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We consider the situation when the signal propagating through each arm of an interferometer has a complicated
multimode structure. We demonstrate that the shot-noise level for such a setup is the same as for the common
two-mode case for as long as the interferometric transformation treats each arm as a whole and does not
penetrate its inner structure. We find the relation between the particle entanglement and the possibility to surpass
the shot-noise limit of the phase estimation. Our results are general—they apply to pure and mixed states of
identical and distinguishable particles (or combinations of both) for a fixed and fluctuating number of particles. An
important result is that the method for detecting the entanglement often used in a two-mode system—based on the
measurement of the visibility of fringes and the population imbalance fluctuations—can give misleading results
when applied to the multimode case. Our main result is that the additional modes do not boost the sensitivity
for as long as they are not interacting. Therefore, the improvement above the shot-noise level established for the
two-mode systems can safely be treated as an entanglement criterion also in the complex multimode case.
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I. INTRODUCTION

Interferometers, the most precise metrological instruments
constructed by humans, have played a major role in many
breakthrough experiments. In the famous Michelson-Morely
failed attempt to detect the ether, the device, now called the
“Michelson interferometer,” was used [1]. The negative result
of this experiment was relevant for the subsequent formulation
of the special theory of relativity. Almost 130 yr later, the
Laser Interferometer Gravitational-Wave Observatory (LIGO)
team used a similar Michelson setup to detect the gravitational
wave coming from a collision of two black holes, which took
place over 109 yr ago [2]. At the moment of the detection,
the sensitivity of the LIGO instruments was high enough to
observe the displacement �L of the test masses ∼10−22 times
smaller than the length L of the interferometric arms. With
L � 4 km, this gives a truly impressive �L � 10−19 m, which
is ∼103 times smaller than the radius of a proton.

Matter-wave interferometers at this moment can measure
the gravitational acceleration g with the sensitivity of �g �
10 nm/s [3–9]. Once miniaturized, such a device could
serve as an ultraprecise geological instrument. An atomic
interferometer can precisely measure the close to the surface
Casimir-Polder forces [10–14]. Once these interactions are
well known, the gravitational constant G could be measured
by putting an atomic interferometer close to a massive object.
Such an experiment could also yield some information about
the possible deviations from the Newton 1/r2 scaling of
the gravitational force at short distances [15]. The gravity-
field curvature has recently been observed [16] using an
atomic interferometer. Interference of the matter waves also
is used in the ultraprecise measurements of the fine-structure
constant α, which is of fundamental importance [17–21].

At the current stage, these devices operate at best at
the shot-noise level, i.e., the sensitivity of the estimation
of the parameter θ does not break the shot-noise limit
(SNL) �θ ∝ 1√

N
. Here N is the number of probes—for

instance, atoms or photons—which carry the information
about the interferometric phase. However, theoretical results
and multiple proof-of-principle experiments show that the

entanglement between these probes is a resource for the
sub-shot-noise (SSN) sensitivity [22,23]. Those experiments
follow different routes to create nonclassical states of light
or matter. For instance, the LIGO interferometer already
displayed the SSN sensitivity when one of its input ports was
fed with a squeezed state of light [24]. For interferometers
operating on matter waves, the nonclassicality is associated
with the entanglement between the particles. This effect often
manifests through the spin squeezing of the sample [25–30]. It
is a phenomenon—quantified by the spin-squeezing parameter
[31,32]—associated with the two-mode algebra. The use of
this algebra is quite natural when discussing the interferometric
problems—the two arms are identified with the two modes.
Most of the interferometric arguments, such as that relating the
entanglement to the SSN sensitivity, also are invoked within
this two-mode description. However, in principle, the signal
propagating through each arm can have a rich multimode
structure. This might be a result of thermal excitations as
witnessed in Ref. [25] or the inherently multimode nature of the
process generating the entangled sample as in Refs. [33–37].

