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We study theoretically the teleportation of a controlled-PHASE (CZ) gate through measurement-based quantum-
information processing for continuous-variable systems. We examine the degree of entanglement in the output
modes of the teleported CZ-gate for two classes of resource states: the canonical cluster states that are constructed
via direct implementations of two-mode squeezing operations and the linear-optical version of cluster states
which are built from linear-optical networks of beam splitters and phase shifters. In order to reduce the excess
noise arising from finite-squeezed resource states, teleportation through resource states with different multirail
designs will be considered and the enhancement of entanglement in the teleported CZ gates will be analyzed.
For multirail cluster with an arbitrary number of rails, we obtain analytical expressions for the entanglement in
the output modes and analyze in detail the results for both classes of resource states. At the same time, we also
show that for uniformly squeezed clusters the multirail noise reduction can be optimized when the excess noise
is allocated uniformly to the rails. To facilitate the analysis, we develop a trick with manipulations of quadrature
operators that can reveal rather efficiently the measurement sequence and corrective operations needed for the
measurement-based gate teleportation, which will also be explained in detail.
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I. INTRODUCTION

Measurement has been the foundation of physical science
since Galileo Galilei’s time [1]. It has also played a pivotal role
in the development of quantum mechanics. Studies of quantum
measurements have had great impacts on our understanding of
the foundation of quantum mechanics [2]. At the same time,
manipulations of quantum systems through measurements
have been exploited in many aspects of modern quantum
technologies [3,4].

In quantum-information sciences, quantum-information
processing typically involves sequence of transformations
that are represented by unitary operators acting on the
information carriers [5]. Experimental realizations for these
processes, however, have been challenging due to the highly
demanding control over coherence [6,7]. Measurement-based
quantum-information processing offers a partial solution to
such difficulties [8]. The quantum-information processing in
this approach is effected by appropriately designed sequence of
local measurements over highly entangled resource states. By
feeding forward the measurement outcomes, gate operation
over the input state can be achieved through appropriate
corrective operations upon the output. In this way, the intended
gate operation can be “teleported” to the output of the
entangled resource state [9–11].

Originally, measurement-based quantum information pro-
cessing was proposed for discrete-variable systems, i.e.,
systems with finite-dimensional state space [8]. It was later
extended to systems with continuous degrees of freedom,
which are often referred to as “continuous-variable” (CV)
systems [12,13]. Since then, optical systems have been
providing an appealing platform for CV quantum information
processing through the measurement-based scheme due to
their advantages in not only state preparation but also the
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detection and manipulation of states [14–17]. Nevertheless,
the archetypal resource state for measurement-based CV
quantum-information processing requires two-mode squeez-
ing operations over a set of quantum modes prepared in the
zero-momentum eigenstate to form a highly entangled state
commonly known as a “cluster state” (or a “graph state”) [13]
over which definite correlations among the “nodes” of the clus-
ter are imposed by the entanglement. Since an ideal momentum
eigenstate demands infinite squeezing (hence infinite energy),
only approximated, finite-squeezed momentum states are
available in the laboratories. In practice, therefore, CV cluster
states always have nonideal correlations among their nodes
due to finite squeezing, which in turn deteriorate the quality
of the gate teleportation with such resource states. Moreover,
although two-mode squeezing operation can be implemented
through inline squeezers and beam splitters [18,19], the
rapidly growing demand for its implementation along with
the size of the canonical CV cluster renders the scheme
experimentally challenging for practical applications. In order
to alleviate the demand for inline squeezers, van Loock and
colleagues proposed in Ref. [20] a linear-optical approach
to the construction of CV cluster states, which consists of
finding appropriate linear-optical network that can implement
the desired cluster correlations over a collection of offline
squeezed modes through combinations of beam splitters and
phase shifters. Making use of this approach, experimental
demonstrations for measurement-based single-mode opera-
tions [21], two-mode operation [22], and their sequential
operation [23] have been achieved through linear-optical CV
cluster states. However, the linear-optical approach suffers
from difficulties with scalability, since the number of optical
elements in the optical network increases rapidly with the size
of the cluster. Subsequent endeavors to improve the scalability
of optical CV cluster states via encoding in the frequency
domain [24] or in the time domain [25,26] have made a
lot of progress in recent years. It has also been shown that
fault-tolerant quantum computing in the measurement-based
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FIG. 1. Excess-noise reduction for measurement-based telepor-
tation through multirail designs for CV cluster states proposed by
van Loock et al. [20] with (a) single-rail, (b) two-rail, and (c) general
multirail structures. Here each circle represents a qumode, with the
one labeled α the input mode and those unlabeled the cluster modes.
The solid lines connecting the cluster nodes represent two-mode
correlations which can be established through two-mode squeezing
operations or linear-optical networks (see the text). In each figure,
the coupling between the input mode α and the cluster is represented
by a dashed line. To teleport the state of α toward the right of the
cluster, a sequence of quadrature measurements must be applied to
the cluster modes. Upon feeding forward the measurement outcomes
and applying the corresponding corrective operations to the rightmost
node of the cluster, as indicated by the arrow, one would get the output
mode μ which holds the teleported state.

CV scheme can be achieved with finite squeezing, although
at a level that is still experimentally demanding [27]. These
developments have made measurement-based CV approach a
promising direction for realistic quantum computing.

As with canonical cluster states, the linear-optical cluster
states (the qualifier “CV” will henceforth be omitted when it is
clear in context) are also nonideal in practice, since the initial
offline squeezed modes for the cluster are always squeezed
finitely. This results in imperfect cluster correlations among the
cluster nodes and causes “excess noise” in measurement-based
teleportation through such resource states. As a remedy,
van Loock and coworkers proposed in Ref. [20] a multirail
design (see Fig. 1) for the CV cluster state that is capable
of reducing excess noise in teleportation. They showed that,
with increasing number of rails in the design, the excess noise
becomes progressively smaller in one of the quadratures of
the teleported mode. A comparison for the noise reduction
was drawn in Ref. [20] for single-mode teleportation through
multirail canonical cluster states and linear-optical cluster
states. Here we extend the consideration by examining the
teleportation of a two-mode entangling gate, the controlled-
PHASE (or controlled-Z, abbreviated CZ) gate, through these two

classes of CV cluster states. In particular, with the reduction
of excess noise through the multirail design, we expect to find
improvements in the quality of the teleported CZ gate, which
should be revealed in the enhanced entanglement in the output
modes of the cluster. Since the multirail design can increase
the size of the cluster massively (see Fig. 1), it is necessary to
have a way to find out of the teleportation scenario efficiently.
To this end, we devise an intuitive Heisenberg approach that
can reveal the measurement sequence and the corresponding
corrective operations for the teleportation through simple
manipulations of the quadrature operators [28]. We are able to
find out analytical results for the entanglement of the teleported
CZ gates for both canonical and linear-optical cluster states
with general multirail configurations. In the process of this
analysis, we will also show that noise reduction in the multirail
scheme can be optimized when the excess noise is distributed
uniformly to each of the multirails.

We will begin in the following section by providing
background information for CV cluster states necessary to our
calculations and setting up the notations. In particular, we will
explain the CZ-gate teleportation in measurement-based CV
quantum information processing using a Heisenberg approach
that involves certain tricks for manipulating the quadrature
operators which will be essential to our calculations. We
will then study in Sec. III the CZ-gate teleportation through
canonical cluster states and linear-optical cluster states in two
different subsections, where the noise-reduction mechanism in
the multirail scheme will also be analyzed. Comparison of the
results for the two classes of resource states will be presented
at the later part of Sec. III. Finally, we close in Sec. IV with
brief comments on the results and their possible extensions.
For the sake of clarity of our presentation, a number of details
of our results have been relegated to the appendices.

II. FORMULATION

In CV systems, each quantum mode (or “qumode,” in anal-
ogy with “qubit” for quantum bit) is described as a quantized
harmonic oscillator [14]. For a qumode k, if the annihilation
operator is âk , the corresponding quadrature amplitude (or
“position”) and quadrature phase (or “momentum”) operators
are then given, respectively, by [29]

q̂k ≡ âk + â
†
k

2
and p̂k ≡ âk − â

†
k

2i
, (1)

where † indicates Hermitian conjugation. These quadrature
operators possess continuous eigenvalues and the correspond-
ing eigenstates provide bases for encoding CV quantum
information [14]. For any two qumodes k and l, it follows
from (1) and the commutation relation [âk,â

†
l ] = δkl that

[q̂k,p̂l] = i

2
δkl, (2)

which corresponds to the canonical commutation relations for
position and momentum operators in mechanical systems with
h̄ = 1/2.

Canonical cluster states for CV systems are constructed by
applying CZ gates over a set of momentum-squeezed vacuum
modes that constitute the “nodes” of the cluster. Explicitly, the
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CZ gate that acts on modes k and l is given by

CZkl = e2i q̂k q̂l , (3)

which is clearly symmetrical between modes k and l. By virtue
of the commutation relation (2), it follows that the CZ-gate
operation on the quadrature operators for mode l yields

CZ
†
kl q̂l CZkl = q̂l , CZ

†
kl p̂l CZkl = p̂l + q̂k, (4)

and likewise for mode k. Therefore, we see that the CZ gate has
established correlations between the quadrature operators of
the two modes. Experimentally, the transformation (4) corre-
sponds to a quantum nondemolition (QND) process, where the
position operator is unchanged, while the momentum operator
picks up a shift from the other mode [29]. The CZ gate is thus
also often referred to as a “QND gate” [12]. For definiteness,
hereafter we will refer to the operation that connects the nodes
of a canonical cluster the QND gate, while the gate (4) to
be teleported using measurement-based schemes the CZ-gate,
although the two indeed function identically.

According to (4), if a collection of modes with annihilator
operators ˆ̄ak = ˆ̄qk + i ˆ̄pk are coupled through QND gates, one
then has for the resultant mode k

q̂k = ˆ̄qk, p̂k = ˆ̄pk +
∑
l∈Nk

ˆ̄ql, (5)

where Nk denotes the set of modes that are coupled with mode
k through QND gates. For initial modes that are momentum-
squeezed vacuum states, one can define

δ̂k ≡ p̂k −
∑
l∈Nk

q̂l

= ˆ̄pk = e−rk p̂
(0)
k , (6)

where rk is the squeezing parameter for mode k, p̂
(0)
k is the

momentum operator for the respective vacuum mode, and we
have used (5) in arriving at the second line. It is then clear
that in the ideal, infinite-squeezing limit rk → ∞ for all k, the
δ̂k’s would vanish identically, and the state would approach an
ideal cluster state, which has perfect quadrature correlations
among its nodes [12,17]. These operators δ̂k thus represent the
noise in the cluster correlations due to finite-squeezed initial
modes, and are often called the “excess-noise” operators, or
the “nullifiers” of the cluster state, since the ideal cluster state
is an eigenstate of these operators with eigenvalue zero [17].
Depending on the context, we will use both terms for δ̂k

interchangeably and at times, for brevity, also refer to them
simply as the “noise operators.”

For the teleportation of CZ gate using different types of CV
cluster states that we will discuss in the following, rather than
the Schrödinger approach [13], we will resort to a Heisenberg
approach that keeps track of the teleportation process through
the time evolution of the quadrature operators [28,30]. In par-
ticular, by manipulating the quadrature operators judiciously,
we will provide an intuitive and efficient way for establishing
the measurement sequence and the corrective operations for the
teleportation. This will simplify the calculation significantly
and make the analysis for teleportation involving large clusters
manageable tasks.

α 1 2 μ

β 4 3 ν

FIG. 2. Teleportation of a CZ gate through a linear four-mode
cluster. Here and in all figures below, the input modes α, β are coupled
to the cluster nodes via either a QND coupling or a beam-splitter
coupling (see the text), which is represented by a dashed line here. To
the right of the cluster, the output modes μ and ν are generated from
nodes 2 and 3, respectively, where the arrows indicate appropriate
corrective operations in accordance with measurement outcomes in
the measurement sequence. For an ideal cluster state, the teleported
state registered by μ, ν would be identical to that of the input modes
α, β operated with a CZ gate. Depending on the context, the cluster
state here (and also in other figures of this paper) can be a canonical
one or a linear-optical one.

