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Nonlocal bunching of composite bosons

Zakarya Lasmar,1 Dagomir Kaszlikowski,2,3 and Paweł Kurzyński1,2,*
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It was suggested that two entangled fermions can behave like a single boson and that the bosonic quality is
proportional to the degree of entanglement between the two particles. The relation between bosonic quality and
entanglement is quite natural if one takes into account the fact that entanglement appears in bound states of
interacting systems. However, entanglement can still be present in spatially separated subsystems that no longer
interact. These systems are often the subject of studies on quantum nonlocality and foundations of quantum
physics. Here, we ask whether an entangled spatially separated fermionic pair can exhibit bosonic properties.
We show that under certain conditions the answer to this question can be positive. In particular, we propose a
nonlocal bunching scenario in which two such pairs form an analog of a two-partite bosonic Fock state.
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I. INTRODUCTION

As far as we know, elementary particles can either be
bosons or fermions. For instance, photons and electrons are
particles that exhibit the ideal bosonic and fermionic behavior,
respectively. Apart from restrictions on occupation numbers,
which are expressed by the Pauli exclusion principle, the
simplest method to distinguish between fermions and bosons
is the celebrated Hong-Ou-Mandel two-particle interference
[1]. If two bosons meet on a symmetric beam splitter (BS),
they bunch; they come out together through the same port. On
the other hand, two fermions come out separately, i.e., they
antibunch.

In the real world most particles that we encounter are
not elementary. Atoms, molecules, or even protons and
neutrons are composed of a few elementary particles. The
majority of bosons are in fact made of an even number
of elementary fermions. The constituents of such composite
bosons (cobosons) are bounded via strong forces that keep
them together and constrain most the degrees of freedom so
that the total system is effectively described by the center of
mass and total momentum. Therefore, it is legitimate to treat
such systems as a single particle as long as the forces acting
on it are weaker than the binding forces.

Interestingly, a multipartite bound state is often highly
entangled. This is clearly visible for cobosons made of two
components, such as hydrogen and exciton, for which the total
state is pure, but the state of each subsystem is highly mixed.
It was proposed that the bosonic quality of such particles
is proportional to the degree of entanglement between the
constituents [2]. This idea was further developed in a number of
works [2–24]. Since intraparticle entanglement can exist even
if particles are spatially separated and there is no interaction
between them, it is natural to ask if two spatially separated
entangled fermions can still manifest some kind of bosonic
behavior. This is the problem we consider in this work.

More precisely, we discuss the stability of a coboson
undergoing the BS transformation. We show that stability
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requires entanglement production, therefore some kind of
interaction is required in order to keep the coboson intact.
Next, we study the problem of two-partite bunching on a
symmetric BS. In the case of elementary bosons the initial
state a

†
La

†
R|0〉 ≡ |1〉|1〉, where a

†
L and a

†
R create particles in

modes L and R, respectively, is transformed into (a†2
L +

a
†2
R )/2|0〉 ≡ 1/

√
2(|2〉|0〉 + |0〉|2〉). In the case of composite

bosons both particles have internal structure and we study the
entanglement properties of the corresponding states. We show
that differences in entanglement in the initial and final bipartite
cobosonic states are much more subtle than in the case of
single-partite cobosonic states. Finally, we propose a nonlocal
bunching scenario in which the interaction is only between the
local parts and show that the probability of perfect bunching
is proportional to the degree of entanglement between the
constituents, which is in accordance with previous results.

II. PRELIMINARIES

A. Coboson made up of two fermions

Let us consider two distinguishable fermions, say electron
and hole, whose creation operators are denoted a

†
m and b

†
n.

