,36]. For any
Z ∈ {Q,P}, by applying the AML bound (5) to protocols in
the set PZ(|E|δ,{me}e∈E) and rephrasing it in terms of {l̄e}e∈E ,
we obtain

sup
PZ(|E|δ,{me}e∈E )

〈log2 dkl
〉kl

� min
VA

∑
e∈EVA↔VB

meEsq(N e) + g(|E|δ) (6)

from l̄e � me. Hence, combined with Eq. (4), the optimal
performance of the set PZ(|E|δ,{me}e∈E) of protocols is sand-
wiched between the performance of the aggregated quantum
repeater protocol and the AML bound in a symmetric manner.

For any Z ∈ {Q,P}, the efficiency ηZ of the aggregated
quantum repeater protocol to the optimal protocol can be lower
bounded as

ηZ := Mδ

supPZ (|E|δ,{me}e∈E )〈log2 dkl
〉kl

(7)

�
(mine∈E�me	/me)

[
mine∈E Re

δ/Esq(N e)
]

1 + g(|E|δ)/
[

minVA

∑
e∈EVA↔VB

meEsq(N e)
] (8)

from Eqs. (2) and (6). This implies that, as long as our
aggregated quantum repeater protocol is based on entangle-
ment generation schemes with Re

δ = �[Esq(N e)] for �me	 and
with δ � 0, the efficiency is ηZ = �(1). This means that our
protocol can provide the same number of ebits or pbits as the
optimal protocol, by running our protocol merely η−1

Z = O(1)
times more than the optimal protocol, irrespectively of the
network topology and the physical size of the network.

V. AGGREGATING EXISTING QUANTUM
REPEATER SCHEMES

The most practically interesting networks are purely optical
networks composed of optical channels {Oe}e∈E . The domi-
nant impediment to this network is photon loss in the channel
Oe [37], which increases exponentially with the channel length
Le. In fact, the transmittance T e of the channel Oe can
be described as T e := e−Le/Latt with attenuation length Latt

(Latt � 22 km for a standard telecom optical fiber). So far,
against the photon loss, to perform quantum communication
efficiently over linear networks, quantum repeater protocols
have been proposed with existing physical devices [4–20].
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However, with Eq. (8), we can show that our protocol based
on existing quantum repeater schemes has no scaling gap with
the optimal protocol, even for arbitrary network topology.

Suppose that our protocol uses the single-photon-based
entanglement generation schemes in existing quantum repeater
protocols [5,6,11,12] (including the Duan-Lukin-Cirac-Zoller-
type (DLCZ-type) schemes [5,12]). Simple linear-optics-
based implementations of these schemes cause noisy and
probabilistic nature of quantum operations. But, as long as the
coherence time of quantum memories is reasonably long, these
schemes can provide Re

δ = �(T e) with δ � 0 without invoking
complicated entanglement purification and quantum error
correction [5,12]. This is because the success probabilities
of the devices are independent of T e and the so-called
“built-in entanglement purification” [5] equips the schemes
with resilience to realistic noise [5,12]. On the other hand,
the squashed entanglement of the channel Oe is Esq(Oe) �
2 log2[(1 + T e)/(1 − T e)] [22], whose upper bound is approx-
imated by 4T e/ ln 2 for T e � 1. Therefore, from Eq. (8), the
efficiency ηZ as well as Re

δ/Esq(Oe) is �(1) for small T e.
The assumptions of T e � 1 are satisfied by increasing the
physical size of the optical network, i.e., the channel lengths
{Le}e∈E , for a fixed graph G. Hence, with respect to the
physical size of the optical network, our protocol based on the
single-photon-based entanglement generation schemes has no
scaling gap with the optimal protocol.

So far we have assumed that the entanglement swapping
along the AB paths {Pi}i=1,2,...,Mδ

works deterministically.
However, in practice, there might be the case where we can
perform the entanglement swapping just probabilistically at
best. For instance, we may be able only to use simple linear-
optics-based Bell measurement as in DLCZ-type schemes
[5,12]. Even in this case, our protocol has no scaling gap
with the optimal protocol as long as the coherence time of
quantum memories is reasonably long. Here we just need to
implement the entanglement swapping along every AB path in
a “knockout tournament” manner [5,12]. In fact, again thanks
to the built-in entanglement purification [5], the infidelity of
the final AB pair obtained from an AB path Pi increases
only linearly with the number of nodes on Pi , while the
overhead for channel uses along the AB path Pi increases only
logarithmically with that number [5,12] (see [38]). That is,
these overheads depend only on the graph G of the considered
optical network, rather than its physical size. Therefore, with
respect to the physical size, our protocol even based on existing
quantum repeater schemes has no scaling gap with the optimal
protocol.