As an orientation, let us consider a simple case with a
linear four-mode cluster [13] as depicted in Fig. 2. In view of
the CZ-gate transformation (4), the teleportation that we wish
to accomplish here amounts to implementing the mapping
between the quadrature operators of the output modes μ, ν

and the input modes α, β(
q̂μ

p̂μ

)
→
(

q̂α

p̂α + q̂β

)
and

(
q̂ν

p̂ν

)
→
(

q̂β

p̂β + q̂α

)
. (7)

Since the input modes α, β are coupled to the cluster nodes
1, 4, respectively, by way of QND gates, it follows from (4)
that after these couplings, we have(

q̂ ′
ρ

p̂′
ρ

)
=
(

q̂ρ

p̂ρ + q̂k

)
and

(
q̂ ′

k

p̂′
k

)
=
(

q̂k

p̂k + q̂ρ

)
, (8)

where the subscripts (ρ,k) = (α,1) and (β,4). To accomplish
the mapping (7), we note that the output mode μ is obtained
by correcting the final state of node 2 in the teleportation.
Thus, in anticipation of q̂2 → q̂α after corrective operations,
we write the following trivial identity making use of the p̂′

1
entry of (8) (i.e., setting (ρ,k) = (α,1) there and using the
entry involving p̂′

1)

q̂2 = q̂2 + (p̂′
1 − p̂1 − q̂α)

= −q̂α + p̂′
1 + (q̂2 − p̂1), (9)

where we have grouped the terms that would constitute a
noise operator of (6) in reaching the second line. Rearranging
terms in the final identity above, one can write accordingly

q̂μ ≡ −q̂2 + p̂′
1

= q̂α + (p̂1 − q̂2). (10)

Here we have written from (9) by collecting the image q̂α

of the intended mapping q̂2 → q̂α and the noise operator
δ̂1 = (p̂1 − q̂2) to the same side of the equation and
relegating the rest to the other side, which is redefined as q̂μ.
Immediately, we see from this result that by flipping the phase
of the position operator q̂2 for node 2 and then displacing in
accordance with the measurement outcome for p̂′

1, one would
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be able to produce an output mode μ with q̂μ that differs from
the input quadrature q̂α by just the excess noise δ̂1.

Similarly, anticipating p̂2 → p̂α + q̂β subject to correc-
tions, one can make use of the p̂′

α and the p̂′
4 entries of (8) and

write down the following trivial identity for the momentum
operator of node 2

p̂2 = p̂2 + (p̂′
α − p̂α − q̂1) + (p̂′

4 − p̂4 − q̂β)

= −(p̂α + q̂β) + p̂′
α + p̂′

4 + (p̂2 − q̂1 − q̂3) − (p̂4 − q̂3).

(11)

Rearranging terms in the same way as in obtaining (10)
from (9), we get from the final identity in the last equation

p̂μ ≡ −p̂2 + p̂′
α + p̂′

4

= p̂α + q̂β − (p̂2 − q̂1 − q̂3) + (p̂4 − q̂3), (12)

where the terms in the parentheses in the last expression are
the noise operators δ̂2 and δ̂4 of (6). For the other output
mode ν, due to the symmetry between the modes in Fig. 2,
one can obtain similar equations by exchanging the indices
1 ↔ 4, 2 ↔ 3, and α ↔ β in (10) and (12), and arrive at

q̂ν ≡ −q̂3 + p̂′
4

= q̂β + (p̂4 − q̂3),

p̂ν ≡ −p̂3 + p̂′
β + p̂′

1

= p̂β + q̂α − (p̂3 − q̂2 − q̂4) + (p̂1 − q̂2). (13)

As the first line in each of the results (10), (12), and (13)
suggests, the CZ-gate teleportation here requires measurements
for the quadrature operators p̂′

α, p̂′
β, p̂′

1, and p̂′
4. Supposing that

the measurement results are, respectively, sα, sβ, s1, and s4, the
first lines of (10), (12), and (13) indicate that the corrective
operations necessary for nodes 2 and 3 are

X̂2(s1) Ẑ2(sα + s4) F̂ 2
2 X̂3(s4) Ẑ3(sβ + s1) F̂ 2

3 . (14)

Here X̂k ≡ e−2ip̂ks and Ẑk ≡ e2iq̂ks are the Weyl-Heisenberg
operators, and F̂k ≡ ei π

2 â
†
k âk is the Fourier transform operator

for mode k that rotates its quadrature operators clockwise by
an angle (π/2) over the corresponding (quantum mechanical)
phase space [31,32]. It should be noted that due to the finitely
squeezed cluster state, the teleported CZ gate is imperfect. As
one can read from the second lines of (10), (12), and (13),
here the quadrature operators for the output modes differ from
the ideal results [i.e., the image of the mapping in (7)] by
excess-noise contributions.

The example considered above is a relatively simple one,
which, nevertheless, already shows the simplicity of our
Heisenberg approach. To prepare for more elaborate tasks, let
us explain in greater details the tricks behind the manipulations
of quadrature operators using the case of q̂μ above. First,
as pointed out earlier, one must notice that in the desired
mapping (7), q̂μ is constructed out of q̂2. Thus, we start by
writing

q̂2 = q̂2 + · · · , (15)

where the dots represent identities added from the entries of
the input-coupling equation (8) which serve two purposes:
(i) They must include the image of q̂μ for the mapping (7),

α 2 1 μ

β 3 4 ν

FIG. 3. CZ-gate teleportation using a linear four-mode cluster
with a node arrangement different from that of Fig. 2.

which is q̂α here, and (ii) they must help “eliminate” q̂2 on
the right-hand side of (15) by forming combination of terms
that constitutes a nullifier of (6). Clearly, of the q̂ ′

α and p̂′
1

entries of (8) that contain q̂α , it is the latter that shall meet both
demands (i) and (ii) here. It is then easy to arrive at (9) and
then (10) accordingly. Similarly, the construction for p̂μ in (12)
can be achieved in the same manner, except that two identities
from the input-coupling equation (8) and two nullifiers of (6)
are invoked in this case.

As it turns out, when applying these tricks to different
cluster structures and input-mode couplings, there exist four
major categories:

(a) trivial cases: for which the quadrature manipulations
can be carried out easily;

(b) FT-input cases: for which the quadrature manipulations
require Fourier transformations (FT) over the input modes
prior to input couplings;

(c) FT-output cases: for which the quadrature manipula-
tions require Fourier transformations over the output cluster
nodes at the output stage; and

(d) FT-cluster cases: for which the quadrature manipula-
tions require Fourier transformations over some or all of the
cluster nodes prior to input couplings.

It should be noted that these four categories are not mutually
exclusive, and the association of any gate teleportation to
these categories is also not unique. For instance, we shall
now illustrate with a case which can be treated as a mixture
of categories (b) and (c), or purely that of (d). Let us consider
again CZ-gate teleportation using a canonical linear four-mode
cluster, but now with different input-mode connections as
depicted in Fig. 3. As one can check through the prescriptions
above, the quadrature manipulations in this case are no longer
trivial [33], and one must consider possible scenarios with
categories (b), (c), and (d) above.

After trial and error, one can find that the CZ-gate telepor-
tation in the arrangement of Fig. 3 can be achieved by first
applying inverse Fourier transforms to the input modes α, β

before they are coupled to the cluster nodes:(
q̂ρ

p̂ρ

)
F̂

†
ρ−→
(

q̂ ′
ρ

p̂′
ρ

)
=
(

p̂ρ

−q̂ρ

)
(16)

with ρ = α,β. Subsequently, the Fourier-transformed input
modes are coupled to the cluster nodes 2 and 3 via QND gates
and yield [cf. (8)](

q̂ ′′
ρ

p̂′′
ρ

)
=
(

q̂ ′
ρ

p̂′
ρ + q̂k

)
=
(

p̂ρ

−q̂ρ + q̂k

)
,

(
q̂ ′

k

p̂′
k

)
=
(

q̂k

p̂k + q̂ ′
ρ

)
=
(

q̂k

p̂k + p̂ρ

)
, (17)
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where the subscripts are (ρ,k) = (α,2) and (β,3). Like pre-
viously, in view of the CZ-gate mapping (7) and because the
output mode μ corresponds to the corrected cluster mode 1,
one can proceed similarly to what was done in (9). However,
things are a little more intricate here. It transpires that
Fourier transformations over the output cluster nodes are also
necessary when producing the output modes here. Therefore,
for node 1, in place of q̂1 → q̂α , we have here p̂1 → q̂α when
supplemented with corrections. According to the prescriptions
(i) and (ii) described after (15), we can make use of the p̂′′

α entry
of (17) and write

p̂1 = p̂1 + (p̂′′
α + q̂α − q̂2) = q̂α + p̂′′

α + (p̂1 − q̂2). (18)

The last equality thus suggests

q̂μ ≡ p̂1 − p̂′′
α

= q̂α + (p̂1 − q̂2) (19)

with the terms in the parentheses being the noise operator δ̂1.
Similarly, due to the Fourier transformation, instead of p̂1 →
(p̂α + q̂β), we expect here −q̂1 → (p̂α + q̂β) when corrections
are applied. We can thus write by way of the p̂′

2 and the p̂′′
β

entries of (17)

q̂1 = q̂1 + (p̂′
2 − p̂2 − p̂α) − (p̂′′

β + q̂β − q̂3)

= −(p̂α + q̂β) − p̂′′
β + p̂′

2 − (p̂2 − q̂1 − q̂3). (20)

Rearranging terms in the last identity above thus yields

p̂μ ≡ −q̂1 − p̂′′
β + p̂′

2

= p̂α + q̂β + (p̂2 − q̂1 − q̂3), (21)

where the term in the parentheses in the last expression is the
noise operator δ̂2.

As previously, the symmetry in the arrangement of Fig. 3
allows us to write down the formulas for the output mode ν

easily from (19) and (21). We find

q̂ν ≡ p̂4 − p̂′′
β

= q̂β + (p̂4 − q̂3),

p̂ν ≡ −q̂4 − p̂′′
α + p̂′

3

= p̂β + q̂α + (p̂3 − q̂2 − q̂4). (22)

Therefore, according to the first lines of the results in (19), (21),
and (22), the CZ-gate teleportation in the setting of Fig. 3 re-
quires measurements for the quadrature operators p̂′′

α, p̂′′
β, p̂′

2,
and p̂′

3. If the corresponding measurement outcomes are,
respectively, sα, sβ, s2, and s3, the first lines of (19), (21),
and (22) indicate that the corrective operations needed for the
cluster modes 1 and 4 are

X̂
†
1(sα) Ẑ

†
1(sβ − s2) F̂

†
1 X̂

†
4(sβ) Ẑ

†
4(sα − s3) F̂

†
4 . (23)

This furnishes the scenario for the CZ-gate teleportation using
a canonical linear four-mode cluster in the arrangement of
Fig. 3. We see that the quadrature manipulations here have
invoked the Fourier transformations stipulated for categories
(b) and (c). As pointed out earlier, one can also treat this case
following the scheme of category (d); this is illustrated in
Appendix A.

Although the Heisenberg approach presented above does
seem less systematic than the Schrödinger approach [13].

However, with the limited number of categories listed above,
usually trial and error can quickly bring forward the correct
teleportation scenarios, and the calculation requires much less
algebra than the Schrödinger approach does. This is especially
appealing when large clusters are involved in the teleportation
process, such as the cases that we will study in the following
section.

We have so far been focusing on establishing the procedures
for CZ-gate teleportation through given cluster designs. An
important issue next is then how one can quantify the quality
of the teleported CZ gate. Since the CZ gate is capable of
entangling its two input modes, we will quantify the quality
of the teleported gate through the entanglement in the output
modes when nonentangled input modes are supplied. Although
entanglement quantification for general CV states remains a
major challenge [15,34], the teleported states that will concern
us in this work belong entirely to the class of two-mode
Gaussian states. Their entanglement properties can be fully
quantified through partial transposition of their covariance
matrices [35,36]. This is based on the fact that for any Gaussian
state all symplectic eigenvalues of its covariance matrix cannot
be less than 1/4 [15,37]. For a two-mode Gaussian state,
suppose the partial transposition of its covariance matrix has
symplectic eigenvalues λ± with λ− � λ+. Since λ+ � 1/4
always [38], here the physicality of the partially transposed
covariance matrix is determined entirely by the smaller
symplectic eigenvalue λ−, and a measure for the degree of
entanglement for the state is provided by the logarithmic
negativity (or log-negativity, for short) [39]

EN = − ln(min{1,4λ−}), (24)

where the function min(x,y) yields the smaller of x and y. For
entangled two-mode Gaussian states, violation of physicality
upon partial transposition is then signaled by λ− < 1/4, which
results in nonzero, positive EN according to (24).

