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Proposal for automated transformations on single-photon multipath qudits
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We propose a method for implementing automated state transformations on single-photon multipath qudits
encoded in a one-dimensional transverse spatial domain. It relies on transferring the encoding from this domain
to the orthogonal one by applying a spatial phase modulation with diffraction gratings, merging all the initial
propagation paths by using a stable interferometric network, and filtering out the unwanted diffraction orders.
The automation feature is attained by utilizing a programmable phase-only spatial light modulator (SLM)
where properly designed diffraction gratings displayed on its screen will implement the desired transformations,
including, among others, projections, permutations, and random operations. We discuss the losses in the process
which is, in general, inherently nonunitary. Some examples of transformations are presented and, considering
a realistic scenario, we analyze how they will be affected by the pixelated structure of the SLM screen. The
method proposed here enables one to implement much more general transformations on multipath qudits than
is possible with a SLM alone operating in the diagonal basis of which-path states. Therefore, it will extend the
range of applicability for this encoding in high-dimensional quantum information and computing protocols as
well as fundamental studies in quantum theory.
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I. INTRODUCTION

The physically allowed transformations of quantum states,
namely, quantum operations, are one of the basic requirements
for any task in quantum information processing and computing
[1]. They are also at the core of many fundamental issues in
quantum theory, such as the formulation of contextuality in
terms of state transformations [2,3].

The optical approaches on these phenomena require the
ability to implement operations on the photonic degree of
freedom used to encode information. For instance, the single-
photon polarization offers the simplicity for dealing with the
state transformations, although it is constrained to lie in a
two-dimensional Hilbert space. This rules out any possibility
of accessing higher-dimensional spaces with single-photon
states. That is, with this encoding one is restricted to qubit-
based applications only, losing the many advantages that can be
exploited from high-dimensional encodings [4–6]. However,
the transverse spatial profile of a single-photon multimode
field has, in principle, no limit in the information content
it can carry out. This can be seen by decomposing the
field profile into any infinite orthonormal discrete basis of
functions, such as Hermite-Gauss or Laguerre-Gauss functions
[7]. In particular, the Laguerre-Gauss decomposition shows
that one can encode information in the infinite-dimensional
orbital angular momentum (OAM) states of single photons [8].
Restricting this encoding to finite D-dimensional subspaces,
one generates OAM qudit states which is, currently, one of
the main experimental approaches to investigate practical
and fundamental issues in quantum mechanics for high-
dimensional systems [9–14].

*Corresponding author: spadua@fisica.ufmg.br

Another successful and, perhaps, simpler approach to
encode information in high-dimensional spaces using the
photonic spatial degree of freedom is to split its transverse
profile into a finite set of D distinguishable spatial modes of
propagation. This can be done in many ways, for instance, with
a multiport beam splitter [15], an array of slits (or pinholes)
[16,17], a multicore optical fiber [18–20], and so on. This
type of encoding, which we shall refer to as a multipath qudit,
may be implemented either in a one-dimensional (1D) spatial
domain (e.g., with an array of slits) or in a two-dimensional
spatial domain (e.g., with a multicore fiber). Here, we will
consider only 1D single-photon multipath qudits.

Recently, the use of programmable spatial light modulators
(SLMs) has enhanced the potential for this encoding, providing
advances ranging from automated state preparation [21] to
automated state transformations [22]. In turn, these advances
provided a fertile ground for many recent applications of
these multipath qudits such as the demonstration of novel
quantum tomographic techniques [23,24], quantum algorithms
[25], entanglement characterization [26] and concentration
[27], simulation of decoherence [28], quantum key distribution
[29], state discrimination [30], and contextuality tests [31–33].
However, regarding the transformations (in which the final
state is preserved), so far the operations implemented via SLMs
have been restricted to diagonal ones in the basis of which-path
states. This brings an unwanted constraint: the impossibility
of making a projection while preserving the final state,
even though the probability distribution associated with the
projection can be obtained with current techniques [24,33]. In
addition, they are, in general, state dependent; i.e., if one wants
to implement a given transformation on the qudit, the SLM
must be configured differently depending on the input state
[22,27]. These features, altogether, are limiting and unwanted
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if more general transformations are required. For instance,
transformations with nonzero off-diagonal elements could
be used to simulate quantum jumps [28]; state-independent
operations preserving the final state would be suitable to
implement sequential transformations [34,35].

With the goal of extending even more the range of
applicability for these 1D single-photon multipath qudits, in
this work we propose a method for implementing automated
transformations on their states, which will be much more
general than the current ones described above. Our method
relies on transferring the encoding from the 1D spatial domain,
say x, to the orthogonal one, y. This will be accomplished by
applying a spatial phase modulation with diffraction gratings
in the y direction, merging all the initial propagation paths
in the x direction by using a stable interferometric network,
and filtering out the unwanted diffraction orders at the output
plane. The automated feature is attained by utilizing a single
programmable phase-only SLM, where properly designed
diffraction gratings displayed on its screen will implement
the desired transformations. We discuss the losses in the
process which is, in general, inherently nonunitary, present
some examples of transformations, and analyze how they will
be affected by the pixelated structure of the SLM screen.

This paper is organized as follows: In Sec. II we briefly
review the formalism of quantum operations, define the
multipath qudit states encoded in a 1D spatial domain, and
present in more detail the limitations regarding previous state
transformation on slit states with SLMs. In Sec. III we describe
our proposal for automated transformations on these qudits. In
Sec. IV we present some examples of possible transformations,
discuss how to implement them in practice, and analyze the
effects of the pixelation in the SLM. Finally, in Sec. V we
conclude and discuss some perspectives.