Here we generalize the central theorem of quan-
tum metrology—that relating the SSN sensitivity to the
entanglement—to the case when each arm of the interferom-
eter has a complicated multimode structure [38]. The main
result of this paper is that the addition of noninteracting
modes inside each arm of the interferometer does not have a
positive impact on the sensitivity as compared to the standard
two-mode case. We show that the particle entanglement
remains the key resource for beating the SNL. Our proof is
of complete generality—it does not make any assumption
about the state and works for identical and distinguishable
particles or a combination of both. Also, it applies to systems
with a fixed or fluctuating number of particles. We derive the
sensitivity of the phase estimation from the measurement of the
population imbalance between the two arms. Finally, we show
how the method of detecting the particle entanglement, which
works for the two-mode systems, can incorrectly indicate
the presence of nonclassical correlations in the multimode
configurations.
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This paper is organized as follows. In Sec. II we derive the
relation between the entanglement and the SSN sensitivity for
identical (Sec. II A) and distinguishable particles (Sec. II B).
Other configurations are discussed in Sec. II C. In Sec. III
we calculate the phase sensitivity for the estimation based on
the knowledge of the average population imbalance between
the two arms. In Sec. IV we show that the entanglement
witness, often used for two-mode systems, can give false
results in the multimode setups. A summary is contained in
Sec. V.

II. ENTANGLEMENT AND SSN SENSITIVITY IN
MULTIMODE SYSTEMS

A. Bosons

1. Multimode interferometric transformations

Let a and b denote the two arms of an interferometer. Here,
for illustration, we will assume that these arms are spatially
separated, however it could be the momentum or other degree
of freedom, such as the fine structure, that distinguishes a from
b. In the standard two-mode case, with each arm, a single oper-
ator â and b̂ is associated. The interferometric transformations
are generated by the angular momentum operators,

Ĵx = 1

2
(â†b̂ + b̂†â), (1a)

Ĵy = 1

2i
(â†b̂ − b̂†â), (1b)

Ĵz = 1

2
(â†â − b̂†b̂). (1c)

To account for the multimode structure of each arm, we
introduce the bosonic field operator �̂(r) which consists of
two parts, i.e.,

�̂(r) = �̂a(r) + �̂b(r). (2)

Our aim is to construct the interferometric transformation
which will act on the multimode arms a and b, rather than
on two modes only. It is clear that such operations can be con-
structed in many different ways and that the interferometer’s

performance depends on the structure of the regions as well
as on our choice of transformation. To limit the number of
possibilities, we will first assume that the mode structure of
a and b is the same, and it is only the spatial separation that
makes the distinction between them, see Fig. 1. Therefore,
each operator can be expanded into its corresponding basis,

�̂a(r) =
∑

n

ψ (n)
a (r)ân, (3a)

�̂b(r) =
∑

n

ψ
(n)
b (r)b̂n, (3b)

and the spatial wave functions are shifted by d, i.e.,

ψ
(n)
b (r + d) = ψ (n)

a (r). (4)

Also, we assume |d| to be much larger than the characteristic
widths of the wave packets, giving

ψ (n)
a (r)ψ (m)

b (r) = 0 ∀ n,m. (5)

Once the spatial structure of the system is determined, we
pick the interferometric transformations. To establish the
analogy with the two-mode case, we consider two types of
transformations—the mode mixing and the phase imprint. An
extension of (1) is

Ĵx = 1

2

∫
dr[�̂†

a(r)�̂b(r + d) + �̂
†
b(r + d)�̂a(r)], (6a)

Ĵy = 1

2i

∫
dr[�̂†

a(r)�̂b(r + d) − �̂
†
b(r + d)�̂a(r)], (6b)

Ĵz = 1

2

∫
dr[�̂†

a(r)�̂a(r) − �̂
†
b(r)�̂b(r)]. (6c)

The shift represents the symmetry of the system shown in
Fig. 1, however the particular form of the a/b coupling is not
relevant for as long as the particle is copied exactly from one
region to the other.

FIG. 1. The two-arm multimode interferometer, illustrated here with the eigenmodes of the harmonic oscillator. Each arm (here a harmonic
well) has the same ladder of states, just shifted by d . The interferometric transformation can either imprint the relative phase between the arms
or move the particles from one arm to the other.
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The integrals (6) can be calculated using relations (4) and
(5), and the outcome is

Ĵx = 1

2

∑
n

(â†
nb̂n + b̂†nân) ≡

∑
n

Ĵ (n)
x , (7a)

Ĵy = 1

2i

∑
n

(â†
nb̂n − b̂†nân) ≡

∑
n

Ĵ (n)
y , (7b)

Ĵz = 1

2

∑
n

(â†
nân − b̂†nb̂n) ≡

∑
n

Ĵ (n)
z . (7c)

