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We establish a general operational one-to-one mapping between coherence measures and entanglement
measures: Any entanglement measure of bipartite pure states is the minimum of a suitable coherence measure
over product bases. Any coherence measure of pure states, with extension to mixed states by convex roof,
is the maximum entanglement generated by incoherent operations acting on the system and an incoherent
ancilla. Remarkably, the generalized CNOT gate is the universal optimal incoherent operation. In this way, all
convex-roof coherence measures, including the coherence of formation, are endowed with (additional) operational
interpretations. By virtue of this connection, many results on entanglement can be translated to the coherence
setting, and vice versa. As applications, we provide tight observable lower bounds for generalized entanglement
concurrence and coherence concurrence, which enable experimentalists to quantify entanglement and coherence
of the maximal dimension in real experiments.
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I. INTRODUCTION

Quantum entanglement is a crucial resource for many
quantum information processing tasks, such as quantum
teleportation, dense coding, and quantum key distribution; see
Ref. [1] for a review. It is also a useful tool for studying various
intriguing phenomena in many-body physics and high-energy
physics, such as quantum phase transition and black hole
information paradox.

Quantum coherence underlies entanglement and is even
more fundamental. It plays a key role in various research areas,
such as interference [2–5], laser [2], quantum metrology [6–8],
quantum computation [9–12], quantum thermodynamics [13–
20], and photosynthesis [21,22]. However, the significance
of coherence as a resource was not fully appreciated until
the works of Aberg [3] and Baumgratz et al. [23], who
studied coherence from the perspective of resource theories
[24–29]. Coherence has since found increasing applications
and attracted increasing attention. Accordingly, great efforts
have been devoted to quantifying coherence, and a number of
useful coherence measures have been proposed and studied
[3,5,8,11,12,23,28–45]; see Ref. [29] for an overview.

The resource theory of coherence is closely related to
the resource theory of entanglement [3,11,23,28–38,46–57].
Many results on coherence theory are inspired by analogs
on entanglement theory, including many coherence mea-
sures, such as the relative entropy of coherence (equal to
the distillable coherence) [3,23,28], coherence of formation
(equal to the coherence cost) [3,28,31], and robustness of
coherence [33,34]. In addition, coherence transformations
under incoherent operations are surprisingly similar to entan-
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glement transformations under local operations and classical
communication (LOCC) [28–32,49]. Furthermore, coherence
and entanglement can be converted to each other under
certain scenarios of special interest [3,11,35,36,46–48,53]. In
Refs. [46] and [47], it was shown that any degree of coherence
in some reference basis can be converted to entanglement
via incoherent operations. In addition, this procedure can
induce coherence measures, including the relative entropy
of coherence and geometric coherence, from entanglement
measures [47]. However, little is known about which measures
can be induced in this way beyond a few examples, and the
connection between coherence and entanglement is far from
clear.

In this paper, we show that any entanglement measure of
bipartite pure states is the minimum of a suitable coherence
measure over product bases. Conversely, any coherence mea-
sure of pure states, with extension to mixed states by the convex
roof, is equal to the maximum entanglement generated by
incoherent operations acting on the system and an incoherent
ancilla. Remarkably, the generalized CNOT gate is the universal
optimal incoherent operation, as illustrated in Fig. 1. In this
way we endow all convex-roof coherence measures with
operational meanings, including the coherence of formation
[3,28,31] and (generalized) coherence concurrence [35,36]. In
addition, our work is instrumental in studying interconversion
between coherence and entanglement.

By virtue of the connection established here, many results
on entanglement detection and quantification can be trans-
lated to the coherence setting, and vice versa, which has
wide applications in quantum information processing. As an
illustration, we provide tight observable lower bounds for the
generalized entanglement concurrence [58] in terms of the
negativity and robustness of entanglement. In parallel, we
also provide tight observable lower bounds for the generalized
coherence concurrence [36] in terms of the l1-norm coherence
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FIG. 1. Operational one-to-one mapping between coherence
monotones and entanglement monotones. Any entanglement mono-
tone Ef for f ∈ Fsc between B and A is the minimum of Cf over
local unitary transformations. Any coherent monotone Cf on the
system B is the maximum of Ef generated by incoherent operations
acting on the system B and an incoherent ancilla A. The generalized
CNOT gate is the universal optimal incoherent operation.

and robustness of coherence. Remarkably, these lower bounds
can be estimated in a way that is device independent. These
results are useful in detecting and quantifying entanglement
and coherence of the maximal dimension in real experiments.