VI. ASYMPTOTIC LIMITS

So far the average numbers l̄e of channel uses have
limitation in the form l̄e � me. We move on taking the
asymptotic limits of our protocol, the optimal protocol, and
the AML bound. We first introduce frequency f e := me/m

with m := ∑
e∈E me. For a fixed f e > 0, me → ∞ holds

in the limit of m → ∞, for which, by optimizing the
entanglement generation protocols for our protocol, Re

δ can
reach the quantum capacity Q↔(N e) of channel N e assisted
by unlimited forward and backward classical communication
in the limit of δ → 0, that is, Re

δ → Q↔(N e). Combined with

Eq. (4) and the asymptotic limit of the AML bound (6), this
gives

min
VA

∑
e∈EVA↔VB

f eQ↔(N e)

� lim
δ→0

lim
m→∞ sup

PZ (|E|δ,{mf e}e∈E )

〈log2 dkl
〉kl

m

� min
VA

∑
e∈EVA↔VB

f eEsq(N e), (9)

for any Z ∈ {Q,P}. Hence, the quantum capacity and the
private capacity per average total channel use are sandwiched
by the minimum AB cuts over functions Q↔ and Esq of the
quantum channels {N e}e∈E (see [40] for another asymptotic
limit on the capacities per time).

The right-hand side of Eq. (9) is the AML bound applied to
arbitrary protocols that may include even multiparty entangle-
ment purification and quantum network coding. However, this
bound can be estimated thanks to being written in terms of the
single-letter quantity. On the other hand, the left-hand side of
Eq. (9) is the tight bound for the aggregated quantum repeater
protocol that does not use such multiparty protocols at all. But,
this bound is described in terms of the quantum capacities that
are intractable to be estimated in general. Of course, since
there is a set of quantum channels [41] for which the gap
between the quantum capacity and the squashed entanglement
of the channel can be arbitrary large, the sandwich relation (9)
could be weak to bound the optimal performance of a quantum
network including such channels. However, it is still an open
problem whether this type of gap exists even for practically
important quantum channels. For instance, remember that the
sandwich relation (9) is excellent for purely optical networks
composed of lossy optical channels {Oe}e∈E as implied by
Q↔(Oe)/Esq(Oe) � 1/2 for any lossy optical channel Oe

(thanks to Q↔(Oe) = 2 log2[1/(1 − T e)] per pulse [27]) and
by Eq. (8) [showing ηZ = �(1) here, again].

VII. ON THE OPTIMALITY

Finally, we show that the aggregated quantum
repeater protocol is indeed optimal for a wide
range of practical quantum networks. To show
this, let Q↔({f e/f VA↔VB ,N e}e∈EVA↔VB

) [P ↔({f e/f VA↔VB ,

N e}e∈EVA↔VB
)] with f VA↔VB := ∑

e∈EVA↔VB
f e denote the

quantum capacity (the private capacity) between VA and
VB , defined under the asymptotic limit of m → ∞ for the
paradigm where a fictitious party holding all the nodes in
VA and another fictitious party holding all the nodes in VB

are allowed to use quantum channels N e between them (i.e.,
e ∈ EVA↔VB

) l̄e(�mf e) times on average and LOCC in order
to distill ebits (pbits). Since any quantum internet protocol
can be regarded as a bipartite protocol between VA and VB

[21], we have

lim
δ→0

lim
m→∞ sup

PQ(|E|δ,{mf e}e∈E )

〈log2 dkl
〉kl

m

� min
VA

f VA↔VB Q↔({f e/f VA↔VB ,N e}e∈EVA↔VB
) (10)
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for entanglement distillation for Alice and Bob and

lim
δ→0

lim
m→∞ sup

PP(|E|δ,{mf e}e∈E )

〈log2 dkl
〉kl

m

� min
VA

f VA↔VB P ↔({f e/f VA↔VB ,N e}e∈EVA↔VB
) (11)

for secret-key distillation for them. Hence, if quantum channels
{N }e∈E in the network satisfy

Q↔({f e/f VA↔VB ,N e}e∈VA↔VB
) �

∑
e∈VA↔VB

f eQ↔(N e)

f VA↔VB
,

(12)

the aggregated quantum repeater protocol is optimal for the
entanglement distribution from Eqs. (9) and (10). Similarly, if
quantum channels {N }e∈E in the network satisfy

P ↔({f e/f VA↔VB ,N e}e∈VA↔VB
) �

∑
e∈VA↔VB

f eP ↔(N e)

f VA↔VB
,

(13)

P ↔(N e) = Q↔(N e), (14)

the aggregated quantum repeater protocol is optimal even for
the secret-key distillation. In general, conditions (12)–(14)

might not be satisfied [42–46]. However, our protocol is
shown to be optimal for a wide range of practical quantum
networks, irrespective of entanglement distribution or secret-
key distribution. In fact, as shown [27] by Pirandola et al.
(see [47]), all the conditions (12)–(14) are satisfied by a
wide range of practical quantum channels such as erasure
channels, dephasing channels, bosonic quantum amplifier
channels, and lossy optical channels. This means that the
aggregated quantum repeater protocol is optimal for arbitrary
quantum networks composed of these practical channels. More
importantly, the fact derived here shows that the optimality of
the aggregated quantum repeater protocol is now related to
fundamental questions on whether given quantum channels
satisfy relations (12)–(14) or not.

Note added. Recently, another manuscript [30] appeared,
including a protocol that works optimally for any distillable
teleportation stretchable channel network under the “flooding”
condition.
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