Therefore, the mode mixing operators act on each pair of
modes separately. This is a result of 1◦, the assumption about
the symmetry between the regions, and 2◦, the particular form
of the coupling in Eqs. (6). Although 1◦ can be regarded as
unnatural or highly idealistic, such symmetry is encountered,
for instance, in twin-beam configurations formed by the
scattering of atoms from a Bose-Einstein condensate [39]. On
the other hand, 2◦ seems a natural choice: The interferometer
should simply “copy” a particle from one arm to another.
This second condition can be expressed in other words: The
interferometric transformation does not use any knowledge
about the internal structure of the arms. It treats each arm as a
whole and does not penetrate the inner structure.

The multimode interferometric transformations, which are
single-particle operations (i.e., do not entangle the resources),
usually are considered in a form

Û (θ ) = e−iθ Ĵn . (8)

Here Ĵn = 	n · 	̂J is a scalar product of a unit vector 	n and a
vector of the angular momentum operators [40]. We now will
demonstrate that, in analogy to the two-mode case, the particle
entanglement is a necessary resource for beating the shot-noise
limit of the phase estimation also in the multimode case.

2. Role of the particle entanglement

Let us begin with a two-mode separable (i.e., nonentangled)
pure state of N bosons. It is the spin-coherent state,

|z,ϕ; N〉 = 1√
N !

(
√

zeiϕâ† + √
1 − zb̂†)N |0〉. (9)

Here, z ∈ [0,1] is the population imbalance between the two
modes, whereas ϕ ∈ [0,2π ] is the relative phase. This state is
a basic building block of the density matrix of N nonentangled
bosons, which reads

	̂sep =
∫ 1

0
dz

∫ 2π

0
dϕ P(z,ϕ)|z,ϕ; N〉〈z,ϕ; N |, (10)

whereP is a probability distribution of the variables (z,ϕ). The
expression (10) is the fixed-N analog of the classical state of
the electromagnetic field, according to the Glauber-Sudarshan
criterion [41–44]. The expressions (9) and (10) can easily
be generalized to the multimode setup. Namely, the former
transforms to

|z,ϕ; N〉 → |	α, 	β; N〉 = 1√
N !

(	α 	̂a† + 	β 	̂b†)N |0〉. (11)

The vectors of complex amplitudes 	α and 	β are normalized,

i.e, |	α|2 + | 	β|2 = 1, whereas 	̂a and 	̂b are vectors of mode

operators introduced in Eq. (3). Similarly, the density matrix
of unentangled bosons now reads [45]

	̂sep =
∫∫

d 	α d 	β P(	α, 	β)|	α, 	β; N〉〈	α, 	β; N |. (12)

We will show that, for the separable states (12) and the interfer-
ometric transformations (8), the phase estimation sensitivity is
bounded by the shot noise.

The sensitivity of the phase estimation is limited by the
Cramer-Rao lower bound [46],

�θ � 1√
m

1√
Fq

. (13)

Here, m is the number of the independent repetitions of the
estimation experiment. The Fq is called the quantum Fisher
information (QFI), and it quantifies the amount of information
about θ , which can be extracted from m measurements using
any estimation strategy [47]. For pure states, the QFI is simple
to calculate

Fq = 4
(〈
Ĵ 2

n

〉 − 〈Ĵn〉2
) ≡ 4〈(�Ĵn)2〉, (14)

where the expectation value is calculated with the state
undergoing the interferometric transformation. For mixed
states, the QFI is much more complex,

Fq = 2
∑
i,j

(pi − pj )2

pi + pj

|〈i|Ĵn|j 〉|2, (15)

where |i/j 〉 are the eigenvectors and pi/j are the corresponding
eigenvalues of the density matrix. Therefore, to obtain Fq ,
one would need to diagonalize 	̂sep from Eq. (12), which is
numerically feasible but analytically very hard since different
|	α, 	β; N〉’s are not orthogonal, just as nonorthogonal are the
coherent states of light. However, a useful feature of the QFI—
its convexity—allows to lower bound the sensitivity for mixed
states. Namely, for 	̂ = ∑

i pi 	̂i , i.e., a statistical mixture of
density matrices, we have

Fq

[∑
i

pi 	̂i

]
�

∑
i

piFq[	̂i]. (16)