II. BASIC CONCEPTS

A. Quantum operations

Mathematically, operations in quantum states are rep-
resented by a linear, completely positive, and trace non-
increasing map � [1,36] transforming a quantum state ρ into
another quantum state ρ ′, i.e.,

ρ → ρ ′ = �(ρ), (1)

where ρ and ρ ′ act on D- and d-dimensional Hilbert spaces
(H and H′), respectively. The map � always admits a
decomposition called Kraus representation, in which

�(ρ) =
∑

l

KlρK
†
l , (2)

where {Kl} is the set of Kraus operators. For a given �, such a
set can always be found with at most Dd elements [36]. They
satisfy

∑
l KlK

†
l � I, where I is the identity operator acting

on H and the equality holds for trace-preserving maps.
In the presentation of our proposal in Sec. III, we focus

our discussion on transformations (M), both unitary and
nonunitary, taking a pure state into another pure state, i.e.,

|ψ〉 → |ψ ′〉 = M|ψ〉. (3)

This expression can be obtained as a special case of (2)
where only one Kraus operator acts on the incoming state.
In Sec. IV B we shall extend the treatment to more general
transformations given by a convex combination of operators,
which also shows that this proposal is not limited to pure states.

B. Single-photon multipath encoded qudits

Let us consider a single-photon multimode field in paraxial
and monochromatic approximations propagating along the z

direction. Assuming purity, we can write its state in a given
transverse plane at z as [7,16,37]

|�z〉 =
∫

dx ψz(x)|1x〉, (4)

where x = (x,y) is the transverse position coordinate and
ψz(x) is the field amplitude profile at plane z and satisfies∫

dx|ψz(x)|2 = 1. Now, let ψz(x) be given by a superposition
of Gaussian functions of radius ωz centered at y = 0 and
x = xl (for l = 1, . . . ,D), and complex coefficients αl . Thus,
the amplitude is given by

ψz(x) =
D∑

l=1

αlA exp

[
− (x − xl)2 + y2

ω2
z

]
, (5)

where A is a normalization factor and
∑

l |αl|2 = 1. We define
the lth Gaussian mode displaced in the x direction as

∣∣X z
l

〉 ≡
∫

dx A exp

[
− (x − xl)2 + y2

ω2
z

]
|1x〉

=
∫

dx Gz(x − xl)Gz(y)|1x〉, (6)

where Gz(ξ ) = √
A exp (−ξ 2/ω2

z ). Replacing Eqs. (5) and (6)
into Eq. (4), we finally arrive at

|�z〉 =
D∑

l=1

αl

∣∣X z
l

〉
. (7)

If xl = (l − 1)χ in Eq. (5) and χ � √
2ωz, the overlap

between the Gaussians will be negligible and, with good
approximation, we will have〈

X z
l

∣∣X z
j

〉 = e
− χ2(j−l)2

2w2 ≈ δlj , (8)

so that the states {|X z
l 〉}Dl=1 will be nearly mutually orthogonal.

Therefore, the single-photon state in Eq. (7) will represent
a multipath qudit with the information encoded in the paths
defined by the Gaussian modes (6) in a 1D spatial domain. This
state can be prepared, for instance, by sending a single photon
with a collimated Gaussian profile ψz(x) through a properly
designed set of wave plates and polarizing beam displacers, as
recently shown in Refs. [15,34,38–40].

C. Diagonal operations with a SLM and slit states

Slit states are defined by a discretization of the spatial
degree of freedom of photons in a transversal plane. This
can be done with single-photon source [29,31–33] as well
as twin photons generated by spontaneous parametric down
conversion [7,16]. The discretization usually is accomplished
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by displaced rectangle functions at the so called image plane.
For the single-photon case, the basis states are defined as

|l〉 =
∫

dx Rect(x − ld)|1x〉, (9)

where l index the basis states, d is the distance between the
slits, and Rect(x) is the rectangle function. Slit states are useful
to encode qudits, since the preparation setup is suitable to
create high-dimensional states [16,21] and can be automated in
both state preparation [21] and transformation [22,24,26,33].

However, manipulation of these states, e.g., slit state trans-
formation, is limited by the fact that an operation transforming
any basis state into a linear combination of these states is
difficult and has not yet been described. This means that
transformations which require |l〉 	→ ∑

l αl|l〉,
∑

l |αl|2 � 1,
are not easy to achieve with this kind of encoding. This implies
a limitation to making general transformations, as described in
Sec. II A, since they might require that each state component
transform into a different linear combination of basis states.
Slit state transformations are usually restricted to

MSlits =
∑

l

al|l〉〈l|, (10)

being represented by diagonal matrices in the slit basis,
where al are complex coefficients and M†M ∝ I. Different
experiments have been done with slit states, such as entan-
glement witness measurement [26], qutrit tomography [24],
and contextuality tests [31,33], that measure the statistics of
operators not described by Eq. (10). This is done by using the
appropriate phase and amplitude manipulation of each state
component at the slit basis with a spatial light modulator
followed by filtering at the right spot at the Fourier plane.
As this is done with programmable SLMs, this process is
automated. This method, however, does not deliver the qudit
that results from the operation, since the slit encoding is
destroyed at the Fourier plane. This kind of limitation forbids
sequential operations and quantum dynamics simulation with
quantum jumps [28].

This kind of difficulty does not arise, for instance, on
Gaussian multipath encoding, described in Sec. II B. State
transformations for this kind of encoding are well accom-
plished by interferometry [15,34], since Gaussian amplitudes
are suitable to propagation through larger distances than
rectangle amplitudes. However, achieving automation and
scalability with hand-made interferometers is a difficult task.

One possibility to enhance the efficiency of these in-
terferometers is the use of photonic chips [41,42], which
are integrated and can have adaptable operations [43]. Here
we follow a different—while not exclusive—path, where
operations are made by a SLM.

III. TRANSFORMATIONS ON MULTIPATH QUDIT STATES

We now describe our proposal to implement a given
operation represented by the matrix M that transforms the
multipath qudit state |�z〉 in Eq. (7) in the following way:

M : |�z〉 → |� ′
z′ 〉 =

d∑
l=1

βl

∣∣Yz′
l

〉
, (11)

where
∑

l |βl|2 � 1, d is an arbitrary positive integer, and
|Yz′

l 〉 is given by Eq. (6) by replacing x by y and vice
versa. The cases where

∑
l |β|2 < 1 can be interpreted as a

nondeterministic probability of having the intended operation
achieved. Equation (11) shows that the initial qudit state,
encoded as a superposition of Gaussian modes displaced
along the x direction at an input transverse plane z, will be
transformed into another qudit state given by the superposition
of the Gaussian modes along the y direction at an output
transverse plane z′.