Each particle can occupy d different modes, therefore m,n =
1, . . . ,d. The general state of these two particles is given by

|ψ〉 =
d∑

m,n=1

γm,na
†
mb†n|0〉. (1)

However, one can find basis transformations a
†
i = ∑

m αi,ma
†
m

and b
†
i = ∑

n βi,nb
†
n such that state (1) becomes

|ψ〉 =
d∑

i=1

√
λia

†
i b

†
i |0〉. (2)

This transformation is known as the Schmidt decomposition
[25] and is very helpful to determine the degree of entangle-
ment between particle a and particle b. One can always find
a set of parameters {λi}di=1 such that λi � 0 and λi+1 � λi .
The number of nonzero λi’s is known as the Schmidt rank and
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the system is entangled whenever the Schmidt rank is greater
than 1.

Since the state of the coboson is pure, the degree of
entanglement can be measured by the purity,

P =
d∑

i=1

λ2
i , (3)

which corresponds to P = Tr{ρ2
A} = Tr{ρ2

B}, where ρA and ρB

are density matrices of particles a and b, respectively. These
density matrices can be calculated from the joint state |ψ〉
using the method discussed in [26]. For example, the matrix
element ρAn,m

corresponds to

ρAn,m
= 〈ψ |a†

man|ψ〉. (4)

An analogous method applies to ρB . Therefore

ρA =
d∑

i=1

λia
†
i |0〉〈0|ai, (5)

ρB =
d∑

i=1

λib
†
i |0〉〈0|bi. (6)

The purity is bounded by 1
d

� P � 1 and the lower the purity,
the more entangled the system is. For P = 1 the system is
separable.

Next, we associate |ψ〉 with a single-particle state,

|ψ〉 = c†|0〉 ≡ |1〉, (7)

where

c† =
d∑

i=1

√
λia

†
i b

†
i (8)

is the creation operator of a single coboson. The modes labeled
i can be considered an internal structure of a coboson.

The properties of the operator c† have been extensively
studied by many researchers; for a review see [27]. In
particular, the purity resulting from state |ψ〉 was associated
with the quality of cobosonic creation and annihilation [2].
Consider a Fock state of N � d composite particles

|N〉 ≡ χ
−1/2
N

c†N√
N !

|0〉, (9)

where χN is a normalization factor such that 〈1|1〉 = 1,

χN = N !
∑

n1<···<nN

λn1 . . . λnN
. (10)

We get

c† |N − 1〉 = αN

√
N |N〉, (11)

c |N〉 = αN

√
N |N − 1〉 + |εN 〉, (12)

where

αN =
√

χN

χN−1
, (13)

and |εN 〉 is a state of N − 1 pairs of particles a and b which
do not correspond to an N − 1–partite coboson Fock state. In

simple words, |εN 〉 corresponds to a state in which the coboson
structure is destroyed. The norm of this state is given by

〈εN |εN 〉 = 1 − N
χN

χN−1
+ (N − 1)

χN+1

χN

. (14)

We see that the bosonic ladder structure is recovered when
αN → 1 and 〈εN |εN 〉 → 0. This happens when χN+1

χN
→ 1 for

all N . It was shown in [2,3] that this ratio is bounded by purity:

1 − NP � χN+1

χN

� 1 − P. (15)

Therefore, in the limit of maximal entanglement P = 1
d

one
has

1 − N

d
� χN+1

χN

� 1 − 1

d
. (16)

As a result, χN+1

χN
→ 1 once N/d � 1.

B. Maximally entangled cobosons

The cobosonic creation operator defined in Eq. (8) is of the
most general form. The entanglement between two fermions
depends on the choice of parameters λi . Here, we choose a
simplified version of c† which is only parametrized by d, i.e.,
the dimension of a single-particle Hilbert space. Nevertheless,
it is straightforward to show that the results of this work will
also hold if one chooses general operators. The corresponding
coboson is a maximally entangled state of two qudits:

c† = 1√
d

d∑
i=1

a
†
i b

†
i . (17)

In this case

χN = d!

dN (d − N )!
, (18)

αN =
√

d − N + 1

d
, (19)

〈εN |εN 〉 = 0. (20)

Because of the last equality the ladder structure of creation and
annihilation operators is recovered, however, it deviates from
perfect bosonic structure due to factors αN .