This property, applied to Eq. (12), gives

Fq �
∫∫

d 	α d 	β P(	α, 	β)F (	α, 	β)
q . (17)

Here, F
(	α, 	β)
q is the QFI calculated with a pure state |	α, 	β; N〉,

thus it is given by Eq. (14).
We calculate the QFI for Ĵ	n = Ĵz and show that, for

separable states, Fq � N . Any other direction 	n′ can be
obtained by a series of rotations of Ĵz, generated by the
operators (7). They are single-particle objects, therefore, once
applied to the separable state (12) rather than to the evolution
operator, they would transform one 	̂sep into another, i.e.,
would only change P(	α, 	β) into some P̃(	α, 	β) but will not
modify the structure of Eq. (12). Thus it is enough to show
that Fq � N for Ĵz and a general probability distribution.

First, we calculate F
(	α, 	β)
q with Eq. (14). The mean of Ĵz is

〈Ĵz〉 = N

2

∑
n

(|αn|2 − |βn|2) ≡ N

2
(|	α|2 − | 	β|2), (18)
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where we used the expression (6c) and the relation,

ân|	α, 	β; N〉 =
√

Nαn|	α, 	β; N − 1〉, (19a)

b̂n|	α, 	β; N〉 =
√

Nβn|	α, 	β; N − 1〉. (19b)

The second moment is calculated in a similar way, i.e.,〈
Ĵ 2

z

〉 =
∑
n,m

〈
Ĵ (n)

z Ĵ (m)
z

〉 =
∑

n

〈(
Ĵ (n)

z

)2〉 + ∑
n�=m

〈
Ĵ (n)

z Ĵ (m)
z

〉
. (20)

The two contributions must be treated separately,

∑
n

〈(
Ĵ (n)

z

)2〉 = N

4

[
1 + (N − 1)

∑
n

(|αn|2 − |βn|2)2

]
,

∑
n�=m

〈
Ĵ (n)

z Ĵ (m)
z

〉 = N (N − 1)

4

×
∑
n�=m

(|αn|2 − |βn|2)(|αm|2 − |βm|2).

We add these two terms and obtain〈
Ĵ 2

z

〉 = N

4
+ N (N − 1)

4
(|	α|2 − | 	β|2)2. (21)

The subtraction of the squared mean from Eq. (18) gives

0 � F (	α, 	β)
q = N [1 − (|	α|2 − | 	β|2)2] � N. (22)

This result, combined with Eq. (17) yields

Fq � N. (23)

Therefore, the QFI is limited by N for the separable states of N

particles. However, the QFI can surpass this value, for instance,
when the interferometer is fed with a particle-entangled two-
region NOON state,

|ψ〉 = 1√
2

(|N,0〉 + |0,N〉). (24)

Here |N,0〉 represents a configuration where all N particles
reside in one region only. For this state we have the Heisenberg
scaling,

Fq = N2. (25)

Therefore, we conclude that the particle entanglement is the
resource for the SSN metrology also in multimode systems.
We now extend the above formalism to distinguishable
particles.

B. Distinguishable particles

1. Multimode interferometric transformations

Note that the formalism of the second quantization allows
for a quick generalization of the above results to distinguish-
able particles. Namely, another index must be attributed to the
operators ân and b̂n such that labels the species of the particle
(and of the associated field). This way, for the particle of type
j , we obtain â

(j )
n and b̂

(j )
n . The interferometric transformations

cannot transmute a particle of one type into another—such a
process would violate the conservation laws and the related
superselection rules [45,48,49]. Thus a particle of each type
undergoes a separate transformation, which means that the

operators (6) change into

Ĵx = 1

2

N∑
j=1

∑
n

(
â(j )†

n b̂(j )
n + b̂(j )†

n â(j )
n

)
, (26a)

Ĵy = 1

2i

N∑
j=1

∑
n

(
â(j )†

n b̂(j )
n − b̂(j )†

n â(j )
n

)
, (26b)

Ĵz = 1

2

N∑
j=1

∑
n

(
â(j )†

n â(j )
n − b̂(j )†

n b̂(j )
n

)
. (26c)

Once the interferometric transformations are determined, we
discuss the role of the particle entanglement for the SSN
sensitivity.