If we denote the output quadratures of the teleported CZ

gate in the form of a column vector ξ̂ ≡ (q̂μ,p̂μ,q̂ν,p̂ν)T , the
covariance matrix for the output modes μ, ν is then a real,
symmetric 4×4 matrix with elements [29]

Vkl ≡ 1
2 〈{
ξ̂k,
ξ̂l}〉, (25)

where k,l = 1 ∼ 4,
ξ̂k ≡ ξ̂k − 〈ξ̂k〉, and {A,B} ≡ AB + BA.
Since we are using the Heisenberg picture for the time
evolution, the expectation values here are evaluated with
respect to the initial state of the system. As it emerges, the
covariance matrices for the output modes μ, ν for all cases
considered in this work share an “X form”

V =

⎛
⎜⎝

a 0 0 c

0 b c 0
0 c a 0
c 0 0 b

⎞
⎟⎠ (26)

with, according to (25),

a = 〈(
q̂σ )2〉, b = 〈(
p̂σ )2〉, c = 〈{
q̂σ ,
p̂σ ′ }〉/2,

(27)

where σ,σ ′ = μ,ν, and σ ′ �= σ in the expression for c. The
partial transposition for the covariance matrix (26) with respect
to, say, the output mode ν is effected through replacing in (27)
q̂ν → +q̂ν and p̂ν → −p̂ν (that is, “time reversal” in mode
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α 3 2 1 μ

β 4 5 6 ν

(a)

α 4

2
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1 μ

β 5
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7
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(b)

α 5

2

3

4

1 μ
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7

8

9

10 ν

(c)

α N+2

2

3

N+1

1 μ

β N+3

N+4

N+5

2N+3

2N+4 ν

··
·

··
·

(d)

FIG. 4. CZ-gate teleportation using clusters with multirail designs of (a) single-rail, (b) two-rail, (c) three-rail, and (d) N -rail structures.
Namely, the “teleporting arms” (i.e., the segments of nodes 3–2–1 and 4–5–6) of the single-rail cluster in panel (a) are replaced with multirail
structures in panels (b)–(d) according to the designs of Fig. 1. Here the dashed lines and the arrows have the same meanings as those in
Figs. 2 and 3.

ν [35]). The symplectic eigenvalues of the partially transposed
covariance matrix are then found to be [38]

λ± = |
√

ab ± c|. (28)

Substituting the expression for λ− into (24), we can thus write
the log-negativity

EN = max{0,− ln(4 |
√

ab − c|)} (29)

with max{x,y} being the larger of x and y.
As an illustration, let us look back at the CZ-gate teleported

in the arrangement of Fig. 3 with a canonical linear four-
mode cluster. Suppose the input modes α, β are independent
coherent states; one then has 〈(
q̂ρ)2〉 = 〈(
p̂ρ)2〉 = 1/4 and
〈{
q̂ρ,
p̂ρ}〉 = 0 for both ρ = α,β. If the cluster state had
been prepared from momentum-squeezed vacuum states with
identical squeezing parameter r , so that 〈δ̂2

k 〉 = e−2r/4 for all
k = 1 ∼ 4 in (6). Using the results (19), (21), and (22), one
can obtain the quadrature correlators (27)

a = (1 + e−2r )

4
, b = (2 + e−2r )

4
, c = 1

4
. (30)

It then follows from (29) that the log-negativity here reads

EN,L4 = max{0, − ln(
√

(1 + e−2r )(2 + e−2r ) − 1)}, (31)

where the additional subscript “L4” indicates the “linear four-

mode.” One can check that for r < ln(
√√

17+3
2 )  0.29 the

log-negativity EN,L4 vanishes identically. In other words, the
presence of the excess noise in the teleported CZ gate here

has entirely corrupted the entanglement in the output modes
for finite range of squeezing levels. We will examine in the
following section how the multirail design shown in Fig. 1 can
help reduce the excess noise and hence improve entanglement
in the output modes of the teleported CZ gate.

III. CONTROLLED-PHASE (CZ) GATE TELEPORTATION
USING MULTIRAIL CLUSTERS

The noise-reduction scheme through multirail designs
shown in Fig. 1 was originally proposed in Ref. [20] for the
teleportation of single-qumode gates. For the CZ gate, since
there are two input qumodes, it is necessary to implement
the multirail structure for each of the “teleporting arms,” such
as the segments of nodes 2–1 and nodes 3–4 in the case of
Fig. 3. As is clear from Fig. 1, the minimal cluster for the
multirail design requires three nodes for each arm. Therefore,
for CZ-gate teleportation, we will start with a linear six-mode
cluster and then increase the complexity of the cluster by
building the multirail structure into the arms as shown in Fig. 4.

In what follows, we will consider two classes of resource
states for the CZ-gate teleportation. The first is the canonical
cluster states that are fabricated through QND gates, as we have
already considered in the previous section. The second will be
a class of cluster states proposed by van Loock and cowork-
ers [20] which can be constructed using linear-optical networks
and thus will be termed the linear-optical cluster states in the
following. As we will see, these two classes of cluster states

032327-6



ENTANGLEMENT ENHANCEMENT THROUGH MULTIRAIL . . . PHYSICAL REVIEW A 96, 032327 (2017)

possess different noise structures and hence are not identical
at finite squeezing. However, in the ideal, infinite-squeezing
limit, they become completely identical since all excess noise
tend to zero in this limit. Therefore, at finite squeezing,
we expect to see different entanglement properties in the
teleported CZ gates when different classes of cluster states are
employed for the teleportation, as we shall now investigate.

A. Canonical cluster states

Let us start by considering CZ-gate teleportation using a
canonical linear six-mode cluster as illustrated in Fig. 4(a),
which corresponds to a “single-rail” design. The quadrature
manipulations in this case are very similar to those for the
linear four-mode cluster of Fig. 3 demonstrated in the previous
section. Again, it is necessary to subject the input modes α, β to
the Fourier transformations (16) before they are coupled with
the cluster nodes. Subsequent QND couplings between the
Fourier-transformed input modes α′, β ′ and the cluster nodes
3, 4, respectively, thus yield again (17) with here the sets of
subscripts (ρ,k) = (α,3) and (β,4). By making use of these
coupling equations and the nullifiers for the linear six-mode
cluster, one can obtain in the same manner as before

q̂μ ≡ −q̂1 − p̂′′
α + p̂2

= q̂α + (p̂2 − q̂1 − q̂3),

p̂μ ≡ −p̂1 − p̂′′
β + p̂′

3

= p̂α + q̂β − (p̂1 − q̂2) + (p̂3 − q̂2 − q̂4), (32)

and

q̂ν ≡ −q̂6 − p̂′′
β + p̂5

= q̂β + (p̂5 − q̂4 − q̂6),

p̂ν ≡ −p̂6 − p̂′′
α + p̂′

4

= p̂β + q̂α − (p̂6 − q̂5) + (p̂4 − q̂3 − q̂5). (33)

Accordingly, from the first line in each of the results for
the output quadratures above, we see that here the CZ-gate
teleportation calls for measurements over the momentum op-
erators p̂′′

α, p̂′′
β, p̂2, p̂

′
3, p̂

′
4, and p̂5. Suppose the corresponding

measurement outcomes are, respectively, sα, sβ, s2, s3, s4, and
s5; then the gate teleportation can then be achieved upon
correcting the cluster nodes 1 and 6 with the operations

X̂1(s2 − sα) Ẑ1(s3 − sβ) F̂ 2
1 X̂6(s5 − sβ) Ẑ6(s4 − sα) F̂ 2

6 , (34)

which have been read off from (32) and (33) in the same way as
detailed previously for the cases of linear four-mode clusters.

We next turn to the multirail variants of the linear six-mode
cluster. As explained in the beginning of this section, in
order to implement the multirail design of Fig. 1 into the
linear six-mode cluster in Fig. 4(a), we replace each of
the teleporting arms (i.e., the segments 3–2–1 and 4–5–6)
of the cluster with multi-rail structures as in Figs. 4(b)–4(d).
For the two-rail cluster of Fig. 4(b), we find that the CZ-gate
teleportation can again be achieved by first applying the
Fourier transformations (16) over the input modes α, β before
they are coupled to the cluster. After that, QND couplings
between the Fourier-transformed input modes α′, β ′ and the
cluster nodes 4, 5, respectively, again lead to (17) with the
subscripts now (ρ,k) = (α,4) and (β,5). With the help of these

coupling equations and the nullifiers for the present cluster, it
is straightforward to establish the following through the same
tricks as before:

q̂μ ≡ −q̂1 − p̂′′
α + p̂2 + p̂3

2

= q̂α + 1

2
[(p̂2 − q̂1 − q̂4) + (p̂3 − q̂1 − q̂4)],

p̂μ ≡ −p̂1 − p̂′′
β + p̂′

4

= p̂α + q̂β − (p̂1 − q̂2 − q̂3) + (p̂4 − q̂2 − q̂3 − q̂5),

(35)

and

q̂ν ≡ −q̂8 − p̂′′
β + p̂6 + p̂7

2

= q̂β + 1

2
[(p̂6 − q̂5 − q̂8) + (p̂7 − q̂5 − q̂8)],

p̂ν ≡ −p̂8 − p̂′′
α + p̂′

5

= p̂β + q̂α − (p̂8 − q̂6 − q̂7) + (p̂5 − q̂4 − q̂6 − q̂7).

(36)

Here, however, it should be noted that in (35) and (36), one
can in general set for q̂μ and q̂ν

q̂μ ≡ −q̂1 − p̂′′
α + (η1 p̂2 + η2 p̂3)

= q̂α + [η1 (p̂2 − q̂1 − q̂4) + η2 (p̂3 − q̂1 − q̂4)],

q̂ν ≡ −q̂8 − p̂′′
β + (η3 p̂6 + η4 p̂7)

= q̂β + [η3 (p̂6 − q̂5 − q̂8) + η4 (p̂7 − q̂5 − q̂8)], (37)

where η1 + η2 = 1 and η3 + η4 = 1, so that in each equation
the first line would always be identical to the second. Clearly,
since both (q̂μ − q̂α) and (q̂ν − q̂β) in (37) remain to yield
linear combinations of excess-noise operators, these choices of
q̂μ and q̂ν should also serve well for the CZ-gate teleportation.
However, as one can prove easily, for equally squeezed initial
cluster modes, the symmetrical arrangement ηk = 1/2 for all
k = 1 ∼ 4 in (37) [i.e., corresponding to (35) and (36)] would
minimize the excess noise in the teleported q̂μ and q̂ν . This
is also the case for the three-rail design that we shall discuss
shortly, and is in fact the reason behind the noise reduction
in this multirail approach. For instance, the choice η1,3 = 1
and η2,4 = 0 in (37) would yield q̂μ and q̂ν identical to those
for the single-rail cluster in (32) and (33), respectively, except
for change of indices in the nodes. In this case, there would
thus be no any noise reduction in the teleportation despite the
implemented multirail structure.

For the case of the three-rail cluster illustrated in Fig. 4(c),
the calculation proceeds almost identically to that for the two-
rail case above, apart from modifications in the node indices.
Instead of repeating similar details, here we list only the results
that we find:

q̂μ ≡ −q̂1 − p̂′′
α + p̂2 + p̂3 + p̂4

3

= q̂α + 1

3
[(p̂2 − q̂1 − q̂5) + (p̂3 − q̂1 − q̂5)

+ (p̂4 − q̂1 − q̂5)],
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p̂μ ≡ −p̂1 − p̂′′
β + p̂′

5

= p̂α + q̂β − (p̂1 − q̂2 − q̂3 − q̂4)

+ (p̂5 − q̂2 − q̂3 − q̂4 − q̂6), (38)

and

q̂ν ≡ −q̂10 − p̂′′
β + p̂7 + p̂8 + p̂9

3

= q̂β + 1

3
[(p̂7 − q̂6 − q̂10) + (p̂8 − q̂6 − q̂10)

+ (p̂9 − q̂6 − q̂10)],

p̂ν ≡ −p̂10 − p̂′′
α + p̂′

6

= p̂β + q̂α − (p̂10 − q̂7 − q̂8 − q̂9)

+ (p̂6 − q̂5 − q̂7 − q̂8 − q̂9). (39)

As for the two-rail case above, here one could in general put
q̂μ and q̂ν in the form

q̂μ ≡ −q̂1 − p̂′′
α + (η1 p̂2 + η2 p̂3 + η3 p̂4)

= q̂α + [η1 (p̂2 − q̂1 − q̂5) + η2 (p̂3 − q̂1 − q̂5)

+ η3 (p̂4 − q̂1 − q̂5)],

q̂ν ≡ −q̂10 − p̂′′
β + (η4 p̂7 + η5 p̂8 + η6 p̂9)

= q̂β + [η4 (p̂7 − q̂6 − q̂10) + η5 (p̂8 − q̂6 − q̂10)

+ η6 (p̂9 − q̂6 − q̂10)], (40)

where η1 + η2 + η3 = 1 and η4 + η5 + η6 = 1, so that each
identity would always hold. Nevertheless, one can again show
easily that it is the symmetrical choice ηk = 1/3 for all
k = 1 ∼ 6 of (38) and (39) that would minimize the excess
noise in the teleported q̂μ and q̂ν had the cluster been prepared
from uniformly squeezed vacuum states. We will prove below
that this result can indeed be generalized to arbitrary N -rail
design for the canonical cluster.