A. Phase modulation in the y direction

The first key element in our proposal is the use of a
phase-only SLM acting on the y direction of the single-photon
field profile. Consider a rectangular SLM divided into D

non-overlapping rectangular regions of width a > 2ωz and
centered at xl = (l − 1)χ for l = 1, . . . ,D. At each region we
address a given function �l(y) to be specified later. Thus the
transmission function of this SLM can be written as

T (x) =
D∑

l=1

ei�l (y)Rect

(
x − (l − 1)χ

a

)
Rect

( y

L

)
, (12)

where L is the size of the SLM in the y direction and Rect(·) is
the rectangle function. Figure 1 shows an example of a phase
mask we shall consider here. The SLM acts according to the
polarization state of the incoming field. We assume that the
photon is horizontally polarized which will be the working
direction of the SLM. With these assumptions, each Gaussian
mode l is modulated by the phase function ei�l (y) only when
the photon polarization is horizontal. Photons with vertical
polarization are not modulated. Therefore, using Eqs. (5) and
(12), the transmitted field profile ψzT

(x) for the horizontal
polarization component will be given by

ψzT
(x) = T (x)ψz(x)

≈
D∑

l=1

αlGz(x − xl)Gz(y)ei�l (y). (13)

l=8

a

L

x

y

l=1 l=2 l=3 l=4 l=5 l=6 l=7

FIG. 1. Example of a phase mask addressed at the SLM that
we will consider in this work. Its transmission function is given by
Eq. (12) for D = 8, where the �l(y)’s are diffraction gratings.
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To set the notation for the next discussion, the photon state in a
given transverse plane z1 after transmission through the SLM
will be

D∑
l=1

αl

∫
dx Gz1 (x − xl)Pz1{Gz(y)ei�l (y)}|H 〉|1x〉, (14)

where |H 〉 is the horizontal polarization state, that will be
explicitly shown in the following calculations;Pz1{·} describes
the propagation of the modulated y component of the field
profile by a distance z1. Its actual effect will be described later.
The x component of the profile, which is not modulated by the
SLM, propagates without changing its shape, since we have
considered it to be collimated.

B. Merging the paths in the x direction

The second key element of this proposal is to merge the
D paths in the x direction into a single one using the photon
polarization as an auxiliary system and the interferometric
arrangement similar to the ones in [40,44,45] sketched in
Fig. 2. This interferometer is composed by D − 1 polarizing
beam displacers (PBDs), polarizers and optical path compen-
sators, and 2D − 2 half-wave plates (HWPs). In the PBDs
we assume that a vertically polarized photon is transmitted
without being disturbed while a horizontally polarized one
undergoes a lateral displacement in the x direction by a

distance χ equal to the center-to-center separation between
neighbor paths. For each PBD, the HWPs before and after it
are set to transform the incoming polarization state into |V 〉 and
|H 〉, respectively. The optical compensators are birefringent
materials that compensate the path length difference between
the horizontal and vertical components while the polarizers
after the PBDs are used to erase the which-path information,
thus ensuring the required interference effect.

Let us see now how the multipath qudit state after the action
of the SLM [Eq. (14)] evolves along this setup and how the
paths along the x direction are combined by the interferometer.
We start the procedure for the paths 1 and 2 in Fig. 2. In path
2, the HWP transforms |H 〉 → |V 〉. After the PBD and the
compensator, paths 1 and 2 are merged and Gz1 (x − x1) →
Gz2 (x − x2). Polarizer 1 projects the photon polarization in
this merged path into 1√

2
(|H 〉 + |V 〉) and a HWP transforms

it back to |H 〉. After all this, the state postselected from the
polarization projection becomes

1√
2

2∑
l=1

αl

∫
dx Gz2 (x − x2)Pz2{Gz(y)ei�l (y)}|H 〉|1x〉

+
D∑

l=3

αl

∫
dx Gz2 (x − xl)Pz2{Gz(y)ei�l (y)}|H 〉|1x〉,

(15)

FIG. 2. Sketch of the proposed setup for implementing automated state transformations on single-photon multipath qudit states. A source
generates such states encoded in the x direction [see Eq. (7)] with horizontal polarization. A programmable phase-only SLM addressed by
a phase mask given by (12) modulates the y component of the field profile, transforming the qudit state into (14). The first inset (I1) shows
a representation of the photon path state at this point. The interferometric arrangement described in the text accomplishes the transfer of the
encoding from x to y direction, generating the state (17). The cylindrical lens, which has the SLM in its focus, ensures that the diffraction orders
will not separate too much and have approximately parallel propagation along the interferometer. It also ensures that they will be described
at the posterior focal plane by the Fourier coefficients of the gratings displayed at the SLM screen. The transformations are defined by the
phase gratings displayed at the SLM screen, as we show in Sec. III C, and produce the unfiltered state (26). After a proper spatial filtering, the
transformation (11) is accomplished, and the transformed multipath qudit state is now encoded in the y direction, as illustrated in the second
inset (I2).
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where the first term corresponds to the merged paths and
the second to the remaining D − 2 paths. This procedure is
iterative: for p = 2, . . . ,D, the polarization in the path p is
transformed as |H 〉 → |V 〉; then this path is merged with
path p − 1 (which may result from previous mergings) in
the (p − 1)th PBD. In order to erase the path information
and minimize losses, the (p − 1)th polarizer projects the
photon polarization into 1√

p
(
√

p − 1|H 〉 + |V 〉). Finally, this
polarization state is transformed to |H 〉. The general state
postselected after these transformations can be written as

1√
p

p∑
l=1

αl

∫
dx Gzp

(x − xp)Pzp
{Gz(y)ei�l (y)}|H 〉|1x〉

+
D∑

l=p+1

αl

∫
dx Gzp

(x − xl)Pzp
{Gz(y)ei�l (y)}|H 〉|1x〉,

(16)

now, with the first (second) term corresponding to the merged
p paths (remaining D − p paths).