2. Role of the particle entanglement

The separable state of N distingishable particles is con-
structed from the one-body pure states. For the particle of type
j distributed among a and b it reads

|	α(j ), 	β(j ); N〉 = (	α(j ) 	̂a(j )† + 	β(j ) 	̂b(j )†)|0〉. (27)

The parallel with the coherent state from Eq. (11) is evident,
and it is even more pronounced when the separable state of
distinguishable particles is introduced

	̂sep =
∫∫

d 	α(1)d 	β(1) · · ·
∫∫

d 	α(N)d 	β(N)

×P(	α(1), 	β(1), . . . ,	α(N), 	β(N))

×
N⊗

i=1

|	α(j ), 	β(j ); N〉〈	α(j ), 	β(j ); N |. (28)

The state of N distinguishable and nonentangled particles is
the state (12) but with each mode—now labeled with two
numbers n and j rather than with n only—occupied with one
particle. The deep analogy holds since the transformation (26)
cannot transmute the particles.

Once this close relation is noticed, the QFI can be bounded
from above in a similar fashion to that presented in Sec. II A 2
and the calculation is straightforward. We again pick the
interferometric transformation to be generated by Ĵz, and using
the convexity of the QFI declared in Eq. (17), we have

Fq �
∫∫

d 	α(1)d 	β(1) · · ·
∫∫

d 	α(N)d 	β(N)

×P(	α(1), 	β(1), . . . ,	α(N), 	β(N))
N∑

j=1

F (	α(j ), 	β(j ))
q . (29)

Here we used the fact that the operator (26c) acts on each

particle independently. Every F
(	α(j ), 	β(j ))
q is calculated with a

single-particle state (27), therefore it is bounded as in Eq. (22)
but with N = 1 (because there is only a single particle of a
given type), namely,

0 � F (	α(j ), 	β(j ))
q = [1 − (|	α(j )|2 − | 	β(j )|2)2] � 1. (30)
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Therefore the sum from Eq. (29) is bounded as follows:

N∑
j=1

F (	α(j ), 	β(j ))
q � N. (31)

Since P from Eq. (29) is normalized we obtain

Fq � N (32)

for all separable states of distinguishable particles defined in
Eq. (28). On the other hand, take an entangled NOON state
of N distinguishable particles—for instance, each in the same
spatial mode—in the form

|ψ〉 = 1√
2

⎛
⎝ N∏

j=1

â(j )† +
N∏

j=1

b̂(j )†

⎞
⎠|0〉. (33)

This state will give Fq = N2 (the Heisenberg scaling), there-
fore the QFI is a witness of particle entanglement also for
distinguishable particles.

C. Other cases

For the story to be complete we must consider two
other possible cases. One is when the system contains both
distinguishable particles and bosons, all together forming
a separable state. Again, we repeat that the interferometric
transformations—to be consistent with the conservation laws
and the superselection rules—cannot transmute the particles
from these two groups into each other. Therefore, since they
form a separable state where the mode occupied by each par-
ticle can be addressed individually, the set of distinguishable
particles and bosons can be treated separately. Thus to each
of these sets the arguments from the above sections apply, so
also in such a configuration the particle entanglement will be
a necessary resource to beat the shot-noise limit.

Another possibility is that the system does not contain a
fixed number of particles but rather its amount fluctuates from
shot to shot governed by the probability distribution P (N ).
The separable state is now

	̂sep =
∞∑

N=0

P (N )	̂(N)
sep , (34)

where 	̂(N)
sep contains N particles and is given either by Eq. (12)

or (28) or by a mixture of those as discussed in the above
paragraph. Since the operators Ĵi do not couple states with
different numbers of particles, each fixed-N sector can be
treated separately. Therefore, using again the convexity of the
QFI, in all the cases we obtain for separable states,

Fq �
∞∑

N=0

P (N )N ≡ 〈N〉, (35)

which defines the shot-noise limit [50].
Finally, we note that these arguments do not apply to

collections of fermions for which the separable states do not
exist due to the Pauli exclusion principle.

III. ESTIMATION FROM THE MEAN
POPULATION IMBALANCE

We now abandon the general considerations and switch to
a particular phase estimation protocol. We derive the phase
sensitivity for a multimode Mach-Zehnder interferometer
(MZI). We take the most common estimation protocol where
the phase is deduced from the average population imbalance
between the two regions. Although the derivation is performed
for bosons, according to the above arguments the results apply
also to distinguishable particles and collections of both.