With the foregoing results, it is straightforward to extend
the consideration to a design with an arbitrary number of
rail. For the N -rail canonical cluster in Fig. 4(d), from
Eqs. (32), (33), (35), (36), (38), and (39), one can write down
inductively for the output modes of the teleported CZ gate

q̂μ = q̂α + 1

N

N+1∑
k=2

δ̂k,

p̂μ = p̂α + q̂β − δ̂1 + δ̂N+2,

q̂ν = q̂β + 1

N

2N+3∑
k=N+4

δ̂k,

p̂ν = p̂β + q̂α − δ̂2N+4 + δ̂N+3. (41)

Note that here we have omitted the parts of the equations
that would reveal the measurement sequence and corrective
operations for the teleportation [namely, corresponding to the
first lines of the results (32), (33), and etc.]. This is because here
we are concerned primarily with the entanglement properties
of the output modes, and thus need only the parts of the
equations listed in (41). Also note that we have expressed
the formulas here in terms of the noise operators δ̂k instead of

the quadrature operators, as this will be more convenient for
evaluating the quadrature correlators (27).

Like previously for the case of Fig. 3 with a canonical
linear four-mode cluster, we shall suppose that the input modes
α, β here are independent coherent states and that the cluster
nodes are uniformly squeezed with squeezing parameter r .
Moreover, according to (6), the noise operators δ̂k for canonical
cluster states are independent from each other. We can thus find
from (41) the quadrature correlators (27) for the output modes
of the teleported CZ gate

a =
(
1 + 1

N
e−2r

)
4

, b = (1 + e−2r )

2
, c = 1

4
. (42)

It should be noted that the correlators b and c are both N -
independent here. One can now obtain immediately from (29)
the log-negativity for the output modes

EN,NR = max

{
0, − ln

(√
2

(
1 + e−2r

N

)
(1 + e−2r ) − 1

)}

(43)

with the subscript NR standing for “N rail.” Note that here the
result for the two-rail (N = 2) case is identical to that for the
linear four-mode cluster (31) in the previous section. We will
defer further analysis for the result (43) until the end of the
next subsection, where comparisons between the results from
two classes of resource states will be made. Before closing
this subsection, let us look back at the expressions for q̂μ and
q̂ν in (41). Like previously for the two-rail and the three-rail
cases, the coefficient 1/N in front of the summation over the
noise operators δ̂k in fact corresponds to the optimal choice
for reducing the excess noise in the teleported q̂μ and q̂ν when
the cluster is uniformly squeezed. A generic expression for q̂μ

and q̂ν in the present N -rail teleportation takes the form

q̂σ = q̂ρ +
∑

k

ηk δ̂k, (44)

where (σ,ρ) = (μ,α) or (ν,β), and the summation has the same
range as in (41). For the same reason as in (37) and (40), here
we must constrain the coefficients ηk such that

∑
k ηk = 1.

Since the noise operators δ̂k are independent from each other,
the excess noise in the teleported q̂σ is simply 〈(q̂σ − q̂ρ)2〉 =∑

k η2
k 〈δ̂2

k 〉. For uniformly squeezed clusters 〈δ̂2
k 〉 has the same

value for all k; thus the minimization for the excess noise is the
same as that for the sum

∑
k η2

k . Geometrically, this amounts to
finding the point on the N -dimensional hyperplane

∑
k ηk = 1

which has the shortest (Euclidean) distance to the origin. The
answer is clearly the “symmetric point” with ηk = 1/N for
all k. A rigorous derivation for this result is elementary, for
instance, based on the method of Lagrange multipliers. We
note that for q̂σ in (44) the summation over k covers all midrail
nodes in each set of the multirails, i.e., nodes k = 2 ∼ (N + 1)
for the set with σ = μ and k = (N + 4) ∼ (2N + 3) for the
set with σ = ν in Fig. 4(d). Thus, the symmetric arrangement
ηk = 1/N in (44) corresponds to distributing the excess noise
to each of the multirail with equal weight.
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B. Linear-optical cluster states

The construction of canonical cluster states requires im-
plementation of QND gates, which can be experimentally
challenging especially when the cluster is large and the
qumodes are encoded through spatially separated optical
modes. In this context, van Loock and coworkers proposed
in Ref. [20] an alternative route to preparing optical cluster
states through offline squeezers and linear-optical networks of
beam splitters and phase shifters. In essence, one has a set of
spatially separated optical modes that are squeezed locally and
sent through an optical network of passive elements, which is
capable of entangling these modes and setting up correlations
among their quadrature operators that are akin to those in
canonical clusters. In particular, despite the more complicated
noise operators δ̂k in this case (see below), in the limit of infinite
squeezing, just like canonical cluster states, all δ̂k would tend to
zero and the state would approach an ideal cluster state. These
states have thus been dubbed “linear-optical cluster states” in
the present paper.

In a linear-optical cluster state, the cluster correlations
among its nodes are established through a unitary trans-
formation associated with the action of a linear-optical
network [18,40] over a set of offline squeezed initial modes.
If the annihilation operators for these initial modes are ˆ̄al , the
linear-optical network induces the transformation

âk =
∑

l

Ukl ˆ̄al, (45)

where Ukl is the k,l element of the corresponding unitary
matrix U , and âk is the annihilation operator for the resultant
cluster mode k. In pursuance of furnishing the cluster correla-
tions, the kth row �uk of U must take the particular form [20]

�uk = �αk + i
∑
l∈Nk

�αl, (46)

where �αk are real row vectors and Nk indicates the set of nodes
in the cluster that are connected to node k. Unitarity of the
matrix U entails orthonormality of the row vectors �uk , which
yields

�αk �α T
l +

∑
m∈Nk,n∈Nl

�αm �α T
n = δkl,

�αk

∑
n∈Nl

�α T
n −

∑
m∈Nk

�αm �α T
l = 0, (47)

where T signifies matrix transposition and δkl is Kronecker’s
δ. For any given geometry of the cluster, one can obtain the
conditions �αk (or, in fact, their inner products) must satisfy in
accordance with (47). Writing

Gkl ≡ �αk �α T
l , (48)

one can solve easily (though often tediously) from (47)
the values of Gkl for all k,l. Since Gkl is symmetric in
k and l, a cluster with M nodes would have M(M + 1)/2
such “geometric constraints” for the �αk’s. Following these
constraints, one can construct �αk accordingly, and hence the
row vectors �uk of U through (46). Clearly, the choices for
�αk and thus U are not unique. As long as (47) is satisfied,
the matrix U would always lead to the desired cluster

correlations for the linear-optical cluster state [20]. Details
of these calculations for the linear-optical cluster states that
will concern us are summarized in Appendix B. Here we just
quote the expression for the noise operators [20]

δ̂k =
∑

l

⎛
⎝αk,l +

∑
m∈Nk

∑
n∈Nm

αn,l

⎞
⎠ ˆ̄pl, (49)

where q̂k, p̂k are quadrature operators for node k, αk,l denotes
the lth component of the vector �αk , and, as in (6), ˆ̄pl = e−rl p̂

(0)
l

is the momentum operator for the offline squeezed initial
mode l. It is clear that here the noise operators have much
more complicated dependence on the initial mode operators
than that in (6) for canonical cluster states. Nevertheless, in
the ideal limit of infinite squeezing (i.e., rl → ∞ for every
l), one would still recover the limit of ideal cluster states
as previously for canonical cluster states. Therefore, we see
that the unitary transformation (45) with row vectors of the
form (46) does implement successfully the intended cluster
correlations among the nodes of the cluster.

Let us turn now to the study of CZ-gate teleportation
through linear-optical cluster states. As previously, we shall
first illustrate the calculation utilizing the simple case of Fig. 3
with a linear four-mode cluster of the linear-optical type. In
order to reduce the demand for squeezing resources [18], here
the coupling between the input modes α, β and the cluster
nodes will be achieved through beam-splitter couplings (via
“Bell measurements” [30]), instead of the QND couplings used
previously. Specifically, for the input mode ρ = α,β and the
cluster node k = 2,3 of Fig. 3, the coupling is effected through
a 50:50 beam splitter, so that the annihilation operators for the
modes transform as [31,32](

âρ1

âρ2

)
=
( 1√

2
1√
2

1√
2

−1√
2

)(
âρ

âk

)
, (50)

where the subscripts are (ρ,k) = (α,2) and (β,3), and hence
(ρ1,ρ2) = (α1,α2) and (β1,β2), correspondingly. Namely, the
beam splitter has coupled the input mode ρ and the cluster
mode k in producing the modes ρ1 and ρ2, which have the
quadrature operators, according to (50),

(
q̂ρ1

p̂ρ1

)
=
⎛
⎝ q̂ρ+q̂k√

2
p̂ρ+p̂k√

2

⎞
⎠ and

(
q̂ρ2

p̂ρ2

)
=
⎛
⎝ q̂ρ−q̂k√

2
p̂ρ−p̂k√

2

⎞
⎠. (51)

For CZ-gate teleportation, like before for canonical clus-
ters, again we wish to achieve the mapping (7) through
quadrature-manipulation tricks by utilizing the input-coupling
equation (51) and the cluster correlations (49). However, it
should be noted that previously the input coupling (8) through
QND gate had led to trivial transformations in both q̂ ′

ρ and q̂ ′
k

entries [as they belong to the “controlled” part of the QND
operation (4)]. It was thus quite obvious that one must employ
the p̂′

ρ and p̂′
k entries there for quadrature manipulations, and

consequently the measurement sequence involves invariably
the p̂′s and never the q̂ ′s [41]. Here, the situation is more
complicated since all entries of (51) are nontrivial and extra
care is needed in determining the entries to be used (and hence
the quadratures to be measured for the teleportation).
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For instance, in the case of Fig. 3 with a linear-optical
cluster, anticipating that q̂1 → q̂α after corrective operations,
one would write according to points (i) and (ii) listed
below (15)

q̂1 = q̂1 + q̂α + · · ·
= q̂α + q̂1 − p̂2 + q̂3 + · · · , (52)

where the dots in the second line remain to be fixed through
entries of the input-coupling equation (51). However, it is clear
from (51) that the added p̂2 must appear together with p̂α , no
matter whether it is p̂α1 or p̂α2 that will be measured. Similarly,
according to (51), the added term q̂3 in (52) must bring along
q̂β to the equation. It is thus evident that this scheme will
not work and one must attempt with different scenarios. For
instance, if one attempt instead with p̂1 → q̂α up to corrective
operations, one can write using the q̂α2 entry of (51)

p̂1 = p̂1 − (
√

2q̂α2 − q̂α + q̂2)

= q̂α −
√

2q̂α2 + (p̂1 − q̂2). (53)

Recognizing the nullifier (p̂1 − q̂2) = δ̂1 in the last line, one
can thus assign

q̂μ ≡ p̂1 +
√

2q̂α2

= q̂α + (p̂1 − q̂2). (54)

This result indicates that Fourier transformation is needed
here and thus suggests for the output quadrature p̂μ the
mapping q̂1 → −(p̂α + q̂β), subject to corrections. With this
observation, we write, utilizing the p̂α1 and q̂β2 entries of (51),

q̂1 = q̂1 + (
√

2 p̂α1 − p̂α − p̂2) + (
√

2 q̂β2 − q̂β + q̂3)

= −(p̂α + q̂β) +
√

2(p̂α1 + q̂β2 ) − (p̂2 − q̂1 − q̂3). (55)

Rearranging terms in the last expression yields immediately
the desired equation

p̂μ ≡ −q̂1 +
√

2(p̂α1 + q̂β2 )

= p̂α + q̂β + (p̂2 − q̂1 − q̂3) (56)

with the terms in the parentheses in the last line the nullifier
δ̂2. Exploiting the symmetry among the modes in Fig. 3, based
on the results (54) and (56), one can write immediately for the
other output mode ν

q̂ν ≡ p̂4 +
√

2q̂β2

= q̂β + (p̂4 − q̂3),

p̂ν ≡ −q̂4 +
√

2(p̂β1 + q̂α2 )

= p̂β + q̂α + (p̂3 − q̂2 − q̂4). (57)

From the second line in each of the equations in (54), (56),
and (57), we see that we have achieved the intended map-
ping (7) for the CZ gate, except for the presence of excess-
noise terms δ̂k due to finite squeezing. One can also read
off from the first lines of these equations that the CZ-gate
teleportation here requires measurements over the quadrature
operators p̂α1 , q̂α2 , p̂β1 , and q̂β2 . For measurement outcomes
with, respectively, sα1 , sα2 , sβ1 , and sβ2 , one can find from the
first lines of (54), (56), and (57) that the corrective operations

are here

X̂1
(√

2 sα2

)
Ẑ1
[√

2
(
sα1 + sβ2

)]
× F̂

†
1 X̂4

(√
2 sβ2

)
Ẑ4
[√

2
(
sβ1 + sα2

)]
F̂

†
4 . (58)

To quantify the quality of the teleported CZ gate, we
calculate as ever the log-negativity (29) for the output modes μ

and ν. For this purpose, it is necessary to find first the explicit
forms for the noise operators δ̂k , so that one can calculate the
quadrature correlators (27) using (54), (56), and (57). Using the
matrix U found for linear four-mode clusters in Appendix B,
we get

δ̂1 =
√

2 ˆ̄p1, δ̂2 = 5√
10

ˆ̄p2 + 1√
2

ˆ̄p4,

δ̂3 = 1√
2

ˆ̄p1 + 5√
10

ˆ̄p3, δ̂4 =
√

2 ˆ̄p4. (59)

As noted following (49), the noise operators here have
much more complicated forms than their canonical-cluster
counterparts (6). This will also be seen for other linear-optical
cluster states that we will consider later.