The rest of the paper is organized as follows. In Sec. II, we
review the general frameworks for constructing entanglement
monotones (measures) and coherence monotones (measures)
based on the convex roof. In Sec. III, we establish an opera-
tional one-to-one mapping between coherence monotones and
entanglement monotones based on the convex roof. In Sec. IV,
we derive a necessary condition on converting coherence into
entanglement. In Sec. V, we derive tight observable lower
bounds for the generalized entanglement concurrence and
coherence concurrence. Section VI summarizes this paper.
The Appendices provide additional details on entanglement
monotones, coherence monotones, coherence transformations
under incoherent operations (including the majorization crite-
rion), and some technical proofs.

II. PRELIMINARIES

A. Basic concepts

A resource theory is characterized by two basic ingredients,
namely, the set of free states and the set of free operations
[24–26,29]. In the resource theory of entanglement, free
states are separable states, and free operations are LOCC [1].
In the case of coherence, free states are incoherent states,
which correspond to density matrices that are diagonal in the
reference basis, and free operations are incoherent operations
(IO). Recall that an operation with Kraus representation {Kn}
is incoherent if each Kraus operator is incoherent in the
sense that KnρK

†
n is incoherent whenever ρ is [3,23,28,29].

The operation is strictly incoherent if both Kn and K
†
n are

incoherent; the set of such operations is denoted by SIO.
A central question in any resource theory is to quantify the

utility of resource states, states that are not free [24–26,29].
Here are four typical requirements for a coherence measure

C [23,29] (the counterpart for entanglement is analogous):
(C1) nonnegativity C(ρ) � 0 (usually C(ρ) = 0 for incoherent
states); (C2) monotonicity under any incoherent operation
�,C(�(ρ)) � C(ρ); (C3) monotonicity under any selec-
tive incoherent operation {Kn},

∑
n pnC(σn) � C(ρ), where

σn = KnρK
†
n/pn with pn = tr(KnρK

†
n); and (C4) convexity,∑

j qjC(ρj ) � C(
∑

j qjρj ). Note that (C2) follows from (C3)
and (C4). A coherence monotone satisfies (C2-4), while a
coherence measure satisfies all (C1-4).

B. Entanglement monotones and coherence monotones based
on the convex roof

Before discussing the connection between coherence and
entanglement, it is instructive to review the general framework
for constructing entanglement monotones introduced by Vidal
[59] and its analog for coherence [30]. Let H be a d × d

bipartite Hilbert space. Denote by Fsc the set of real symmetric
concave functions on the probability simplex. Given any f ∈
Fsc, an entanglement monotone for |ψ〉 ∈ H can be defined as

Ef (ψ) := f (λ(ψ)), (1)

where λ(ψ) is the Schmidt vector of ψ , that is, the vector
of Schmidt coefficients (eigenvalues of each reduced density
matrix), which form a probability vector. The monotone
extends to mixed states by the convex roof,

Ef (ρ) := min
{pj ,ψj }

∑
j

pjEf (ψj ), (2)

where the minimum (or infimum) is taken over all pure
state decompositions ρ = ∑

j pj |ψj 〉〈ψj |. The extension to
systems with different local dimensions is straightforward. The
connection between entanglement monotones and symmetric
concave functions is summarized in Theorem 1 below, a
variant of the result in Ref. [59], but tailored to highlight the
connection with coherence monotones; see Appendix A for
background and a proof.

Theorem 1. For any f ∈ Fsc, the function Ef defined by
Eqs. (1) and (2) is an entanglement monotone. Conversely,
the restriction to pure states of any entanglement monotone is
identical to Ef for certain f ∈ Fsc.