In analogy to the two-mode case, the multimode MZI
evolution operator is

Û (θ ) = e−iθ Ĵy , (36)

with the generator given by Eq. (7b). At the output, in the
ith repetition of the experiment, the number of particles in
each arm is measured, i.e., n(i)

a and n
(i)
b . From these data,

the population imbalance between the two subsystems is

calculated ni = n
(i)
a −n

(i)
b

2 , and the sequence is repeated m times
and averaged to give

nm = 1

m

m∑
i=1

ni. (37)

If m � 1, the central limit theorem tells that the probability
for obtaining nm is a Gaussian function,

p(nm) ∝ exp

[
−m

[nm − 〈Ĵz(θ )〉]2

2〈[�Ĵz(θ )]2〉

]
. (38)

When the phase is estimated from the maximum of the
likelihood function for this probability, we obtain the variance
of the estimator, i.e., the sensitivity,

�2θ = 1

m

〈[�Ĵz(θ )]2〉(
∂〈Ĵz(θ)〉

∂θ

)2
. (39)

Ĵz(θ ) is obtained by evolving Ĵz with the operator (36), i.e.,

Ĵz(θ ) = Û †(θ )ĴzÛ (θ ) = Ĵz cos θ + Ĵx sin θ, (40)

where the last equality was obtained using the commutation
relations of operators (6) and the Baker-Campbell-Hausdorff
formula. Substitution of the result (40) into Eq. (39) gives for
θ = 0,

�2θ = 1

m

〈(�Ĵz)2〉
〈Ĵx〉2

. (41)

This is a natural extension of the spin-squeezing parameter
(for balanced systems, where 〈Ĵy〉 = 0) to the multimode case.
The combination of Eqs. (13) and (23) means that also the
following ratio:

ξ 2 ≡ N
〈(�Ĵz)2〉

〈Ĵx〉2
(42)

is a witness of quantum correlations among the particles—
when ξ 2 < 1 the system is particle entangled. We now show
that the measurement of this quantity in the multimode system
is not as straightforward as in the two-mode case.
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IV. DETECTION OF ENTANGLEMENT—FLUCTUATIONS
AND VISIBILITY

First however we recall that, for the two-mode systems, the
spin-squeezing parameter is defined as

ξ 2
S = N

〈(�Ĵ3)2〉
〈Ĵ1〉2 + 〈Ĵ2〉2

. (43)

Here 1, 2, and 3 are three orthogonal directions obtained by the
combinations of Ĵx, Ĵy , and Ĵz from Eqs. (6). When ξ 2

S < 1,
the system is spin squeezed—it is particle entangled and useful
for quantum metrology [22]. It it most common to take (1,2,3)
as (x,y,z), giving

ξ 2
S = N

〈(�Ĵz)2〉
〈Ĵx〉2 + 〈Ĵy〉2

. (44)

The motivation for this particular choice lies in direct ex-
perimental accessibility both to the nominator and to the
denominator of Eq. (44). This can be seen particularly easily
when the average number of atoms in each mode is high. In
this case, the mode operators can be approximated as follows:

â � √
nae

i(φ/2), b̂ � √
nbe

−i(φ/2). (45)

Here, na/b are the average mode occupations, and φ is the
relative phase, which fluctuates from shot to shot. In this
approximation, the average of Ĵx and Ĵy is

〈Ĵx〉 = √
nanb〈cos φ〉, 〈Ĵy〉 = √

nanb〈sin φ〉. (46)

Similarly, the atom number fluctuations normalized to the shot
noise is

ξ 2
N = N

〈(�Ĵz)2〉
nanb

. (47)

Therefore, the spin squeezing from Eq. (44) can be expressed
as follows:

ξ 2
S = ξ 2

N

〈cos φ〉2 + 〈sin φ〉2
. (48)

Note that, for the spin-coherent state ξ 2
N ≡ 1, although the

phase is fixed and does not fluctuate from shot to shot
so that 〈cos φ〉2 + 〈sin φ〉2 = cos2 φ + sin2 φ = 1, giving
ξ 2
S = 1, the system is not spin squeezed. In the experiments,

the atom number fluctuations are calculated by measuring in
each shot the population of each mode. In another series of
experiments, the two modes are let to interfere, and the relative
phase of the pattern is recorded to give, after many runs, the
denominator of Eq. (48).