For the sake of calculating the quadrature correlators (27)
explicitly, as before, we shall consider identically squeezed
cluster modes with squeezing parameter r and independent
coherent-state input modes. For the noise operators, we
note that previously for canonical cluster states only the
autocorrelators 〈δ̂2

k 〉 are nonvanishing, while here, according
to (59), there can be nonzero cross correlators 〈δ̂k δ̂l〉 with
k �= l. With this precaution, it is then not difficult to find the
quadrature correlators (27) by means of (54), (56), and (57),
together with (59) and get

a = (1 + 2e−2r )

4
, b = (2 + 3e−2r )

4
, c = (1 + e−2r )

4
.

(60)

Substituting these results into (29), we find the log-negativity
for the output modes

EN,L4′ = max{0,− ln(
√

(1 + 2e−2r )(2 + 3e−2r )

− (1 + e−2r ))}, (61)

where the prime over the subscript L4 has been added to tell the
cluster from its canonical counterpart earlier [cf. (31)]. As with
canonical clusters, here excess noise due to finite squeezing has
impaired the entanglement between the output modes μ and ν.
In particular, one can check easily that the entanglement (61)
in the output modes attained here is worse than that of (31)
obtained previously for canonical linear four-mode cluster. It
is therefore of interest to examine also the performance of the
multirail noise reduction for teleportation with linear-optical
clusters. Before delving into this analysis, on the grounds of
the foregoing discussions, we note that the calculations for
CZ-gate teleportation using linear-optical clusters are indeed
very similar to those for canonical cluster states, except for
the differences in the input coupling and the correlations in
the noise operators. We will therefore be very brief with the
calculations for each individual case in the following and take
them merely as intermediate steps leading to the general results
for CZ-gate teleportation through an arbitrary N -rail linear-
optical cluster.
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Let us start with the linear six-mode cluster of Fig. 4(a),
where the input modes are now coupled to the cluster through
two 50:50 beam splitters as in (50). The input coupling between
the input modes α, β and the cluster nodes 3, 4, respectively,
yields the consequential modes given by (51) with (ρ,k) =
(α,3) and (β,4). Making use of these coupling equations, the
same tricks as those illustrated earlier for the linear four-mode
cluster produce the results

q̂μ ≡ q̂1 − p̂2 +
√

2q̂α1

= q̂α − (p̂2 − q̂1 − q̂3),

p̂μ ≡ p̂1 +
√

2(p̂α2 + q̂β1 )

= p̂α + q̂β + (p̂1 − q̂2) − (p̂3 − q̂2 − q̂4), (62)

and

q̂ν ≡ q̂6 − p̂5 +
√

2q̂β1

= q̂β − (p̂5 − q̂4 − q̂6),

p̂ν ≡ p̂6 +
√

2(q̂α1 + p̂β2 )

= p̂β + q̂α + (p̂6 − q̂5) − (p̂4 − q̂3 − q̂5). (63)

By means of the matrix U found for linear six-mode clusters
in Appendix B, one can arrive at the noise operators from (49)

δ̂1 =
√

2 ˆ̄p1, δ̂2 =
√

3 ˆ̄p2,

δ̂3 = 1√
2

ˆ̄p1 +
√

13

6
ˆ̄p3 + 1√

3
ˆ̄p5,

δ̂4 = 1√
3

ˆ̄p2 +
√

13

6
ˆ̄p4 + 1√

2
ˆ̄p6,

δ̂5 =
√

3 ˆ̄p5, δ̂6 =
√

2 ˆ̄p6. (64)

For the two-rail cluster of Fig. 4(b), again beam-splitter
coupling (50) between the input modes α, β and the cluster
nodes 4, 5, respectively, generates the consequential modes
given by (51) with (ρ,k) = (α,4) and (β,5). These results
and the quadrature-manipulation tricks lead to the output
quadratures for the teleported CZ gate

q̂μ ≡ q̂1 − p̂2 + p̂3

2
+

√
2q̂α1

= q̂α − 1

2
[(p̂2 − q̂1 − q̂4) + (p̂3 − q̂1 − q̂4)],

p̂μ ≡ p̂1 +
√

2(p̂α2 + q̂β1 )
= p̂α + q̂β + (p̂1 − q̂2 − q̂3) − (p̂4 − q̂2 − q̂3 − q̂5),

(65)

and

q̂ν ≡ q̂8 − p̂6 + p̂7

2
+

√
2q̂β1

= q̂β − 1

2
[(p̂6 − q̂5 − q̂8) + (p̂7 − q̂5 − q̂8)],

p̂ν ≡ p̂8 +
√

2(q̂α1 + p̂β2 )
= p̂β + q̂α + (p̂8 − q̂6 − q̂7) − (p̂5 − q̂4 − q̂6 − q̂7).

(66)

The noise operators (49) for the two-rail linear-optical cluster
can again be obtained via the corresponding unitary matrix U

listed in in Appendix B. We find

δ̂1 =
√

3 ˆ̄p1, δ̂2 =
√

3 ˆ̄p2, δ̂3 = 2√
3

ˆ̄p2 +
√

5

3
ˆ̄p3,

δ̂4 = 2√
3

ˆ̄p1 +
√

34

15
ˆ̄p4 + 1√

15
ˆ̄p6 + 1√

3
ˆ̄p7,

δ̂5 = 1√
3

ˆ̄p2 + 1√
15

ˆ̄p3 +
√

34

15
ˆ̄p5 + 2√

3
ˆ̄p8,

δ̂6 =
√

5

3
ˆ̄p6 + 2√

3
ˆ̄p7, δ̂7 =

√
3 ˆ̄p7, δ̂8 =

√
3 ˆ̄p8. (67)

Finally, for the three-rail cluster of Fig. 4(c), the beam-
splitter coupling (50) between the input modes α, β and,
respectively, the cluster nodes 5, 6 yields the postcoupling
modes of (51) with (ρ,k) = (α,5) and (β,6). Immediately, the
same tricks as before bring forth

q̂μ ≡ q̂1 − p̂2 + p̂3 + p̂4

3
+

√
2q̂α1

= q̂α − 1

3
[(p̂2 − q̂1 − q̂5) + (p̂3 − q̂1 − q̂5)

+ (p̂4 − q̂1 − q̂5)],

p̂μ ≡ p̂1 +
√

2(p̂α2 + q̂β1 )

= p̂α + q̂β + (p̂1 − q̂2 − q̂3 − q̂4)

− (p̂5 − q̂2 − q̂3 − q̂4 − q̂6), (68)

and

q̂ν ≡ q̂10 − p̂7 + p̂8 + p̂9

3
+

√
2q̂β1

= q̂β − 1

3
[(p̂7 − q̂6 − q̂10) + (p̂8 − q̂6 − q̂10)

+ (p̂9 − q̂6 − q̂10)],

p̂ν ≡ p̂10 +
√

2(q̂α1 + p̂β2 )

= p̂β + q̂α + (p̂10 − q̂7 − q̂8 − q̂9)

− (p̂6 − q̂5 − q̂7 − q̂8 − q̂9). (69)

The U matrix obtained in Appendix B for the three-rail cluster
enables us to find the noise operators (49) here explicitly:

δ̂1 = 2 ˆ̄p1, δ̂2 =
√

3 ˆ̄p2, δ̂3 = 2√
3

ˆ̄p2 +
√

5

3
ˆ̄p3,

δ̂4 = 2√
3

ˆ̄p2 + 2√
15

ˆ̄p3 +
√

7

5
ˆ̄p4,

δ̂5 = 3

2
ˆ̄p1 + 1

2

√
65

7
ˆ̄p5 + 1√

35
ˆ̄p7 + 1√

15
ˆ̄p8 + 1√

3
ˆ̄p9,

δ̂6 = 1√
3

ˆ̄p2 + 1√
15

ˆ̄p3 + 1√
35

ˆ̄p4 + 1

2

√
65

7
ˆ̄p6 + 3

2
ˆ̄p10,

δ̂7 =
√

7

5
ˆ̄p7 + 2√

15
ˆ̄p8 + 2√

3
ˆ̄p9,

δ̂8 =
√

5

3
ˆ̄p8 + 2√

3
ˆ̄p9, δ̂9 =

√
3 ˆ̄p9, δ̂10 = 2 ˆ̄p10. (70)
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Before proceeding to the discussion for general N -rail
configurations, we would like to point out here that, as before
for canonical clusters, the two-rail results (65), (66) and the
three-rail results (68), (69) correspond to the minimum excess
noises in the quadratures q̂μ and q̂ν when the nodes are
uniformly squeezed. For example, for the two-rail results (65)
and (66), one can have instead for q̂μ and q̂ν the general
expressions

q̂μ ≡ q̂1 − (η1 p̂2 + η2 p̂3) +
√

2q̂α1

= q̂α − [η1 (p̂2 − q̂1 − q̂4) + η2 (p̂3 − q̂1 − q̂4)],

q̂ν ≡ q̂8 − (η3 p̂6 + η4 p̂7) +
√

2q̂β1

= q̂β − [η3 (p̂6 − q̂5 − q̂8) + η4 (p̂7 − q̂5 − q̂8)], (71)

where η1 + η2 = 1 and η3 + η4 = 1. Despite the more com-
plicated noise operators (67), for identically squeezed cluster
nodes, one can again show that it is the symmetrical ar-
rangement ηk = 1/2 for all k = 1 ∼ 4 in (65) and (66) that
would minimize the excess noise in the teleported q̂μ and q̂ν .
Similarly, this is also the case with the three-rail results in (68)
and (69). As we had noted when studying multirail canonical
clusters, optimization through the choice of coefficients such
as in (71) is the underlying mechanism for excess-noise
reduction through multirail designs. We will come back to this
issue shortly in our discussion for general N -rail clusters in the
following.

We are now in a position to extend the results above to
general linear-optical cluster states with an arbitrary N -rail
design. Upon inspecting the results (62), (63), (65), (66), (68),
and (69), for the CZ-gate teleportation in Fig. 4(d) with an
N -rail linear-optical cluster, one can obtain by induction the
output quadratures:

q̂μ = q̂α − 1

N

N+1∑
k=2

δ̂k,

p̂μ = p̂α + q̂β + δ̂1 − δ̂N+2,

q̂ν = q̂β − 1

N

2N+3∑
k=N+4

δ̂k,

p̂ν = p̂β + q̂α + δ̂2N+4 − δ̂N+3. (72)

As in (41), here we have expressed the formulas in favor
of the noise operators (49) both for compactness and for
later convenience in calculating the quadrature correlators.
Although (72) closely resembles (41), one must be alert to
the more complicated correlations among the noise operators
δ̂k here than those of canonical clusters. Remarkably, for any
linear-optical cluster with uniformly squeezed nodes, one can
derive an analytical expression for its noise correlators (see
Appendix C):

〈δ̂k δ̂l〉 = (Mkl + δkl) × e−2r

4
, (73)

where r is the squeezing parameter for the nodes and

Mkl ≡
{

(number of nodes connected to node k), if k = l;

(number of nodes connected to both nodes k and l), if k �= l.
(74)

This result will allow us to find an analytical formula for
the entanglement in the output modes μ, ν of the teleported
CZ gate for general N -rail linear-optical cluster. In addition,
we can make use of (73) to understand the noise-reduction
mechanism behind the multirail scheme for teleportation with
linear-optical clusters. That is, as with canonical clusters [see
below (44)], in our expressions for q̂μ and q̂ν in (72), the
coefficient −1

N
in the sum over noise operators δ̂k corresponds to

allocating the excess noise to each of the multirails with equal
weight. As shown in Appendix C, this symmetric arrangement
would minimize the excess noise in the teleported q̂μ and q̂ν .