III. ENTANGLEMENT AND STABILITY UNDER
BEAM-SPLITTING TRANSFORMATION

A. Single coboson

Let us consider a beam splitter whose Hamiltonian is given
by

HBS = a
†
LaR + a

†
RaL, (21)

where R and L denote the right and the left BS mode. If
the time of the evolution is t = π

4 we get a symmetric BS.
In this case a single particle in the right mode undergoes a
transformation,

a
†
R|0〉 → 1√

2
(a†

R − ia
†
L)|0〉. (22)
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FIG. 1. Beam splitting of elementary and composite particles.
(a) A single elementary particle can either go through or reflect from
the BS. (b) Two noninteracting particles evolve independently and
each of them can either go through or reflect from the BS, which
leads to four possible outcomes. If the input state is considered to
represent a single composite particle, then the evolution inevitably
leads to its decay. (c) Two interacting particles stay together; they
collectively go through or reflect from the BS, which allows us to
treat them as a single particle.

Similarly, a particle in the left mode transforms as

a
†
L|0〉 → 1√

2
(a†

L − ia
†
R)|0〉. (23)

Therefore, a single particle either goes through or is reflected
from the BS [see Fig. 1(a)].

Next, we consider two fermions in a cobosonic state,
(17). This time particles are described by two degrees of
freedom, a

†
i,X and b

†
i,Y , where i = 1, . . . ,d and X,Y = R,L.

Each particle evolves independently according to a modified
version of (21),

HA =
d∑

i=1

(a†
i,Lai,R + a

†
i,Rai,L), (24)

HB =
d∑

i=1

(b†i,Lbi,R + b
†
i,Rbi,L), (25)

which leads to

c
†
L|0〉 ≡ 1√

d

d∑
i=1

a
†
i,Lb

†
i,L|0〉

→ 1√
2d

d∑
i=1

(a†
i,Lb

†
i,L − ia

†
i,Rb

†
i,L − ia

†
i,Lb

†
i,R

− a
†
i,Rb

†
i,R)|0〉. (26)

We see that the independent evolution leads to a decay of a
composite boson, since in half of the cases the fermion a will
exit through a different port than the fermion b [see Fig. 1(b)].

Finally, let us discuss a BS transformation of a coboson
whose components are interacting. This problem has been
studied before (see, for example, [7,13,14,24]), and we
consider the interaction model similar to the one proposed
in [13]. Apart from (24) and (25) the Hamiltonian contains an
interaction term:

Hint = −γ
∑

X=R,L

d∑
i=1

a
†
i,Xai,Xb

†
i,Xbi,X. (27)

In the limit γ � 1 the evolution of the system can be
approximated as

c
†
L|0〉 ≡ 1√

d

d∑
i=1

a
†
i,Lb

†
i,L|0〉

→ 1√
2d

d∑
i=1

(a†
i,Lb

†
i,L − a

†
i,Rb

†
i,R)|0〉

≡ 1√
2

(c†L − c
†
R)|0〉. (28)

The above describes the collective behavior of two fermions;
they either both reflect or both go through the BS. Therefore,
the evolution can be interpreted as a single particle behavior,
because there is no way to detect any internal structure of the
system [see Fig. 1(c)].

Now, let us think for a moment about why interaction is so
important for the stability of the system. First, we note that the
BS model considered by us describes the evolution of only one
degree of freedom, X = R,L. The other degree of freedom,
corresponding to the internal structure of the coboson, is
decoupled from the evolution. Therefore, let us consider for a
moment the evolution of an unentangled fermionic pair, since
the intraparticle entanglement in operator (17) seems to play
no role in this case. At the moment, we say nothing about
the details of the evolution; we just demand that the following
transformation takes place:

a
†
Lb

†
L → 1√

2
(a†

Lb
†
L + eiϕa

†
Rb

†
R)|0〉, (29)

where ϕ is an arbitrary phase. It resembles a single-particle
transformation, however, this time the final state of the single
fermion is mixed, for example,