Note that there is an alternative method for measuring (44),
which does not rely on the mean-field approximation (45).
In the far field, the spatial wave packet of modes a and b

are plane waves (or, more precisely, broad functions with fast
oscillations on top), i.e.,

�̂(x) = eikx â + e−ikx b̂. (49)

The density of this system is

ρ(x) = 〈�̂†(x)�̂(x)〉 = 〈â†â〉 + 〈b̂†b̂〉 + 2〈Ĵx〉 cos(2kx)

+ 2〈Ĵy〉 sin(2kx). (50)

Since 〈â†â〉 + 〈b̂†b̂〉 = N , the normalized density reads

p(x) = 1

N
ρ(x) = 1 + ν1 cos(2kx) + ν2 sin(2kx)

= 1 + ν cos(2kx − α), (51)

where ν1/2 = 2
N

〈Ĵx/y〉 and α = arccos ( ν1
ν

), whereas ν =√
ν2

1 + ν2
2 is the fringe visibility. Therefore, the spin-squeezing

(44) can be expressed in terms of the atom number fluctuations
η2 = 4

N
〈(�Ĵz)2〉 and the visibility,

ξ 2
S = η2

ν2
. (52)

We now demonstrate that the use of this operational definition
of the spin squeezing without the a priori knowledge about
the mode structure of each arm can lead to false conclusions
regarding the presence of the particle entanglement in the
system.

In the multimode case, the density calculated with the
operator (2) is

ρ(x) = ρaa(x) + ρbb(x) + ρab(x) + ρba(x), (53)

where ρij (x) = 〈�̂†
i (x)�̂†

j (x)〉. Clearly the density contains
multiple interference terms not only resulting from the overlap
of the wave functions coming from the opposite regions,
but also from different modes residing initially in the same
region. Therefore, the visibility of fringes cannot be linked to
the denominator of Eq. (42), which only quantifies the a/b

coherence. For illustration, take a coherent spin state from
Eq. (9) with ϕ = 0. Assume now that, in region a, some
process splits mode a into the coherent superposition of a1

and a2, schematically shown in Fig. 2 in a double-well setup.

(a)

(b)

FIG. 2. The single-particle density of atoms trapped in a double-
well potential. (a) The standard two-mode setup. (b) The three-mode
setup: the configuration after a coherent splitting of the a mode into
a1 and a2.
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FIG. 3. The single-particle far-field interference pattern, see
Eq. (56), formed by a coherent spin-state (54) in the three-mode
configuration shown in Fig. 2(b). The parameters are z = 0.91,

ζ = 0.5, k = 10, and δk = 0.5.

This way, a state,

|ψ〉 = 1√
N !

[
√

z(
√

ζ â
†
1 +

√
1 − ζ â

†
2) + √

1 − zb̂
†
1]N |0〉 (54)

is obtained. It is an example of a nonentangled state
from Eq. (11) with 	α = √

z(
√

ζ ,
√

1 − ζ ,0 · · · )T and 	β =
(
√

1 − z,0 · · · )T . The splitting does not influence the nomi-
nator of Eq. (42), but in the far field the interference of the
two modes a1 and a2 will have an impact on the visibility of
fringes. The field operator after the expansion will read

�̂(x) = ei(k+δk)x â1 + ei(k−δk)x â2 + e−ikx b̂, (55)

giving the normalized density,

p(x) = 1

N
〈�̂†(x)�̂(x)〉

= 1 + z
√

ζ (1 − ζ ) cos(2δkx)

+
√

z(1 − z){
√

ζ cos[(2k + δk)x]

+
√

1 − ζ cos[(2k − δk)x]}. (56)

This density is plotted in Fig. 3 with z = 0.91, ζ = 0.5,

k = 10, and δk = 0.5 (in dimensionless units). The fringe visi-
bility, calculated as the ratio ν = (pmax − pmin)/(pmax + pmin)

is ν2 = 0.326. This combined with the normalized population
imbalance between the two regions η2 = 1 − (2z − 1)2 =
0.321 gives the ratio η2/ν2 = 0.988, suggesting the presence
of the particle entanglement in the system. However, it is a
false statement: ν cannot be identified with the denominator
of Eq. (42) in this case.