Equipped with (73), we shall now examine the quality of
the teleported CZ gate through an N -rail cluster by calculating
the log-negativity for the output modes. As always, we shall
assume that we have independent coherent-state input modes
α, β, and that the cluster nodes are uniformly squeezed with
squeezing parameter r . With the help of (73), the quadrature
correlators (27) can then be found readily through (72), which
yield

a =
(
1 + 2N+1

N
e−2r

)
4

, b = (2 + 3e−2r )

4
, c = (1 + e−2r )

4
.

(75)

As with their counterparts for canonical clusters, here b and
c are again N independent. Using (75) in (29), one finds that
the log-negativity for the output modes in this case reads

EN,NR′ = max

{
0,− ln

(√[
1 + (2N + 1)e−2r

N

]
(2 + 3e−2r )

− (1 + e−2r )

)}
. (76)

With the entanglement of the output modes available for CZ-
gate teleportation through canonical cluster states and linear-
optical cluster states, we are now ready for comparisons be-
tween them. We plot in Fig. 5 the log-negativities (43) and (76)
with respect to the squeezing parameter r for different numbers
of rails N , where EN is normalized relative to the ideal
(infinite squeezing) value EN (∞) = − ln(

√
2 − 1)  0.88.

We note that for the linear-optical result (76), the log-negativity
approaches the result (61) for a linear four-mode cluster in the
limit of N → ∞, which remains to have regimes with zero
entanglement for r � 0.45 [visible from the plot for N = 100
in Fig. 5(b)]. In contrast, for canonical cluster states, the
log-negativity (43) would be identical to the corresponding
linear four-mode result (31) when N = 2, and for large N the
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FIG. 5. The log-negativity ẼN for the output modes μ, ν of the
teleported CZ gate normalized with respect to the ideal (infinite
squeezing) value plotted as a function of the squeezing parameter
r . Here the resource states are (a) canonical and (b) linear-optical
multirail clusters with the number of rails N = 1 (dashed lines), 2
(dotted lines), 3 (dot-dashed lines), and 100 (solid lines). In each
panel, the inset shows the vicinity of the squeezing level at which the
log-negativity reaches 50% of the ideal value.

output modes can have nonzero entanglement even at very low
squeezing levels [e.g., see the plot for N = 100 in Fig. 5(a)].

As a figure of merit for the CZ-gate teleportation, let us
consider the squeezing parameter r̄ that would enable the
teleportation to achieve one half of the ideal value for the
log-negativity (see the insets in Fig. 5). Analytic expressions
for r̄ can be obtained by solving the equation

√
ab − c =

√√
2 − 1

4
, (77)

where the correlators a, b, c are given by (42) for canonical
clusters and (75) for linear-optical clusters. We list in Table I
the values of r̄ for both types of multirail clusters with
selected number of rails N . It is seen that for linear-optical
clusters, r̄ starts with the single-rail value 1.12 (corresponding
to −9.73 dB) and, with the implementation of multirail
structures, reduces to 1.00 (−8.69 dB) for N = 3 and to
0.93 (−8.08 dB) for N = 100. Judging from the reduction
of r̄ achieved by increasing N in the multirail, we see that
the improvement in the CZ-gate teleportation is rather limited
in this case. In the instance of the canonical clusters, r̄

takes the value 0.91 (−7.90 dB) for single-rail and decreases
appreciably when multirail design is incorporated: r̄ becomes
0.70 (−6.08 dB) when N = 3 and 0.53 (−4.60 dB) when
N = 100. If this trend could persist for even larger values of N ,
so that r̄ would tend to zero for sufficiently large N , one would
then be able to achieve ideal log-negativity for the CZ-gate
teleportation via multirail canonical clusters with vanishing
squeezing. Nonetheless, as one can show analytically, for

TABLE I. Squeezing parameter r̄ for achieving 50% of the ideal
log-negativity with N -rail clusters.

N

1 2 3 100 ∞
r̄ (can.)a 0.91 0.76 0.70 0.53 0.52 + O(1/N )
r̄ (l.o.)b 1.12 1.03 1.00 0.93 0.93 + O(1/N )

aCanonical clusters.
bLinear-optical clusters.

both linear-optical and canonical clusters r̄ would approach
nonzero steady values in the large N limit in the manner of
1/N (see Table I). Therefore, despite the impressive reduction
of r̄ for multirail canonical clusters, it is not possible to reduce
r̄ without bound toward zero. In other words, for either class
of resource states considered here, multirail noise reduction is
insufficient to enable ideal CZ-gate teleportation if the resource
state had not been sufficiently squeezed.

To understand the reason for the difference between the
results for the two classes of resource states, let us recall that
the entanglement between the output modes is determined
solely from the smaller symplectic eigenvalue λ− in (28) for
the partially transposed covariance matrix of the output modes,
which, in turn, is governed by the quadrature correlators (27).
From the results (42) and (75), we find that for both canonical
and linear-optical clusters, the correlators b and c for the
teleported states are entirely independent of the number of
rails N . Therefore, the N dependence of λ− (and hence, of
the log-negativity EN ) is completely due to the correlator
a. Since we have

√
ab > c always for both (42) and (75),

according to (28) and (29), the entanglement thus changes
monotonically with a when b and c stay fixed. In the case
of canonical clusters, we see from (42) that the multirail
design can eliminate the excess noise in a entirely in the
large N limit, so that λ− can drop below the critical value
1/4 for entanglement. Thus, with increasing number of rails,
the log-negativity (43) would increase steadily and tend to a
limit with nonvanishing entanglement for the whole range of
squeezing parameter r . In contrast, for linear-optical clusters,
the multirail noise reduction can bring down a at best to the
linear four-mode expression (60) even with N → ∞. The
entanglement (76) is thus always bounded above by EN,L4′

of (61), which vanishes for a finite range of squeezing levels.
Likewise, for the figure of merit r̄ , one can also understand why
the multirail reduction works better for canonical clusters than
for linear-optical ones. This is because in the large N limit,
only the correlator b would be left with an excess-noise term in
the case of canonical clusters, while all three correlators a, b,
and c would still have excess-noise terms for linear-optical
clusters. In fact, this is also why one can never succeed
in reducing r̄ to zero even with infinite N , since there are
always excess-noise terms left in the quadrature correlator(s).
If one could design cluster-type resource states for which
the output mode quadrature correlators would depend on
some parameters that could erase all excess-noise terms under
appropriate limits, it would then be possible to achieve perfect
CZ-gate teleportation with resource states of arbitrarily low
squeezing.

In order to verify our results experimentally, one can
construct the linear-optical clusters, as usual, by passing
momentum-squeezed vacuum modes through appropriate net-
works of beam splitters and phase shifters [20–23,32]. The
number of optical elements required, nevertheless, would
increase rapidly with the number of multirails implemented.
For the canonical clusters, one may achieve the multirail
structure by means of cluster shaping over universal two-
dimensional cluster states [42]. This is, however, rather
wasteful for the resource states and the number of rails
achievable would also be limited by the connectivity of the
nodes in the original cluster. Alternatively, one may resort to
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FIG. 6. Panels (a) and (b): Wg as a function of the signal gain g at
−3.91 dB (r = 0.45) squeezing for teleportations with (a) canonical
and (b) linear-optical clusters with multirails N = 1 (dashed lines),
3 (dot-dashed lines), and 100 (solid lines). Panels (c) and (d): Wg

plotted vs the squeezing parameter r at fixed gain values (c) g =
1.0 and (d) g = 0.5 for teleportations with canonical (solid lines)
and linear-optical (dashed lines) clusters with the number of rails
N = 100. In each panel, the dotted line depicts the corresponding
entanglement bound.

the temporal-encoding-based single-QND approach [25]. By
routing and controlling the qumodes exquisitely, it is possible
to fabricate the canonical multirail cluster employing a single
QND gate (see Appendix D).

For the entanglement detection, rather than the full covari-
ance matrix, experimentally it is favorable to check through the
variance sum of suitable quadrature combinations, such as [22]

Wg ≡ 〈[
(gp̂μ − q̂ν)]2〉 + 〈[
(gp̂ν − q̂μ)]2〉, (78)

where g is a signal gain introduced to sharpen the entanglement
bound (see below). Measurement with Wg < g indicates
entanglement between the output modes μ and ν. The variance
function Wg can be readily expressed in terms of the correla-
tors (27), which yields Wg = 2(a + g2b − 2gc). Making use
of our results (42) for canonical clusters, and (75) for linear-
optical clusters, we plot in Figs. 6(a) and 6(b) the dependence
of Wg on the gain factor g for canonical and linear clusters with
different multirail structures at the squeezing level r = 0.45
(−3.91 dB). We see that for canonical clusters, the teleported
modes become entangled with the implementation of the
multirails, while for linear-optical clusters, the teleported
modes remains to have no detectable entanglement even with
large number of multirails N = 100. This is consistent with
our finding through log-negativities shown in Fig. 5.

It should be noted that the gain factor g is crucial here for
the entanglement detection. As illustrated in Fig. 6(c) for the
canonical cluster with multirails of N = 100, with unit gain
(g = 1), Wg would fail to detect entanglement for r � 0.35,
despite the presence of entanglement even at r  0.01 accord-
ing to the log-negativity [see Fig. 5(a)]. In contrast, as depicted
in Fig. 6(d), the choice of g = 0.5 changes the situation
entirely: Wg would then be able to detect entanglement even
at very low squeezing levels. In fact, for the optimal gain g =
(c + 1/4)/b that minimizes (Wg − g) (thus providing the most

stringent entanglement bound for a given configuration), one
can show easily that the condition Wg < g for entanglement
would become exactly identical to the symplectic-eigenvalue
based criterion λ− = (

√
ab − c) < 1/4.

IV. CONCLUSION AND DISCUSSION

In summary, we have examined in this paper the telepor-
tation of a CZ gate through a measurement-based scheme
in the CV regime, where two classes of resource states
have been considered: the canonical cluster states fabricated
through QND gates and the linear-optical cluster states from
linear-optical networks. We study the entanglement properties
of the teleported output modes and examine the performance
of a multirail design that aims to reduce the excess noise in
the teleported gate. For both classes of resource states, we
find analytical expressions for the entanglement and obtain its
scaling with the number of rails in the multirail design. It is
found that the multirail design can help improve the CZ-gate
teleportation significantly when canonical clusters are adopted.
In the process of this analysis, we also discuss in detail the
noise-reduction mechanism underlying the multirail approach
to measurement-based teleportation. And last but not least,
in order to facilitate the analysis for teleportation with mul-
tirail clusters, we have developed an operator-manipulation
trick that can help establish efficiently the measurement
sequence and the corrective operations for the CZ-gate
teleportation.

Although the quadrature-manipulation trick has been ap-
plied in this work only to CZ-gate teleportation, it is equally
applicable to teleportation of other gates in measurement-
based quantum information processing. For instance, for
single-qumode gates that effect translation, rotation, and
squeezing of a single qumode, one can apply the same trick and
obtain the corresponding measurement sequence and correc-
tive operations in the measurement-based teleportation [28].

It must be noted that the entanglement enhancement in
the teleported CZ gate in our result should not be interpreted
as a scheme for building an “improved” CZ gate, which
can be used, for instance, in the single-QND approach to
cluster construction [25]. Instead, the CZ-gate teleportation
here is used as a task for testing the performance of a given
resource state in the measurement-based scheme. Our result
demonstrates that by implementing multirail designs into the
resource states, due to suppression of the excess noise, it is
possible to entangle two input modes more effectively than the
original single-rail clusters. In the light of this result, therefore,
it is then interesting to enquire whether this multirail design
could help lower the squeezing threshold for fault-tolerant
measurement-based CV quantum computing when appropriate
error-correcting code is incorporated [27].