Interestingly, coherence monotones for pure states are
also in one-to-one correspondence with symmetric concave
functions on the probability simplex [30]. Given any f ∈ Fsc,
a coherence monotone on d-dimensional pure states can be
defined as follows:

Cf (ψ) := f (μ(ψ)), (3)

where μ(ψ) = (|ψ0|2,|ψ1|2, . . . ,|ψd−1|2)T is the coherence
vector, and ψj are the components of ψ in the reference basis.
For mixed states,

Cf (ρ) := min
{pj ,ψj }

∑
j

pjCf (ψj ). (4)

This construction is summarized in Theorem 2 below, which
is applicable when either IO or SIO is taken as the set of
free operations. The result concerning IO was first presented
in Ref. [30]; the original proof has a gap but can be filled.
A simple proof was given in Appendix B, which also leads
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to a simple proof of the majorization criterion on coherent
transformations [49].

Theorem 2. For any f ∈ Fsc, the function Cf defined
by Eqs. (3) and (4) is a coherence monotone. Conversely,
the restriction to pure states of any coherence monotone is
identical to Cf for certain f ∈ Fsc.

Theorems 1 and 2 provide many useful entanglement and
coherence measures. When f (p) = −∑

j pj log2 pj denotes
the Shannon entropy, Ef is the celebrated entanglement
of formation EF (coinciding with the relative entropy of
entanglement Er for pure states) [1], and Cf is the coherence
of formation CF [3,31] (equal to the coherence cost CC [28]).
When f (p) = 1 − maxj pj , Ef is the geometric entangle-
ment EG [1], and Cf is the geometric coherence CG [47]. When
f (p) = d(

∏
j pj )1/d , Ef and Cf reduce to the generalized

entanglement concurrence [58] and coherence concurrence
[36]. These measures play important roles in theoretical studies
and practical applications, so a number of methods have been
developed to compute or approximate them [60–64].

III. OPERATIONAL ONE-TO-ONE MAPPING BETWEEN
COHERENCE MEASURES AND ENTANGLEMENT

MEASURES

The similarity between entanglement monotones and co-
herence monotones reflected in Theorems 1 and 2 calls for
a simple explanation. Here we shall reveal the operational
underpinning of this resemblance.

Our study benefits from the theory of majorization [65,66],
which has found extensive applications in quantum informa-
tion science [30,49,56,67–71]. Given two d-dimensional real
vectors x = (x0,x1, . . . ,xd−1)T and y = (y0,y1, . . . ,yd−1)T,
vector x is majorized by y, written as x ≺ y or y � x, if

k∑
j=0

x
↓
j �

k∑
j=0

y
↓
j ∀k = 0,1, . . . ,d − 1, (5)

with equality for k = d − 1. Here x↓ denotes the vector
obtained by arranging the components of x in decreasing
order. In this work, we need to consider majorization relations
between vectors of different dimensions. In such cases, it is
understood implicitly that the vector with fewer components
is padded with a number of “0” to match the other vector. The
notation x 	 y means that x ≺ y and y ≺ x, so that x and y

have the same nonzero components up to permutations.

A. Entanglement as minimal coherence

Now we clarify the relation between coherence and
entanglement for a bipartite state |ψ〉 in the Hilbert space
H = HB ⊗ HA of dimension dB × dA. The reference basis is
the tensor product of respective reference bases. Denote by
Erk(ψ) the Schmidt rank of ψ and Crk(ψ) the coherence rank
(number of nonzero components of μ(ψ)).

Lemma 1. μ(ψ) ≺ λ(ψ) and Crk(ψ) � Erk(ψ) for any
|ψ〉 ∈ HB ⊗ HA. If μ(ψ) 	 λ(ψ), then Crk(ψ) = Erk(ψ), and
vice versa; both of them hold if and only if (iff) |ψ〉 has the

form

|ψ〉 =
∑

j

√
λj (ψ)eiθj |π1(j )π2(j )〉, (6)

where θj are arbitrary phases, and π1,π2 are permutations of
basis states of HB,HA, respectively.