ρA = 1
2 (a†

L|0〉〈0|aL + a
†
R|0〉〈0|aR). (30)

On the other hand, the initial state of each fermion is pure.
Therefore, transformation (29) generates entanglement be-
tween the two fermions, which can only happen if they interact
either directly or via some mediating auxiliary system. This
proves that the stability of a single composite particle under
BS transformation requires entanglement production, which
implies that some kind of interaction is inevitable. Finally,
note that entanglement production can also be observed in
transformation (28). The purity of a single fermion changes
from 1

d
to 1

2d
. It can also be easily evaluated that in the case of

transformation (26) the purity does not change.
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LASMAR, KASZLIKOWSKI, AND KURZYŃSKI PHYSICAL REVIEW A 96, 032325 (2017)

B. Two cobosons

Next, we consider the transformation of two cobosons in a
state c

†
Lc

†
R|0〉. As we mentioned in Sec. I, elementary bosons

bunch, i.e., the initial state a
†
La

†
R|0〉 transforms into 1

2 (a†2
L +

a
†2
R )|0〉. Now, we consider the transformation

|ψi〉 = c
†
Lc

†
R|0〉 ≡ 1

d

d∑
i,j=1

a
†
i,Lb

†
i,La

†
j,Rb

†
j,R|0〉

→ 1

d
√

χ2

d∑
i,j=1

(a†
i,Lb

†
i,La

†
j,Lb

†
j,L + a

†
i,Rb

†
i,Ra

†
j,Rb

†
j,R)|0〉

≡
(
c
†2
L + c

†2
R

)
2
√

χ2
|0〉 = |ψf 〉, (31)

where

χ2 = d − 1

d
= 1 − P. (32)

Just as in the previous section, at the moment we are not
interested in what kind of evolution causes this transformation.
Our current goal is to examine the entanglement properties of
|ψi〉 and |ψf 〉.

First, let us note that although each coboson is made of two
distinguishable fermions, a two-cobosonic state is made of two
fermions of type a and two fermions of type b. Fermions of
the same type are indistinguishable and therefore we need to
be careful with how we define entanglement. In general, one
should use the approach which was extensively discussed in
[28], however, for our purposes it is enough to study the purity
of certain subsystems.

We start with the purity of a single particle. We choose
particle a, however, due to the symmetry of the states the
purity of b is the same. We use Eq. (4) to determine ρAi

and
ρAf

. Note that because right now there are two particles of the
same type, the trace of both density matrices is 2 [26]. After
renormalization we find

ρAi
= ρAf

= 1

2d

∑
X=L,R

d∑
i=1

a
†
i,X|0〉〈0|ai,X. (33)

As we can see, the single-particle state does not change under
transformation (31). In addition, the corresponding purity is
1

2d
.
Next, we calculate a two-partite state of particles a. In this

case matrix elements are given by

ρAkl,nm
= 〈ψ |amana

†
ka

†
l |ψ〉. (34)

We get

ρAi
= 1

d2

d∑
i,j=1

a
†
i,La

†
j,R|0〉〈0|aj,Rai,L, (35)

ρAf
= 1

d2χ2

d∑
i,j = 1
i > j

(a†
i,La

†
j,L|0〉〈0|aj,Lai,L

+ a
†
i,Ra

†
j,R|0〉〈0|aj,Rai,R). (36)

This time the initial state of the two particles is different from
the final one. Moreover, the initial two-particle purity is P

(2)
i =

1
d2 and the final one is P

(2)
f = 1

d2χ2
= 1

d(d−1) .
We observe that transformation (31) causes a change at

the level of two particles of the same type, but not at the
level of a single particle. Interestingly, unlike in the case
of a single particle, the entanglement between particles of
type a and those of type b decreases since P

(2)
i < P

(2)
f . This

suggests that transformation (31) may not require interaction
between particles of type a and those of b but, rather, some
interaction between particles of the same type and perhaps
some postselection, which would reduce the entanglement.