Finally, in closing we note that despite the lower quality
of the teleported CZ gate through linear-optical cluster states
in comparison with that via canonical cluster states in our
results, it can be possible to change this situation by exploiting
an additional degree of freedom in constructing the U matrix
for the linear-optical cluster. Since the geometric constraints
resulting from (47) consist of inner products of the �αk’s
[i.e., the Gkl of (48)], they are invariant under orthogonal
transformations. In other words, for any choice of the �αk’s
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one can always apply orthogonal transformations over these
vectors without violating the geometric constraints. This extra
degree of freedom thus provides means of optimization for
constructing the U matrix according to the cost function
one choose to consider [43]. Since the number of nodes can
be quite large in our calculation, such optimization can be
challenging. Also, it is possible to improve the quality of the
teleported gates by introducing appropriate gain factors in the
feedback signals [12,32]. We plan to investigate these issues
of optimization in a separate work.
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APPENDIX A: CZ-GATE TELEPORTATION USING
FOURIER-TRANSFORMED CLUSTER STATES

In this Appendix, we demonstrate that for the CZ-gate tele-
portation of Fig. 3 with a canonical linear four-mode cluster,
one can perform the quadrature manipulations following the
scheme of category (d), rather than those of categories (b) and
(c), and arrive at results equivalent to those of Sec. II. For this
purpose, it is necessary to apply Fourier transforms over the
cluster modes prior to their coupling with the input modes.
The quadrature operators for the Fourier-transformed cluster
nodes k = 1 ∼ 4 read(

q̂ ′
k

p̂′
k

)
=
(−p̂k

+q̂k

)
=
(− ˆ̄pk −∑

l∈Nk
ˆ̄ql

ˆ̄qk

)
, (A1)

where, as always, ˆ̄qk and ˆ̄pk are quadrature operators for the
offline-squeezed initial cluster mode k, and we have used (5) in
reaching the last expression. It follows immediately from (A1)
that, instead of (6), the excess-noise operators (or nullifiers)
here become

δ̂k ≡ q̂ ′
k +

∑
l∈Nk

p̂′
l = − ˆ̄pk. (A2)

QND couplings between the input modes and the cluster nodes
thus yield [cf. (17)](

q̂ ′′
ρ

p̂′′
ρ

)
=
(

q̂ρ

p̂ρ + q̂ ′
k

)
and

(
q̂ ′′

k

p̂′′
k

)
=
(

q̂ ′
k

p̂′
k + q̂ρ

)
, (A3)

where (ρ,k) = (α,2) and (β,3), and we have denoted all
resultant modes with double-primed notations for clarity.

In anticipation of the mapping(
q̂ ′

1

p̂′
1

)
→
(

q̂α

p̂α + q̂β

)
and

(
q̂ ′

4

p̂′
4

)
→
(

q̂β

p̂β + q̂α

)
(A4)

subject to proper corrective operations, one can write, employ-
ing the p̂′′

2 entry of (A3),

q̂ ′
1 = q̂ ′

1 − (p̂′′
2 − p̂′

2 − q̂α)

= q̂α − p̂′′
2 + (q̂ ′

1 + p̂′
2) (A5)

with (q̂ ′
1 + p̂′

2) in the last line being the nullifier δ̂1 of (A2).
The last expression above immediately suggests that

q̂μ ≡ q̂ ′
1 + p̂′′

2

= q̂α + (q̂ ′
1 + p̂′

2). (A6)

Similarly, in view of (A4), we can write, with the help of (A3),

p̂′
1 = p̂′

1 − (p̂′′
α − p̂α − q̂ ′

2) − (p̂′′
3 − p̂′

3 − q̂β)

= p̂α + q̂β − p̂′′
α − p̂′′

3 + (q̂ ′
2 + p̂′

1 + p̂′
3). (A7)

It thus follows that

p̂μ ≡ p̂′
1 + p̂′′

α + p̂′′
3

= p̂α + q̂β + (q̂ ′
2 + p̂′

1 + p̂′
3). (A8)

As before, by virtue of the symmetry among the modes, for the
output mode ν one can obtain from (A6) and (A8) by changing
the indices suitably

q̂ν ≡ q̂ ′
4 + p̂′′

3

= q̂β + (q̂ ′
4 + p̂′

3),

p̂ν ≡ p̂′
4 + p̂′′

β + p̂′′
2

= p̂β + q̂α + (q̂ ′
3 + p̂′

2 + p̂′
4). (A9)

Comparing the second line of each expression for the output
quadratures above with its counterpart in (19), (21), and (22),
we see that the output modes here differ from those earlier
only in sign changes in the excess-noise terms. As far as the
entanglement of the output modes is concerned, which depends
only on 〈δ̂2

k 〉, the results above are therefore entirely equivalent
to those found in Sec. II.

APPENDIX B: CONSTRUCTION OF THE U MATRICES
FOR LINEAR-OPTICAL CLUSTER STATES

We explain in this appendix the procedure for constructing
the unitary matrix U in (45) which represents the effects of
a linear-optical network that implements the desired cluster
correlations for a linear-optical cluster state. The results of
these calculations related to the linear-optical cluster states
considered in the text will also be supplied in the following.

In constructing the U matrix for a given cluster geometry,
one starts by solving from (47) the geometric constraints over
the row vectors �αk , which consist of definite values for the
inner products Gkl ≡ �αk �α T

l . For a cluster with M nodes, there
are M(M + 1)/2 such constraints that can be solved from (47)
and the result can be conveniently summarized in terms of an
M×M real symmetric matrix G, whose k,l element is given
by Gkl . For instance, for the linear four-mode cluster in Figs. 2
and 3, we find

GL4 =

⎛
⎜⎜⎜⎝

3
5 0 −1

5 0

0 2
5 0 −1

5
−1
5 0 2

5 0

0 −1
5 0 3

5

⎞
⎟⎟⎟⎠, (B1)

where the subscript L4 stands for “linear four-mode.” With the
geometric constraints, it is then straightforward to construct
the vectors �αk accordingly. For this task, it is advisable to start
from the “symmetric center” of the cluster. In the present case
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of the linear four-mode cluster, we start from nodes 2 and 3, in
keeping with the geometric constraints (GL4)22 = (GL4)33 =
2/5 and that (GL4)23 = 0 from (B1), and take

�α2 = (
0

√
2
5 0 0

)
,

�α3 = (
0 0

√
2
5 0

)
. (B2)

One can next choose to construct �α1 taking into account the
geometric constraints (GL4)1k with k = 1 ∼ 3, leaving out
(GL4)14 for later when constructing �α4. We get accordingly

�α1 = ( 1√
2

0 −1√
10

0
)
. (B3)

Taking into account the remaining constraints for �α4, one can
find immediately

�α4 = (
0 −1√

10
0 1√

2

)
. (B4)

With the �αk’s available, it is then straightforward to construct
the kth row of the matrix U following (46), and thus the
Umatrix. Using (B2)–(B4), we obtain for the linear four-mode

cluster

UL4 =

⎛
⎜⎜⎜⎜⎜⎜⎝

1√
2

2i√
10

−1√
10

0

i√
2

2√
10

i√
10

0

0 i√
10

2√
10

i√
2

0 −1√
10

2i√
10

1√
2

⎞
⎟⎟⎟⎟⎟⎟⎠

. (B5)

For larger clusters, the procedure proceed similarly to that
presented above, although with greater complexity due to the
increased number of nodes and geometric constraints involved.
We summarize here our results for the linear-optical cluster
states that are considered in Sec. III B. For the linear six-mode
cluster of Fig. 4(a), we find the matrix for geometric constraints

GL6 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

8
13 0 −3

13 0 1
13 0

0 5
13 0 −2

13 0 1
13

−3
13 0 6

13 0 −2
13 0

0 −2
13 0 6

13 0 −3
13

1
13 0 −2

13 0 5
13 0

0 1
13 0 −3

13 0 8
13

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (B6)

Constructing the vectors �αk accordingly, we obtain the U

matrix

UL6 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1√
2

i√
3

−
√

3
26 −

√
2

39 i 0 0

i√
2

1√
3

√
3
26 i −

√
2

39 0 0

0 i√
3

√
6

13 2
√

2
39 i 0 0

0 0 2
√

2
39 i

√
6
13

i√
3

0

0 0 −
√

2
39

√
3

26 i 1√
3

i√
2

0 0 −
√

2
39 i −

√
3

26
i√
3

1√
2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (B7)

In the case of the two-rail cluster of Fig. 4(b), we find the geometric constraints

G2R =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

9
17 0 0 − 5

17 0 1
17

1
17 0

0 21
34 − 13

34 0 − 3
34 0 0 1

17

0 − 13
34

21
34 0 − 3

34 0 0 1
17

− 5
17 0 0 15

34 0 − 3
34 − 3

34 0

0 − 3
34 − 3

34 0 15
34 0 0 − 5

17

1
17 0 0 − 3

34 0 21
34 − 13

34 0

1
17 0 0 − 3

34 0 − 13
34

21
34 0

0 1
17

1
17 0 − 5

17 0 0 9
17

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (B8)
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which allows us to construct the corresponding U matrix

U2R =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1√
3

i√
3

i√
15

−
√

10
51 −

√
6
85 i 0 0 0

i√
3

1√
3

−2√
15

√
5

102 i −
√

3
170 0 0 0

i√
3

0
√

3
5

√
5

102 i −
√

3
170 0 0 0

0 i√
3

i√
15

√
15
34

√
27

170 i 0 0 0

0 0 0
√

27
170 i

√
15
34

i√
15

i√
3

0

0 0 0 −
√

3
170

√
5

102 i

√
3
5 0 i√

3

0 0 0 −
√

3
170

√
5

102 i −2√
15

1√
3

i√
3

0 0 0 −
√

6
85 i −

√
10
51

i√
15

i√
3

1√
3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (B9)

For the three-rail cluster in Fig. 4(c), we find

G3R =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

32
65 0 0 0 − 21

65 0 3
65

3
65

3
65 0

0 47
65 − 18

65 − 18
65 0 − 4

65 0 0 0 3
65

0 − 18
65

47
65 − 18

65 0 − 4
65 0 0 0 3

65

0 − 18
65 − 18

65
47
65 0 − 4

65 0 0 0 3
65

− 21
65 0 0 0 28

65 0 − 4
65 − 4

65 − 4
65 0

0 − 4
65 − 4

65 − 4
65 0 28

65 0 0 0 − 21
65

3
65 0 0 0 − 4

65 0 47
65 − 18

65 − 18
65 0

3
65 0 0 0 − 4

65 0 − 18
65

47
65 − 18

65 0

3
65 0 0 0 − 4

65 0 − 18
65 − 18

65
47
65 0

0 3
65

3
65

3
65 0 − 21

65 0 0 0 32
65

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (B10)

and the U matrix can be constructed in the way described above. We get

U3R =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
2

i√
3

i√
15

i√
35

− 3
2

√
7
65

−6i√
455

0 0 0 0

i
2

1√
3

−2√
15

−2√
35

i
2

√
7

65
−2√
455

0 0 0 0

i
2 0

√
3
5

−2√
35

i
2

√
7

65
−2√
455

0 0 0 0

i
2 0 0

√
5
7

i
2

√
7

65
−2√
455

0 0 0 0

0 i√
3

i√
15

i√
35

2
√

7
65

8i√
455

0 0 0 0

0 0 0 0 8i√
455

2
√

7
65

i√
35

i√
15

i√
3

0

0 0 0 0 −2√
455

i
2

√
7

65

√
5
7 0 0 i

2

0 0 0 0 −2√
455

i
2

√
7

65
−2√

35

√
3
5 0 i

2

0 0 0 0 −2√
455

i
2

√
7

65
−2√

35
−2√

15
1√
3

i
2

0 0 0 0 −6i√
455

− 3
2

√
7
65

i√
35

i√
15

i√
3

1
2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (B11)

It is the results (B5), (B7), (B9), and (B11) for the U matrices that we adopt in our calculations for the linear-optical clusters
in Sec. III B, such as in finding the excess-noise operators in (59), (64), (67), and (70).
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APPENDIX C: DERIVATION FOR EQ. (73) AND THE
NOISE-REDUCTION MECHANISM FOR MULTI-RAIL

LINEAR-OPTICAL CLUSTERS

Here we derive the identity (73) for the noise correlators that
is indispensable in calculating the quadrature correlators (27)
for linear-optical clusters. Based on (73), we will also
provide analysis for the noise reduction through multirail de-
signs in measurement-based teleportation with linear-optical
clusters.