Lemma 1 is proved in Appendix C. It implies that
μ((U1 ⊗ U2)(ψ)) ≺ λ(ψ) for arbitrary local unitaries U1,U2,
where U1,U2 denote the channels corresponding to U1,U2. In
addition,

max
U1,U2

μ↓((U1 ⊗ U2)(ψ)) 	 λ↓(ψ). (7)

Here the maximization is taken with respect to the majorization
order, which is well defined, as guaranteed by Lemma 1 and
the Schmidt decomposition. In this way, Lemma 1 offers an
appealing interpretation of the Schmidt vector in terms of the
coherence vector.

Theorem 3. For any f ∈ Fsc,

Ef (ρ) � min
U1,U2

Cf (U1 ⊗ U2ρ(U1 ⊗ U2)†) ∀ρ; (8)

the inequality is saturated if ρ is pure.
The bound in Eq. (8) is also saturated by maximally

correlated states [28,47,72] according to Theorem 4 below.
Proof. If ρ = |ψ〉〈ψ | is pure, then μ(ψ) ≺ λ(ψ) by

Lemma 1, so Ef (ρ) = f (λ(ψ)) � f (μ(ψ)) = Cf (ρ) since f

is concave and thus Schur concave. This result confirms Eq. (8)
for pure states since entanglement is invariant under local
unitary transformations. The inequality is saturated thanks to
the Schmidt decomposition.

Now suppose ρ is a mixed state with an optimal decompo-
sition ρ = ∑

j pjρj with respect to Cf . (For simplicity, here
we assume that the value of Cf (ρ) can be attained by some
decomposition of ρ, but this assumption is not essential to
completing the following proof.) Then

Cf (ρ) =
∑

j

pjCf (ρj ) �
∑

j

pjEf (ρj ) � Ef (ρ), (9)

from which Eq. (8) follows.

B. Coherence as maximal entanglement

In contrast with Theorem 3, in this section we show that
every coherence monotone of pure states, with extension to
mixed states by convex roof, is the maximum entanglement
generated by incoherent operations acting on the system and
an incoherent ancilla.

This line of research is inspired by a recent work of
Streltsov et al. [47], according to which any coherent state
on HB can generate entanglement under incoherent operations
acting on the system and an incoherent ancilla. Moreover, the
maximum entanglement E generated with respect to any given
entanglement monotone defines a coherence monotone CE as
follows:

CE(ρ) := lim
dA→∞

{
sup
�i

E(�i[ρ ⊗ |0〉〈0|])
}
. (10)

Here dA is the dimension of the ancilla, and the supremum
runs over all incoherent operations. Interestingly, CE = Cr,CG

when E = Er,EG. However, little is known about other
coherence monotones so constructed.
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By Eq. (10), we can introduce another coherence monotone
for any symmetric concave function f ∈ Fsc:

C̃f (ρ) := CEf
:= lim

dA→∞

{
sup
�i

Ef (�i[ρ ⊗ |0〉〈0|])
}
. (11)

Surprisingly, C̃f (ρ) coincides with Cf for any f ∈ Fsc. A key
to establishing this result is the generalized CNOT gate UCNOT

corresponding to the unitary UCNOT,

UCNOT|jk〉 =
{|j (j + k)〉 k < dB,

|jk〉 k � dB,
(12)

where the addition is modulo dB. This operation (defined when
dA � dB) turns any state ρ = ∑

jk ρjk|j 〉〈k| on HB into a
maximally correlated state [28,47,72],

ρMC := UCNOT[ρ ⊗ |0〉〈0|] =
∑
jk

ρjk|jj 〉〈kk|. (13)

Theorem 4. Ef (ρMC) = Cf (ρMC) = Cf (ρ) = C̃f (ρ) for
any f ∈ Fsc.