IV. NONLOCAL BUNCHING

In order to confirm the above conjecture, one can consider
a special scenario in which particles a and b are spatially
separated, though still entangled. Note that this scenario is
also in accordance with our primary question: Do spatially
separated entangled fermions exhibit some kind of bosonic
behavior?

We consider a typical Bell-like setup [29], however, this
time our goal is not to disprove the local realistic description
of measurements performed on spatially separated subsystems,
but to show that transformation (31) is realizable via solely lo-
cal operations. We have two spatially separated experimenters,
Alice and Bob, who share two cobosons. More precisely,
each coboson is split into basic constituents and fermions
of type a go to Alice whereas fermions of type b go to
Bob. Note that entanglement between a and b is still present,
therefore formally the system is still described by operator
(17). Moreover, we assume that constituents corresponding to
different cobosons initially occupy different modes, which we
label X = R,L, just as in the previous section. Therefore, it is
legitimate to describe the initial state as

|ψi〉 = c
†
Lc

†
R|0〉 ≡ 1

d

d∑
i,j=1

a
†
i,Lb

†
i,La

†
j,Rb

†
j,R|0〉. (37)

Next, we allow particles of the same type to interact via the
following Hamiltonians (see Fig. 2):

HA =
d∑

i,j = 1
i > j

(a†
i,La

†
j,Laj,Rai,L + a

†
i,Ra

†
j,Rai,Raj,L

+ a
†
i,La

†
j,Raj,Lai,L + a

†
j,La

†
i,Raj,Rai,R) (38)

and

HB =
d∑

i,j = 1
i > j

(b†i,Lb
†
j,Lbj,Rbi,L + b

†
i,Rb

†
j,Rbi,Rbj,L

+ b
†
i,Lb

†
j,Rbj,Lbi,L + b

†
j,Lb

†
i,Rbj,Rbi,R). (39)

This is a local evolution, since particles of the same
type are in the same spatial location. For t = π

2 the
Hamiltonian HA generates the following transformations
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FIG. 2. Schematic of the nonlocal bunching of two cobosons. It
is impossible to say which pairs of particles form a coboson once
they are in the same mode.

(see the Appendix):

a
†
i,La

†
j,R → −ia

†
i,La

†
j,L for i > j, (40)

a
†
j,La

†
i,R → −ia

†
i,Ra

†
j,R for i > j, (41)

a
†
i,La

†
i,R → a

†
i,La

†
i,R. (42)

Analogous transformations are generated by HB . Therefore,
state (37) is transformed into

1

d

⎛
⎝ d∑

i>j=1

−a
†
i, Lb

†
i, La

†
j, Lb

†
j, L − a

†
i, Rb

†
i, Ra

†
j, Rb

†
j, R

+
d∑

k=1

a
†
k, Lb

†
k, La

†
k, Rb

†
k, R

)
|0〉

=
(

− (c†L)2 + (c†R)2

2
+ 1

d

d∑
k=1

a
†
k, Lb

†
k, La

†
k, Rb

†
k, R

)
|0〉

= −√
1 − P |ψf 〉 +

√
P |γ 〉, (43)

where

|ψf 〉 = (c†L)2 + (c†R)2

2
√

χ2
|0〉, (44)

|γ 〉 = 1√
d

d∑
k=1

(
a
†
k,Lb

†
k,La

†
k,Rb

†
k,R

)
|0〉. (45)

We arrive at the desired state with probability 1 − P .
Therefore, the probability of success depends on the degree
of entanglement inside the coboson. In the limit of large
entanglement (d � 1) the probability of success approaches 1,
since P → 0. This reconfirms previous claims that the bosonic
quality is related to the degree of entanglement.