To begin with, let us introduce a simplified notation by
writing �βk ≡ ∑

l∈Nk
�αl in (46), so that we have

�uk = �αk + i �βk. (C1)

The orthonormality condition of �uk (or unitarity of U ) (47)
can then be put in a more succinct form,

∑
m

(αk,m αl,m + βk,m βl,m) = δkl,

∑
m

(αk,m βl,m − αl,m βk,m) = 0, (C2)

where αk,m denotes the mth component of �αk and similarly
for βk,m. For the unitary transformation (45) induced by a
linear-optical network, if we use the notation of (C1) and write

in favor of the quadrature operators, we would get

q̂k =
∑

l

(αk,l ˆ̄ql − βk,l ˆ̄pl),

p̂k =
∑

l

(αk,l ˆ̄pl + βk,l ˆ̄ql). (C3)

It then follows that the noise operators are here

δ̂k =
∑
m

⎛
⎝αk,m +

∑
n∈Nk

βn,m

⎞
⎠ ˆ̄pm, (C4)

which is (49) expressed in the notation of (C1). Since the initial
cluster modes are uncorrelated, it follows that 〈 ˆ̄pm ˆ̄pm′ 〉 =
〈 ˆ̄p2

m〉δmm′ . The noise correlators can thus be written

〈δ̂k δ̂l〉 =
∑
m

⎡
⎣
⎛
⎝αk,m +

∑
n∈Nk

βn,m

⎞
⎠
⎛
⎝αl,m +

∑
n′∈Nl

βn′,m

⎞
⎠〈 ˆ̄p2

m

〉⎤⎦.

(C5)

In the case when all initial cluster modes are momentum-
squeezed vacuum states with the same squeezing parameter
r , we have 〈 ˆ̄p2

m〉 = e−2r/4 for every mode m. One can
then deal with the summations in (C5) making use of the
unitarity of U through (C2). Factoring out the constant
〈 ˆ̄p2

m〉 in (C5), we spell out the summations there and
arrive at

∑
m

⎛
⎝αk,m αl,m + αk,m

∑
n′∈Nl

βn′,m + αl,m

∑
n∈Nk

βn,m +
∑
n∈Nk

∑
n′∈Nl

βn,m βn′,m

⎞
⎠. (C6)

For the second term in the equation above, by exchanging the order of summations, we can write, with the aid of (C2),

∑
n′∈Nl

(∑
m

αk,mβn′,m

)
=
∑
n′∈Nl

(∑
m

αn′,mβk,m

)
. (C7)

Exchanging again the order of summations in the last expression, we can arrive at

∑
m

βk,m

⎛
⎝∑

n′∈Nl

αn′,m

⎞
⎠ =

∑
m

βk,m βl,m. (C8)

For the third term in (C6), it is just the second term there with k and l being exchanged. The result is thus the same
as that of (C8). For the fourth term in (C6), again exchanging the order of summations there and using (C2), we can
write

∑
n∈Nk

∑
n′∈Nl

(∑
m

βn,m βn′,m

)
=
∑
n∈Nk

∑
n′∈Nl

(
δnn′ −

∑
m

αn,m αn′,m

)
. (C9)

Exchanging again the order of summations in the second term above, we get

∑
n∈Nk

∑
n′∈Nl

δnn′ −
∑
m

⎛
⎝∑

n∈Nk

αn,m

⎞
⎠
⎛
⎝∑

n′∈Nl

αn′,m

⎞
⎠ =

∑
n∈Nk

∑
n′∈Nl

δnn′ −
∑
m

βk,m βl,m. (C10)
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Using the results (C8) and (C10) for the respective terms in (C6), we thus find that the summations there become

∑
n∈Nk

⎛
⎝∑

n′∈Nl

δnn′

⎞
⎠+

∑
m

(αk,m αl,m + βk,m βl,m) = Mkl + δkl, (C11)

where we have used the first equation of (C2) in dealing
with the second summation on the left-hand side. For the
first summation in (C11), it yields exactly the Mkl defined
in (74). Utilizing the result (C11) in (C5), we arrive finally at
the identity (73).

In the light of the result (73), we will now demonstrate how
noise reduction in the multirail teleportation can be optimized
through a symmetric arrangement among the rails of a linear-
optical cluster. In other words, we will show that the coefficient
−1
N

in the expressions for q̂μ and q̂ν in (72) serves to minimize
the excess noise in these output quadratures. Similar to (44) for
canonical clusters, for CZ-gate teleportation through an N -rail
linear-optical cluster, one can have q̂μ and q̂ν in the generic
expressions

q̂σ = q̂ρ −
∑

k

ηk δ̂k, (C12)

where (σ,ρ) = (μ,α) and (ν,β), and the summation over k

covers the same range as in (72). Note that here we have
kept the minus sign in front of the summation for consistency
with its two-rail counterpart (71). As before, the coefficients
ηk in (C12) must satisfy the condition

∑
k ηk = 1. Now

that the noise operators δ̂k for linear-optical clusters are no
longer independent from each other, the excess noise in the
teleported q̂σ becomes here 〈(q̂σ − q̂ρ)2〉 = ∑

k,l ηkηl 〈δ̂k δ̂l〉.
For a uniformly squeezed linear-optical cluster state, we can
write this expression as

∑
k

⎛
⎝η2

k

〈
δ̂2
k

〉+∑
l �=k

ηkηl〈δ̂k δ̂l〉
⎞
⎠

=
∑

k

⎛
⎝3η2

k +
∑
l �=k

2ηkηl

⎞
⎠e−2r

4
, (C13)

where we have applied (73) in reaching the right-hand side.
Since

∑
k ηk = 1, it follows that

∑
k,l

ηkηl =
∑

k

⎛
⎝η2

k +
∑
l �=k

ηkηl

⎞
⎠ = 1. (C14)

We can therefore reduce the expression (C13) for the excess
noise to the form (∑

k

η2
k + 2

)
e−2r

4
. (C15)

It is now clear that minimization for the excess noise here is
completely identical to that for the case of canonical clusters
[see below (44)]. Namely, it corresponds to locating the point
over the N -dimensional hyperplane

∑
k ηk = 1 that is closest

to the origin. Obviously, the result is the symmetric point
ηk = 1/N for all k, which means that the excess noise for q̂σ

in (C12) can be minimized if it is distributed equally over each
of the multirails.

APPENDIX D: SINGLE-QND CONSTRUCTION
FOR MULTIRAIL CV CANONICAL CLUSTERS

We discuss in this Appendix the fabrication of multirail
CV canonical cluster states in the time-encoding single-QND
approach [25]. For simplicity, we will demonstrate with the
single-mode teleportation shown in Fig. 1(c), which is redrawn
in Fig. 7 with the nodes numbered in accordance with their time
sequence in the single-QND scheme (see below). Let us start
by considering the teleportation through an extended network
of QND gates illustrated in Fig. 7, where the teleportation
is divided into three stages: (i) input coupling, (ii) multirail
construction, and (iii) output generation. At stage (i), the input
mode is coupled to qumode 1 through a QND gate. The
input mode is then subject to a homodyne detection, while
qumode 1 is directed toward the next stage. At the same
time, in preparation for stage (ii), the momentum-squeezed
mode 3 is also generated. At stage (ii), qumodes 1 and
3 entangle with additional momentum-squeezed qumodes
{2,4, . . . ,(N + 2)} through a sequence of QND gates to form
the multirails. The midrail modes {2,4, . . . ,(N + 2)} in the
multirails are measured subsequently in preparation for the
corrective operations over qumode 3 in stage (iii), while modes
1 and 3 are led to the next stage. At stage (iii), qumode 1 is
measured, while qumode 3 is corrected in accordance with
measurement outcomes of all other modes to generate the
desired output mode μ.

As is clear from Fig. 7, stage (ii) of the teleportation
consists of N repeated units that entangle modes 1 and 3 to the
midrail modes {2,4, . . . ,(N + 2)} via pairs of QND gates, and
subsequently detect the midrail modes. One can thus readily
condense stage (ii) into the single-QND design shown in Fig. 8.
Namely, by cycling qumodes 1 and 3 repeatedly through the
QND gate while directing the midrail modes along a U -shaped
optical path that would meet qumodes 1 and 3 at appropriate
times, one would be able to implement the multirail structure in
the time domain utilizing a single QND gate. Since there are N

multirails in total, qumodes 1 and 3 must cycle N times before
entering stage (iii). Therefore, the optical path for qumodes 1
and 3 can be fashioned into a helical one, so that the loop in
Fig. 8 is just a single run of it. On the other hand, due to the
lack of symmetry in the setup at stage (i), its transition into
the highly symmetric stage (ii) poses the major challenge to
the single-QND implementation here. We propose to overcome
this difficulty through the design illustrated in Fig. 9, as we
shall now explain.

First, we send in the input mode α toward the QND gate
for coupling with qumode 1 at time t = 0 and then direct it
to a homodyne detector [Fig. 9(a)]. Second, the input-mode-
encoded qumode 1 then proceeds along a helical path and
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FIG. 7. A network of QND gates for the single-mode teleportation through an N -rail canonical cluster shown in the lower left corner of
this figure. Here “S” are single-mode squeezers that generate momentum-squeezed vacuum modes, “QND” are QND gates that entangle the
pairs of intersecting modes, and “D” are the homodyne detectors for the qumodes. Each qumode is denoted by a numbered pulse for the
corresponding cluster node, and similarly for the input mode α and the output mode μ. The teleportation is divided into three stages (see text),
which are indicated by vertical dotted lines. The gate “correc. op’s” in stage (iii) represents corrective operations for the output mode, where
the double wires on the sides stand for signals fed forward from measurement outcomes of other qumodes.

returns to the QND gate for entanglement with qumode 2
at time t = T . Qumode 2 then follows a U -shaped optical
path that will lead it back to the QND gate [Fig. 9(b)]. Third,
qumode 3 is then generated and propagates along the same
optical path as qumode 1, so that it would meet with qumode
2 at the QND gate at time t = 1.5 T . After this, qumode 2
is then detected, while qumode 3 proceeds along the helical
path with a time lag 1.5 T behind qumode 1 [Fig. 9(c)]. We are
now connected to the fully implemented stage (ii) illustrated in
Fig. 8, which corresponds roughly to a snapshot at t  1.75 T .

S D

QND

1 3

24

FIG. 8. A snapshot for the single-QND counterpart for stage
(ii) of the multirail teleportation depicted in Fig. 7. Here the
midrail modes {2,4, . . . ,(N + 2)} are produced sequentially from
the squeezer at a fixed interval, so that they can meet qumodes 1 and
3 at appropriate times at the QND gate. Note that for the optical paths
the path lengths illustrated here are not in actual proportions and the
loop for qumodes 1 and 3 is in fact part of a helical path; see text and
also Fig. 9.

Finally, in order to separate qumodes 1 and 3 over the same
helical path at stage (iii), one can prepare them with orthogonal
polarizations at the outset. The single-QND counterpart for
stage (iii) can then be achieved through a polarization beam
splitter which would divert, for instance, qumode 1 to a
homodyne detector, while passing qumode 3 to the corrective
gates. In this case, of course, one must ensure that the QND
gate should function impartially for both polarizations.

It is interesting to note that the scheme above can be
generalized easily for single-qumode teleportation involving
a longer linear cluster implemented with multirail structures.
This can be done by repeating the single-QND procedures
above while skipping at stage (iii) the corrective operations
for qumode 3. That is, by taking the uncorrected qumode
3 as the new input state α in Fig. 9(a), one can furnish
an additional multirail teleportation down the linear cluster.
Depending on the length of the linear cluster, this iteration can
be terminated via the stage (iii) implementation above once
the desired number of runs is reached.

For two-mode operations, such as the CZ-gate teleportation
of Fig. 4(d), one could extend the preceding single-QND
design by either time multiplexing or polarization multiplexing
similar to what was proposed for two-dimensional square
lattices in the single-QND approach [25]. For instance, if
we modify the node configurations in Fig. 4(d) slightly by
connecting the input modes to nodes 1 and (2N + 4), and
output modes to nodes (N + 2) and (N + 3), we would then
have two identical, independent single-qumode teleporting
arms before reaching the output stage. Therefore, the single-
QND implementation here can be achieved through two copies
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FIG. 9. Single-QND realization for the transition from stage (i) [panel (a)] to the initial steps of stage (ii) [panels (b), (c)] for the teleportation
shown in Fig. 7. For clarity, we show only part of the helical path for modes 1 and 3.

of the pulse sequence above intercalating each other in time. At
the output stage, however, prior to subjecting qumodes (N + 2)
and (N + 3) to the respective corrective operations, one must

direct them back to the QND gate for entanglement. Since
these two modes are separated in time, this can be achieved
with the help of an active beam divertor.
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