Some remarks. Naturally, the three-mode example invoked
here is quite artificial. It is hard to imagine that a coherent
physical process, which splits â into â1 and â2 could be
uncontrolled and unnoticed by the experimentalists. Also, any
experimentalist would immediately notice two frequencies of
oscillations in the interference pattern. Last but not least,
usually the multimode structure of the two regions a and
b comes from the thermal excitations and thus reveals no
coherence between the modes. Nevertheless, the example
shows that the method of detecting the particle entanglement
through the fluctuations-to-visibility ratio can be used safely
only when the structure of each subsystem is known.

V. SUMMARY

The main outcome of this paper is the establishment of
the SNL for the two-arm multimode interferometers. This is
a general result as it applies to any thinkable quantum system
where the entangled or nonentangled dichotomy exists. It is
valid for both fixed- and non-fixed-N systems for as long as
the coherence between states carrying a different number of
particles is absent. It turns out that the additional modes do not
improve the sensitivity for as long as they are not interacting.
Therefore, if �θ beats the shot-noise level established for the
two-mode systems, this also signals the presence of the useful
particle entanglement in the complex multimode case.

Note that our results are valid for a particular choice of the
interferometric transformations such that do not penetrate the
inner structure of each arm but rather treat them as a whole.
In principle, any other type of such a transformation requires
a dedicated calculation of the SNL. Otherwise, conclusions
about the presence of metrologically useful particle entangle-
ment in the system can be incorrect.

We also have calculated the phase sensitivity for the stan-
dard estimation protocol based on the knowledge of the mean
population imbalance between the two arms. Finally, we have
shown that, if the popular method of detecting the entangle-
ment in two-mode systems is used without the a priori knowl-
edge about the modal structure of the arms, a false conclusion
from the number-fluctuations-to-visibility ratio can drawn.
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[14] J. Chwedeńczuk, L. Pezzé, F. Piazza, and A. Smerzi, Phys. Rev.
A 82, 032104 (2010).

[15] G. Lamporesi, A. Bertoldi, L. Cacciapuoti, M. Prevedelli, and
G. M. Tino, Phys. Rev. Lett. 100, 050801 (2008).

[16] G. Rosi, L. Cacciapuoti, F. Sorrentino, M. Menchetti, M.
Prevedelli, and G. M. Tino, Phys. Rev. Lett. 114, 013001 (2015).

[17] P. Cladé, E. de Mirandes, M. Cadoret, S. Guellati-Khélifa, C.
Schwob, F. Nez, L. Julien, and F. Biraben, Phys. Rev. A 74,
052109 (2006).

[18] R. Bouchendira, P. Cladé, S. Guellati-Khélifa, F. Nez, and F.
Biraben, Phys. Rev. Lett. 106, 080801 (2011).

[19] P. Cladé, E. de Mirandes, M. Cadoret, S. Guellati-Khélifa, C.
Schwob, F. Nez, L. Julien, and F. Biraben, Phys. Rev. Lett. 96,
033001 (2006).

[20] R. Battesti, P. Cladé, S. Guellati-Khélifa, C. Schwob, B.
Grémaud, F. Nez, L. Julien, and F. Biraben, Phys. Rev. Lett.
92, 253001 (2004).

[21] M. Cadoret, E. de Mirandes, P. Cladé, S. Guellati-Khélifa, C.
Schwob, F. Nez, L. Julien, and F. Biraben, Phys. Rev. Lett. 101,
230801 (2008).

[22] V. Giovannetti, S. Lloyd, and L. Maccone, Science 306, 1330
(2004).

[23] L. Pezzé and A. Smerzi, Phys. Rev. Lett. 102, 100401 (2009).
[24] LIGO Scientific Collaboration, Nat. Phys. 7, 962 (2011).
[25] J. Esteve, C. Gross, A. Weller, S. Giovanazzi, and M. Oberthaler,

Nature (London) 455, 1216 (2008).
[26] T. Berrada, S. van Frank, R. Bücker, T. Schumm, J.-F. Schaff,

and J. Schmiedmayer, Nat. Commun. 4, 2077 (2013).
[27] I. D. Leroux, M. H. Schleier-Smith, and V. Vuletić, Phys. Rev.
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Quantum Inf. Process. 15, 269 (2015).
[45] T. Wasak, A. Smerzi, and J. Chwedeńczuk, arXiv:1609.01576.
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