Therefore, at the output of the interferometer in Fig. 2, i.e.,
for p = D in the above description, the postselected state of
the output photon will be transformed as

|�z〉 → |� ′
zD

〉 ≡
D∑

l=1

α′
l

∣∣WzD

l

〉
, (17)

where α′
l = αl/

√
D and∣∣WzD

l

〉 =
∫

dx GzD
(x)PzD

{Gz(y)ei�l (y)}|1x〉. (18)

In Eq. (17) the state |� ′
zD

〉 is not normalized, as will be
explained in Sec. III C. In the above equation, we dropped
the polarization state which will play no role from now on
and redefined the origin in the x direction making xD = 0.
Note that the spatial mode label l is now only in the y

component of the single-photon field profile. Thus, with the
whole procedure described so far we were able to transfer the
encoding from a one-dimensional transverse spatial domain,
x, to the orthogonal one, y. However, in order to implement
the proposed transformation (11), we must be capable of
transforming these D modes |WzD

l 〉 defined in the y direction
into a set of d orthogonal modes, which is our next topic.

As we will see, the �l(y) functions in the SLM modulating
the y component of the field profile will be phase gratings.
Thus, for the interferometer to work properly as we described,
the generated diffraction orders in the y axis must propagate
in parallel to each other and without separating too much (in
order to pass through the optical elements). To achieve this,
we consider the SLM to be in the focus of a cylindrical lens as
shown in Fig. 2.

C. Creating orthogonal modes in the y direction

In order to discuss the creation of the orthogonal modes in
the y direction, we first define the posterior focal plane of the
cylindrical lens as our plane of observation after merging the D

paths, i.e., zD = f , as shown in Fig. 2. In this case, we replace
P{·} → F{·} in Eq. (18), where F{·} represents the Fourier
transform of the field profile in the y direction [46]. At the focal

plane we have ky = ky/f , where ky is the y component of the
photon wave vector and k is its wave number. Thus, we can
denote the lth y-component mode function to be computed, as

Gl(y) = F{Gz(y
′)ei�l (y ′)}(ky). (19)

If the �l(y ′)’s are periodic functions with period T , we can
expand it into the Fourier series

ei�l (y ′) =
∞∑

j=−∞
Cjle

2πijy ′/T , (20)

where Cjl are the corresponding Fourier coefficients Cjl =
1
T

∫ T

0 dy ′ ei�l (y ′)e−2πijy ′/T . Therefore, Eq. (19) becomes

Gl(y) =
∞∑

j=−∞
CjlF{Gz(y

′)e2πijy ′/T }(ky)

=
∞∑

j=−∞
CjlF{Gz(y

′)}(ky − 2πj/T )

≡
∞∑

j=−∞
CjlG̃f

[
k

f
(y − yj )

]
, (21)

where G̃f = F{Gz} and yj = 2πjf/T k. From Eqs. (17) and
(18), the single-photon field profile at the focal plane of the
lens, ψ ′

f (x), will be given by

ψ ′
f (x) =

D∑
l=1

α′
l

∞∑
j=−∞

CjlGf (x)G̃f

[
k

f
(y − yj )

]

≡
∞∑

j=−∞
β ′

jGf (x)G̃f

[
k

f
(y − yj )

]
, (22)

where, recalling that α′
l = αl/

√
D,

β ′
j = 1√

D

D∑
l=1

αlCjl. (23)

Since we considered the qudits encoded into Gaussian spatial
modes [see Eq. (5)], the Fourier transforms G̃f [(y − yj )k/f ]
are also Gaussian beams with a waist radius ω′

f = 2f/ωzk.
The field profile will then be a superposition of Gaussian
modes along the y directions separated by a distance �y =
|yj − yj+1| = 2πf/T k. If the grating period satisfies T <

πωz/2, the overlap between these Gaussian modes will be
negligible and, similarly to Eq. (8),〈

Yf

l

∣∣Yf

j

〉 ≈ δlj , (24)

where ∣∣Yf

j

〉 =
∫

dx Gf (x)G̃f

[
k

f
(y − yj )

]
|1x〉. (25)

Therefore, using Eqs. (22), (23), and (25), the single-photon
state from the interferometer—after the action of the SLM—
will be given by

|� ′
f 〉 = 1√

D

D∑
l=1

∞∑
j=−∞

αlCjl

∣∣Yf

j

〉 =
∞∑

j=−∞
β ′

j

∣∣Yf

j

〉
. (26)
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It is important to note that the factor 1/
√

D that arises because
of the necessity of erasing the path information generally leads
to losses, except in specific cases (such as the projection case,
discussed in Sec. IV), and so 0 �

∑
j |β ′

j |2 � 1. This implies
that there is a probability p = ∑

j |β ′
j |2 � 1 of the desired

transformation being in fact applied to the incoming state and
if further transformations or measurements in the resulting
qudit are required, this fact has to be considered.

Comparing Eqs. (11) and (26), one can see that the state
transformation |�z〉 → |� ′

f 〉 is determined by the Fourier
coefficients {Cjl} obtained from the Fourier expansion of the
phase diffraction gratings addressed at the SLM (despite a pos-
sible renormalization). More specifically, each coefficient β ′

j in
Eq. (23) of the transformed state is constructed by multiplying
each initial state coefficient αl by the j th Fourier coefficient
from the lth diffraction grating, Cjl , and adding them together.
This means that in order to have a transformation represented
by the matrix M in Eq. (3), it is necessary to choose suitable
gratings in order to have Cjl ∝ mjl ; each �l corresponds to the
lth column of the implemented M. Since the gratings may be
generated and controlled in an automated way in the SLM, the
transformations proposed here can be completely automated
as well.