V. CONCLUSIONS

The above scenario is not a typical bunching scenario. In
the standard case two elementary bosons bunch without an
interaction. In the case of cobosons an interaction is necessary
to provide stability of the system for any evolution involving
a BS. One may think that scenarios like [13] resemble the
standard case, since the interaction between particles of type
a and those of type b seems only to provide stability of
composite particles; individual cobosons do not seem to
interact. However, this is not true. Once both cobosons are
in the same mode one is unable to distinguish which particle
of type a is interacting with which particle of type b. Therefore,
in this case the interaction binds all the constituents together
into one big molecule which we interpret as a two-particle
Fock state.

To conclude, we have shown that an entangled spatially
separated pair of fermions can exhibit some bosonic property.
Namely, given two such pairs it is possible to locally produce
a state which can be interpreted as the analog of a two-
partite bosonic Fock state. However, a single fermionic pair
cannot undergo a particle-like BS transformation without
interaction between the spatially separated parts. Therefore,
an entangled fermionic pair cannot be considered a boson
in an unambiguous way if there is no interaction between
the constituents. Moreover, one has to be aware of the fact
that even if spatially separated fermions behaved like a single
boson, such a bosonic particle would be very fragile since it
would be prone to environmental disturbance [3].
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APPENDIX: EVOLUTION GENERATED BY HA AND HB

In order to avoid redundancy we assume that i > j is
true unless stated otherwise. Let us consider the Hamiltonian
introduced in Eq. (38):

HA =
d∑

i,j = 1
i > j

(a†
i,La

†
j,Laj,Rai,L + a

†
i,Ra

†
j,Rai,Raj,L

+ a
†
i,La

†
j,Raj,Lai,L + a

†
j,La

†
i,Raj,Rai,R). (A1)

One can easily check that

|1〉 = 1√
2

(a†
i,La

†
j,L + a

†
i,La

†
j,R), (A2)

|2〉 = 1√
2

(a†
i,La

†
j,L − a

†
i,La

†
j,R), (A3)

|3〉 = 1√
2

(a†
i,Ra

†
j,L − a

†
i,Ra

†
j,R), (A4)

|4〉 = 1√
2

(a†
i,Ra

†
j,L + a

†
i,Ra

†
j,R), (A5)

|5〉 = a
†
i,La

†
i,R (A6)
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are the eigenvectors of (A1) and the corresponding eigenvalues
are +1 for (A2) and (A5), −1 for (A3) and (A4), and 0 for
(A6).

Now, let us consider the evolution of

1√
2

(|1〉 − |2〉). (A7)

At time t it will become

1√
2

(e−it |1〉 − eit |2〉). (A8)

In fact, one can express (A8) as

(−i sin(t)a†
i,La

†
j,L + cos(t)a†

i,La
†
j,R)|0〉. (A9)

Also, one can consider the term

1√
2

(|3〉 + |4〉), (A10)

which will evolve to
1√
2

(e−it |4〉 + eit |3〉) (A11)

and can be expressed as

(−i sin(t)a†
i,Ra

†
j,R + cos(t)a†

i,Ra
†
j,L)|0〉. (A12)

This means that for t = π

2

a
†
i,La

†
j,R → −ia

†
i,La

†
j,L, (A13)

a
†
j,La

†
i,R → −ia

†
i,Ra

†
j,R, (A14)

a
†
i,La

†
i,R → a

†
i,La

†
i,R. (A15)

Finally, we note that the same holds for particles of type b and
Hamiltonian (39).
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[10] R. Ramanathan, P. Kurzyński, T. K. Chuan, M. F. Santos, and
D. Kaszlikowski, Phys. Rev. A 84, 034304 (2011).

[11] A. Gavrilik and Y. Mishchenko, Phys. Lett. A 376, 1596
(2012).

[12] M. C. Tichy, P. A. Bouvrie, and K. Mølmer, Phys. Rev. A 86,
042317 (2012).

[13] M. C. Tichy, P. A. Bouvrie, and K. Mølmer, Phys. Rev. Lett.
109, 260403 (2012).
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