Proof. The equality Cf (ρMC) = Cf (ρ) is clear from the
definition of ρMC. The equality Ef (ρMC) = Cf (ρMC) follows
from the fact that any |	〉 in the support of ρMC has the
form |	〉 = ∑

j cj |jj 〉 with
∑

j |cj |2 = 1, so that Ef (	) =
Cf (	). Therefore, Cf (ρ) = Ef (ρMC) � C̃f (ρ). The converse
C̃f (ρ) � Cf (ρ) holds because

Ef (�i[ρ ⊗ |0〉〈0|]) � Cf (�i[ρ ⊗ |0〉〈0|])
� Cf (ρ ⊗ |0〉〈0|) = Cf (ρ), (14)

where the first inequality follows from Theorem 3 and the
second one from the monotonicity of Cf .

Theorem 4 endows every coherence monotone of pure
states with an operational meaning as the maximal entan-
glement that can be generated between the system and an
incoherent ancilla under incoherent operations. This connec-
tion extends to all coherence monotones of mixed states that
are based on the convex roof. Remarkably, the generalized
CNOT gate is optimal with respect to all these monotones,
which further implies that SIO and IO are equally powerful
for entanglement generation. Theorems 3 and 4 together
establish a one-to-one mapping between coherence monotones
and entanglement monotones based on the convex roof, as
illustrated in Fig. 1. Recently, this mapping was extended to
many other monotones which are not based on the convex roof
[73,74].

Theorem 4, in particular, applies to measures based on
Rényi α entropies f (p) = (log2

∑
j pα

j )/(1 − α) with 0 �
α � 1 [30,32,59], which play a key role in catalytic entan-
glement and coherence transformations [70,71]. The limit
α → 1 recovers the relation EC(ρMC) = EF(ρMC) = CF(ρ) =
CC(ρ) [28]. Theorem 4 also implies EG(ρMC) = CG(ρ) [47].
Moreover, the generalized CNOT gate is the universal optimal
incoherence operation. This conclusion was known for the
geometric measure [47], but our proof is simpler even in this
case.

The power of Theorem 4 is not limited to entanglement
monotones based on the convex roof. It provides a nontrivial
upper bound on entanglement generation for every entangle-
ment monotone E. Note that when restricted to pure states, E is

determined by a symmetric concave function fE ∈ Fsc, which
in turn defines an entanglement monotone Ê := EfE

, usually
referred to as the convex roof (or convex-roof extension) of
E. For example, EF is the convex roof of Er. By construction,
Ê(σ ) � E(σ ) for any bipartite state σ (with equality for pure
states), so CE(ρ) � CÊ(ρ) = CfE

(ρ). The same idea can also
extend the scope of Theorem 3.

As another extension, Theorems 3 and 4 still apply if Ef ,Cf

are replaced by h(Ef ),h(Cf ), with h a real function that is
monotonically increasing. In addition, the constructions in
Eqs. (1)–(4) can be extended to functions f that are Schur
concave but not necessarily concave; the resulting quantifiers
Ef ,Cf are not necessarily full monotones but are useful in
some applications [69–71]. Theorem 3 holds as before, and so
do the equalities Ef (ρMC) = Cf (ρMC) = Cf (ρ) in Theorem 4.

IV. CONVERTING COHERENCE INTO ENTANGLEMENT

As an application of the results presented in the previous
section, here we derive a necessary condition on converting co-
herence into entanglement with incoherent operations, which
is sufficient in a special case. We also derive an upper bound
on the conversion probability when there is no deterministic
transformation.

Theorem 5. Suppose |�〉〈�| = �i[|ψ〉〈ψ | ⊗ |0〉〈0|], with
�i being an incoherent operation. Then λ(�) � μ(ψ). If
|�〉 has Schmidt form in the reference basis, that is, |�〉 =∑

j

√
λj |jj 〉 with λj � 0 and

∑
j λj = 1, then |ψ〉 can

transform to |�〉 under IO or SIO iff λ(�) � μ(ψ).
Proof. By Lemma 1, λ(�) � μ(�) � μ(ψ), where the

second inequality follows from the coherence analog of the
majorization criterion [49,67]; cf. Theorem 10 in Appendix B.