D. Spatial filtering

The role of the spatial filtering is to define a finite Hilbert
space of dimension d for the resulting transformed state,
truncating the sum in expression (26) which takes into account
all the diffraction orders. It can be done by filtering out all
but d orders, considering the remaining orders as losses. This
can be implemented at the output of the interferometer, at the
posterior focal plane of the lens (as depicted in the second inset
of Fig. 2), or as soon as the orders can be distinguished. For
simplicity, we will assume that in either case the same orders
are filtered in each path in the xz plane. This is not necessarily
the case if one filters the orders before merging the paths with
the interferometer. Let us use the following nomenclature: the
orders j that are not filtered belong to the interval j1 � j � j2,
where j2 = j1 + d − 1. Then, the fraction of photons that will
be lost by spatial filtering is given by

τM =
D∑

l=1

⎛
⎝ j1−1∑

m=−∞
|Clm|2 +

∞∑
n=j2+1

|Cln|2
⎞
⎠. (27)

It is important to note that this τM factor depends on the
operation implemented, represented by the matrix M, and we
will see some numeric values for some examples in Sec. IV.
The factor τM can also be considered as a reduction of the
probability to implement the operation and has to be accounted
for, along with

∑
j |β ′

j |2, if renormalization is required. With
the filtering, the state in Eq. (26) is modified as follows:

|�f 〉 =
D∑

l=1

j2∑
j=j1

αl√
D

Cjl|Yj 〉 =
d∑

j ′=1

βj ′
∣∣Yf

j ′
〉
, (28)

where j ′ = j − j1 + 1. We can observe that the elements of
the matrix that represents the operation M are closely related
to the coefficients of the Fourier series for each region, i.e.,
mj ′l ∝ Cjl , but now considering only the nonblocked orders.

This can be written in matrix form as⎡
⎢⎢⎢⎣

m11 m12 . . . m1D

m21 m22 . . . m2D

...
...

...
...

md1 md2 . . . mdD

⎤
⎥⎥⎥⎦

= 1√
D

⎡
⎢⎢⎢⎣

Cj11 Cj12 . . . Cj1D

C(j1+1)1 C(j1+1)2 . . . C(j1+1)D

...
...

...
...

C(j1+d−1)1 C(j1+d−1)2 . . . C(j1+d−1)D

⎤
⎥⎥⎥⎦.

(29)

An operation that has a matrix representation with non-null off-
diagonal elements can then be implemented in spatial photonic
qudits, and the dimension d of the final state Hilbert space
can be different from the Hilbert space of the initial state, in
which case M is not a square matrix. As the transformation is
defined by the phase gratings displayed at the SLM screen, the
implementation of the operation can be completely automated.

IV. EXAMPLES AND TECHNIQUES

A. Some phase gratings and their operation

Equation (29) is the expression that summarizes the main
result of this work. It states that the matrix M representing
the transformation applied to the incoming multipath state is
completely defined by the phase grating configuration at the
SLM. Now we will show explicit examples of matrices M that
can be carried out by a few phase functions, making clear how
this proposal is able to implement a large class of automated
operations preserving the final state for sequential operations,
as discussed in Sec. II C.

Each phase grating �l(y) at the lth path defines the lth
column of M by its Fourier coefficients. We will show below
some examples of functions with their respective coefficients
{Cj }. These coefficients must be considered as the possible
entries of M (mjl) for the specific �l . We will show examples
where the Hilbert space dimensions of the initial and final
qudit states are equal (d = D = 3), and the spatial filtering will
select orders −1 � j � 1. As mentioned in Sec. III though,
this is not an intrinsic limitation of the proposal.

1. Sawtooth grating

The first grating to be considered is the sawtooth phase
grating, defined as

�(y) = ϕy

T
, 0 � y � T , (30)

where ϕ is the maximum phase value of the grating and T

is the period of the grating. The Fourier coefficients for this
idealized continuous grating are given by

C0 = eiϕ/2 sinc(ϕ/2), (31)

Cj = ei(ϕ/2−jπ) sinc(ϕ/2 − jπ ). (32)

It is important to note that each value of ϕ gives a
different set of coefficients, implying a different operation
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FIG. 3. The coefficients of the linear grating for the ideal (30), N = 6, and N = 10 pixelated (36) cases as functions of ϕ, for the orders
j = 0, ± 1. The phase in the plot is modulo 2π . The values of ϕ with negative sign represent the descending sawtooth grating while the
positive sign represents an ascending sawtooth grating. For each value of ϕ, a different column of the matrix representing the transformation is
defined. The interval {−4π,4π} shows a typical behavior for the orders j = ±1 and j = 0. It is possible to see that this grating can be used at
the regions of the SLM in order to make permutation operations, since Cm̄ = 1 for ϕ = m̄2π , in the ideal case (35). The pixelation affects the
diffraction efficiency for the modulus squared and can impinge differences of up to π at the phase calculated in the ideal case. In the range and
orders used in the examples of this section, the diffraction efficiency is affected by approximately 8% for the N = 6 case. In the limit N → ∞
the pixelated and ideal coefficients as functions of ϕ coincide.

implemented in the initial state component (lth component).
All the coefficients are null for ϕ = m̄2π (m̄ integer) except
for the Cm̄ coefficient, which is equal to 1. This means
that if such a phase grating is used at l = i path, this state
component (|Xi〉〈Xi | �〉) will be diffracted only to the m̄th
order, contributing only to the j = m̄ component of the final
state. For example, if the initial state is

|�〉 = |X0〉 =
⎛
⎝0

1
0

⎞
⎠

X

, (33)

and the sawtooth phase grating with ϕ = 2π is used only at the
non-null initial state component, the final state will be, after
renormalization,

|Y1〉 =
⎛
⎝1

0
0

⎞
⎠

Y

. (34)

This phase grating allows the implementation of permuta-
tion operations, such as right and left operations [1]. The M
matrix for the left operation in a 3-dimensional Hilbert space,

for example, is

MLeft ∝
⎛
⎝0 0 1

1 0 0
0 1 0

⎞
⎠, (35)

and can be performed by making �3(y) = −�2(y) = 2πy/T

and �1(y) = 0 at the SLM screen. The constant of propor-
tionality is 1/

√
D = 1/

√
3 in this case. The squared modulus,

|Cj |2, and the relative phase of each coefficient [phase(Cj )]
to the incoming component are plotted as functions of ϕ in
Fig. 3, for j = 0, ± 1, as given by Eq. (32).

These types of transformations (lowering, raising, and
permutations) are restrained by the maximum modulation
of the SLM. As nowadays SLMs can reach a maximum
modulation of approximately 8π , it means that this proposal
can be used to get transformations such as (35) up to d = 8,
with current technology. In cases where only permutations (or
computational basis projections as will be explained below)
are implemented, the polarizers can be taken out of the setup
since there will be no superpositions of different paths, making
the expression in (35) an equality, saving losses. However, in
this case, the “which-path” information is not erased.

In order to present the examples in a clear way, we
considered �l for the sawtooth grating as being a continuous
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function of y, for 0 � y � T . However, the SLM screen is
pixelated, imposing a discontinuity to the function of the
grating, in which each pixel applies a constant phase. In reality,
the phase is not applied by the hole pixel, but by a fraction of
it, the fill factor. As current SLMs can achieve fill factor ≈1
we will not consider this effect, which generally leads to a
small loss in the diffraction efficiency. Calling N the number
of pixels in a period, the function for the pixelated sawtooth
grating is given by

�n(y ′) =
N−1∑
n=0

ϕ
n

N
Rect(y ′ − n − 1/2), (36)

where n defines each pixel in a period. This pixeled sawtooth
grating function has the following Fourier coefficients:

C0 = 1

N
ei( N−1

N
) ϕ

2
sin

(
ϕ

2

)
sin

(
ϕ

2N

) ,

Cj = 1

N
sinc

(
jπ

N

)
e−i

πj

N ei N−1
N

ϕ−2πj

2
sin

(
ϕ

2 − jπ
)

sin
(

ϕ

2N
− jπ

N

) . (37)

The behavior of these coefficients with ϕ for j = 0, ± 1 is
given in Fig. 3. The dependency with N has to be carefully
analyzed. First, it is important to see that expressions (37) tend
to the expressions (32) if N → ∞, as expected. However, this
does not mean that the ideal operation is better approximated
for higher values of N . This happens because the separation
between the orders of diffraction is proportional to 1

T
= 1

Nl
,

where l is the size of the pixel in the direction of the periodic
behavior of the grating. This means that only increasing
the number of pixels is not the best way to have a good
experimental result, since the separation between the orders
is important in order to obey Eq. (24). It is important to have
N → ∞ while Nl → T = constant, which means smaller
pixels. This implies that in order to have a better agreement of
the pixeled and idealized functions, it is better to use as high a
T as possible in order to ensure the validity of (24). Therefore,
SLMs with smaller pixels achieve better results. Second, the
presence of the term sinc (jπ/N ) indicates the decrease in the
diffraction efficiency for higher orders (j � N ). This term also
restrains the range of ϕ in which one expects a good agreement
between the realistic and ideal scenario. Nonetheless, for the
example of the left operation for qutrits shown before, with
N = 12 one gets |C1|2 = 0.96 for ϕ = 2π , given a result
of less than 5% of disagreement with the ideal case for the
modulus squared.

2. Binary phase grating

Another simple phase grating to use is the binary phase
grating represented by the function

�(y) =
{

0, 0 � y < T/2,

ϕ, T /2 � y < T,
(38)

with Fourier coefficients given by

C0 = ei
ϕ

2 cos(ϕ/2), (39)

Cj =
{

2
jπ

ei
ϕ

2 sin(ϕ/2), j odd,

0, m even.
(40)

This phase grating allows the implementation of other transfor-
mations. The squared modulus and phases of the coefficients
are depicted in Fig. 4.

Using this grating in a qutrit state, with ϕ = 2 arctan(π/2)
for components l = 1,2, and 3 with the addition of a constant
phase of value π in the l = 3 region of the SLM, it is possible
to make an operation proportional to the projection in the state
|v〉 = (1,1, − 1)T . The proportionality, not an equality, occurs
because it is necessary to make use of the filtering described
in the previous section. In matrix form,

M ∝ 1

3

⎛
⎝ 1 1 −1

1 1 −1
−1 −1 1

⎞
⎠. (41)

The constant of proportionality squared 1 − τM = 0.86 is
calculated from (27) and corresponds to the probability of
implementing the operation. Other qutrit projections can be
obtained with the use of this phase grating and the sawtooth
grating. It is important to recall, when considering different
operations, that the constant τM depends on the matrix M.
The pixelation of the SLM is not considered, since the binary
phase grating is itself a discontinuous function of y in a period
T and we considered that a half period is constituted of a
positive integer number of pixels.

3. Triangular grating

This grating is defined as

�(y) =
{−ϕy

T
, −T/2 � y � 0,

ϕy

T
, 0 < y � T/2,

(42)

with Fourier coefficients given by

C0 = −iei
ϕ

2 sinc (ϕ/2), (43)

Cj = −i

2
ei

ϕ+πj

2 sinc [(ϕ + πj )/2]

− i

2
ei

ϕ−πj

2 sinc [(ϕ − πj )/2]. (44)

The behavior of these coefficients with ϕ is shown in Fig. 5. It is
important to note that for this grating C−j = Cj , reflecting the
symmetry of the function shown in Eq. (42). This grating also
has |Cj |2 higher than those of the binary grating for higher
orders. With the triangular phase function with ϕ = 2π in
regions l = 1,3 and the spatial filtering of the initial state
component l = 2 by the proper sawtooth grating it is possible,
for example, to make the following operation:

M ∝ 1

2

⎛
⎝1 0 1

0 0 0
1 0 1

⎞
⎠, (45)

which is proportional to the projection at the |w〉 = (1,0,1)T

state. In this case, the normalization constant is
√

1 − τM =√
0.36 = 0.6. It can be seen that the triangular grating is more

suitable to make operations with dimensions higher than d = 3
for the final state, since τM for orders |j | � 2 is higher for this
grating than for the gratings shown before.

We have shown the Fourier coefficients of a triangular grat-
ing, allowing for an intuition of what a realistic implementation
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FIG. 4. The behavior of the modulus squared of the coefficients of the binary grating as well as their phase in terms of ϕ for the j = 0, ± 1
orders (40). These grating coefficients are periodic, with period 2π ; hence the interval chosen for ϕ in the plots is {0,2π}. At ϕ = (2k + 1)π ,
with k ∈ N+, the order j = 0 is null and changes its phase by π ; all the other orders reach their maximal modulus value. The coefficients of
j < 0 have the same squared modulus as the j > 0 coefficients, but with a phase difference of π . This grating has Cj = 0 for orders with even
j . We show a qutrit projection possible with this grating for particular values of ϕ, using this grating in three regions of the SLM, for a qutrit
initial state [Eq. (41)].

would be. Now we will consider the pixelation of the SLM
screen. The �l function is given by

�(y ′) =
{ 2nϕ

N
, 0 � n � N

2 − 1;
2nϕ

N
− 2ϕ, N

2 � n � N − 1,
(46)

with coefficients given by

C0 = 1

N
ei

ϕ

2
sin

(
ϕ

2

)
sin

(
ϕ

N

) cos
( ϕ

N

)
, (47)

Cj = sinc
(

jπ

N

)
N

ei
ϕ−πj

2

[
e−i

ϕ

N

sin
(

ϕ−πj

2

)
sin

(
ϕ−πj

N

)
+ ei( ϕ

N
−πj ) sin

(
ϕ+πj

2

)
sin

(
ϕ+πj

N

)
]
. (48)

The squared modulus and phase of these coefficients as
functions of ϕ are depicted in Fig. 5.

Again, the term sinc (jπ/N ) restrains the range of orders
that leads to results close to the ideal case. But in this more
realistic triangular grating, differently from the linear case,
the coefficient C0 is equal to 1 for more values of ϕ than in
the ideal case. The cos (ϕ/N) term is responsible for this odd
behavior. This term limits the diffraction efficiency and affects
the range of orders and values of ϕ in which the pixelated
grating approximates to the ideal one. The coefficients (48)

for N → ∞ tend to the ideal triangular grating coefficients
shown in (44) while when N = 2 they become the binary
grating coefficients (40), as expected.

These examples show that it is possible to use this proposal
to implement different M, transforming the initial state |�〉
into a different one, M|�〉. It becomes a problem of finding
the right gratings that have a set of coefficients proportional
to the entries of the columns of this matrix. To find these
gratings for an arbitrary desired matrix, if possible, is an
interesting problem of holography and it is not addressed
here. Nonetheless, some intuition can be found by analyzing
possible symmetries of the mjl and looking for functions
�(y) with coefficients respecting those symmetries in the ideal
cases. Then, the realistic pixelated case must be calculated in
order to get an accurate result of what will be implemented,
considering the number of pixels in a period. For the linear
functions we considered we found an analytic form to describe
the pixelation effects. However, depending on the mask this
can be hard and the coefficients and their deviation to the
idealized case may have to be numerically calculated.

In the considerations of the realistic cases, we considered
the discretization of the pixelation structure of the screen of
the modulator. This is not the only source of discontinuity
since the phase scale is also discrete. This discontinuity
depends strongly on the function parameters and the gray
scale or voltage scale used, and thereby is not considered
here. However, depending on the function, configuration, and
model of modulator it can be important to account for [47].
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FIG. 5. The behavior of the modulus squared and phases of the coefficients of the ideal and pixelated (N = 6 and N = 10) triangular
gratings as a function of ϕ, for the orders j = 0, ± 1 [Eqs. (44) and (48)]. As ϕ goes further from zero, higher orders starts to have |Cj |2 not
negligible, making this grating a good candidate to work with higher dimensions for the Hilbert space of the final state. The coefficients of
j < 0 are identical to the j > 0 coefficients and at ϕ = 2π , the order j = 0 for the ideal case is null. However, the differences in the squared
modulus due to pixelation can be severe and the plot of the modulus is made up to ϕ = 10π to show this effect and its dependence on ϕ: C0

reaches unity for more values of ϕ than in the ideal case and Cj is no longer equal to C−j , differing by a phase factor. This odd behavior in
the modulus happens for higher values of ϕ as N increases and as the phase difference decreases; in the limit N → ∞ the pixelated and ideal
coefficients coincide, as expected. The phase plots are made modulo 2π .

Important automated transformations such as permuta-
tions and projections for qutrit states were discussed above.
Nonetheless, the examples of M shown do not exhaust the
possibilities of operations with these three phase gratings
and the same spatial filtering. For example, it is possible to
make other qutrit projections, as the projection in the states
(1/

√
2,0, − 1/

√
2)T or (−1/

√
3,1/

√
3,1/

√
3)T with suitable

choices of the configuration of the gratings shown in detail in
this paper. More transformations can be found, of course, by
choosing different phase gratings than the ones given in this
section as examples.

B. Combinations, grating displacement, and more general maps

An important feature of this proposal is that the quantum
operations are automated and defined by the diffraction
gratings used and thereby unbounded possibilities for trans-
formations can be envisaged. These possibilities, however, are
not confined to the different gratings to be used. Combinations
of gratings with already calculated coefficients and the use of
the same gratings displaced by a distance a can produce new
operations [48]. It is also straightforward to produce, with few
changes in this setup, a convex sum of operations.

1. Displacing gratings

Different quantum operations can be realized by displacing
a phase grating by an integer number p of pixels or an

amount a = pl in the y direction with respect to the known
grating, considering l as the size of the pixel in the y direction.
Displacement of the phase mask at the SLM screen is already
successfully used for preparation of spatial qudits in slightly
different ways [48] than the one described in this work. If
we write ei�(y ′) = f (y ′), and use the superscript (d) for the
displaced function, we have

C
(d)
j =

∫ T
2

− T
2

f d (y ′)e
−2πij

T
y ′
dy ′

= e
−2πij

T
a

∫ T
2 −a

− T
2 −a

f (y)e
−2πij

T
ydy = e

−2πij

T
aCj . (49)

As a = pl and T = Nl, we have

C
(d)
j = e

−2πij

N
p Cj , (50)

where C
(d)
j is the coefficient of the displaced grating and N is

the total number of pixels in a period T . This shows that by
displacing transversely the grating (relative to the position
of the center of the Gaussian amplitude of the path state
component in the y direction) we are able to change the relative
phases of the coefficients. This implies that the same grating
with the same ϕ can be used to have different Cj ’s and, thereby,
different operations. As an example regarding dimension 2,
using the sawtooth grating together with the displacement, it
is possible to perform all Pauli matrices with only one SLM.
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2. Addition of a transmission SLM in the setup

An interesting possibility that can increase the control of
the quantum operations proposed here is to use another trans-
mission phase-only SLM before the interferometer entrance,
for example, at the plane z = z1 in Fig. 2. Each diffraction
order can be acted on individually if they are already spatially
separated at this plane. The second SLM can then change
the phase of each coefficient and modify the matrix M. This
changes the operation applied from mjl ∝ Clj to

Cjl 	→ ei�jl Cjl, (51)

where �jl ∈ [0,2π [ is a phase addressed specifically to each
order created by the first SLM. This modification also allows
us to correct phase factors that can arise from the propagation
of the higher orders through the PBDs.

3. Composition of gratings

Another way of achieving different operations is to combine
two gratings to have another one. Suppose the two gratings
are described by the functions �(1) and the second �(2). The
combined grating will be represented by �c = �(1) + �(2).
This combination does not change the obtained results trivially.
However, if one of the combining gratings is a constant phase
it is possible to see that the action of this combination is to
multiply all the columns of the matrix M defined by this
grating by the constant phase:

Cjl

composition−→ eiθCjl. (52)

It is important to note that in Eq. (52), the phase modifies
equally the entire column of the operation matrix M, which
is different from Eq. (51) where the relative phase between
each entry of the matrix can be controlled at the expense of an
additional modulator.

In the case of a linear grating with ϕ = 2m̄π being
combined with a grating described by �(1)(y), the effect is to
displace the coefficients of �1 by m̄. We call Cc

j the coefficient
of the composed grating �c(y). The displacement can be
shown as

Cc
j =

∫ T
2

− T
2

ei�c(y ′) e
−2πij

T
y dy =

∫ T
2

− T
2

e
2m̄π
T

y ei�(1)(y) e
−2πij

T
y dy

=
∫ T

2

− T
2

ei�(1)(y) e−i 2π
T

(j − m̄) y dy = C(j − m̄), (53)

where Cj is the coefficient of the �(1)(y) grating.
These two possibilities are useful for achieving the wanted

operation without the necessity to look for different phase grat-
ings. However, they are limited by the maximum modulation
of the SLM.

4. More general maps

We have considered transformations such as ρ → MρM†.
Now we address the problem of operations given by maps of
the more general form ρ → ∑

i KiρK
†
i . Using the automated

characteristic of the SLM this can be made easily if the
source of the initial state is not deterministic in time, like
in spontaneous parametric down conversion, similarly as
described in detail in [28]. In this reference, photonic qudits are

prepared in the path variables and the SLM screen is divided
in d regions aligned with the paths. A constant phase function
is used for each of those regions and different phase masks
are changed in time in the SLM screen. If the ith mask is
displayed by a fraction ti of the total detection time TD , one can
see that the probability pi of implementing the operation Mi ,
represented by the ith phase mask, is proportional to ti . This
means that in this case the transformation in the initial state is

ρ →
∑

i

piMiρM†
i =

∑
i

KiρK
†
i , (54)

where Ki = √
piMi . Comparing (54) with (2) in Sec. II,

we see that this proposal can be used to simulate open
quantum systems dynamics, if Ki represents correctly the
Kraus operators of such dynamics. This was done in Ref. [28]
with slit state qudits, and the limitation to diagonal-only
transformations made it impossible to simulate maps in which
the Kraus decomposition has non-null off-diagonal elements.
Applying our proposal to a multipath encoded qudit state
this limit is overcome. Then, other open quantum system
dynamics simulations can be done if one find the correct phase
gratings to implement the Kraus operators of such dynamics.

Another way of having the convex sum of operators acting
on the initial state, as in (54), is to use a random number
generator with the correct distribution to define the instants in
which the operations implemented by the SLM are changed
[31–33].

V. CONCLUSIONS AND PERSPECTIVES

In this work, we present a proposal to have automated oper-
ations on multipath photonic qudits encoded in one direction.
This is done by using periodic phase gratings on a phase-only
SLM and an interferometer that merges the initial path state
components into one alone, while the transformed state will be
now encoded in the orthogonal direction. Since the operation
is controlled and defined only by the phase mask used in the
programmable SLM, this proposal is completely automated.

This proposal overcomes the limitation for implementing
nondiagonal operations present in the slit states and the
dimension limitation present in polarization-encoded qudits.
In addition, since there is a wide range of different phase
gratings to be used, there are several transformations possible
with this proposal. An essential aspect of this proposal is that
the final state is preserved for further operations. Therefore,
this method can be used to make sequential operations, cre-
ating new possibilities for fundamental quantum theory tests,
more complex quantum dynamic simulations, and quantum
computing protocols.

We also considered the effects of pixelation due to the SLM
screen, showing how it affects the results for some phase grat-
ings. This work can be complemented by the use of photonic
chips or optical fibers to substitute the interferometer for better
control and by a study of the generality of this approach in order
to know what operations can be made with this proposal. It
would be important to search for an algorithm to find the
correct phase function for a given desired matrix operation.

Nonetheless, important operations such as permutations
and projections can already be done with this proposal in
an automated way using the gratings showed in this paper,
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bypassing important difficulties already found in discrete
variable quantum optics experiments.
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