When |�〉 = ∑
j

√
λj |jj 〉, let |φ〉 = ∑

j

√
λj |j 〉. If

λ(�) � μ(ψ), then μ(φ) � μ(ψ), so |ψ〉 can transform to |φ〉
under SIO [49] (cf. Theorem 10), which implies the theorem
given that |�〉 = UCNOT(|φ〉 ⊗ |0〉).

Theorem 6. Let P (ψ → �) be the maximal probability of
generating |�〉 from |ψ〉 by IO (or SIO) acting on the system
and an incoherent ancilla. Then

P (ψ → �) � min
m�0

∑
j�m μ

↓
j (ψ)∑

j�m λ
↓
j (�)

, (15)

with equality if |�〉 has the Schmidt form
∑

j

√
λj |jj 〉.

Theorem 6 implies that the Schmidt rank of |�〉 cannot
exceed the coherence rank of |ψ〉, even probabilistically.

Proof. Define fm(p) = ∑
j�m p

↓
j for positive integers m.

Then Efm
and Cfm

are entanglement measures and coherence
measures according to Theorems 1 and 2; cf. Refs. [59] and
[30]. Therefore,

P (ψ → �) � Cfm
(ψ)

Cfm
(�)

� Cfm
(ψ)

Efm
(�)

=
∑

j�m μ
↓
j (ψ)∑

j�m λ
↓
j (�)

, (16)

which verifies Eq. (15), since
∑

j�0 μ
↓
j (ψ) = ∑

j�0 λ
↓
j (�).

When |�〉 = ∑
j

√
λj |jj 〉, let φ = ∑

j

√
λj |j 〉. Then

|�〉 = UCNOT(|φ〉 ⊗ |0〉). Therefore

P (ψ → �) � P (ψ → φ) = min
m�0

∑
j�m μ

↓
j (ψ)∑

j�m μ
↓
j (φ)

. (17)
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Here P (ψ → φ) is the maximal probability of transforming
|ψ〉 to |φ〉 under IO (or SIO), which was determined in
Ref. [30]; cf. Theorem 11 in Appendix B. So the inequality in
Eq. (15) is saturated given that μ(φ) 	 λ(�).

V. LOWER BOUNDS ON GENERALIZED COHERENCE
CONCURRENCE AND ENTANGLEMENT CONCURRENCE

The connection between coherence and entanglement
established in this work is useful not only to theoretical
studies of resource theories, but also to practical applications in
quantum information processing. By virtue of this connection,
many results on entanglement detection and quantification
can be translated to the coherence setting, and vice versa.
As an illustration, we provide tight observable lower bounds
for the generalized entanglement concurrence Egc [58] and
its coherence analog Cgc [36], which correspond to the
convex-roof measures Ef and Cf with f (p) = d(

∏
j pj )1/d .

Note that the definitions of Egc and Cgc depend explicitly
on the dimension, unlike most other measures considered in
this paper. The measure Egc quantifies entanglement of the
maximal dimension and may serve as a dimension witness.
The analog Cgc is equally important in the study of coherence.

Before presenting our main result in this section, we need
to review a few coherence and entanglement measures. The
l1-norm coherence

Cl1 (ρ) :=
∑
j =k

|ρjk| =
∑
j,k

|ρjk| − 1 (18)

is the simplest and one of the most useful coherence measures
[23]. The robustness of coherence is an observable coherence
measure defined as

CR(ρ) := min

{
x

∣∣∣x � 0, ∃ a state σ,
ρ + xσ

1 + x
∈ I

}
, (19)

where I denotes the set of incoherent states. It has an
operational interpretation in connection with the task of phase
discrimination [33,34]. When ρ is pure, it is known that
CR(ρ) = Cl1 (ρ) [34,74].

The negativity of a bipartite state ρ shared by B and A reads

N (ρ) := tr |ρTA | − 1, (20)

where TA denotes the partial transpose on subsystem A. (The
definition in some literature differs by a factor of 2.) It is
essentially the only useful entanglement measure that is easily
computable in general [1]. The robustness of entanglement is
defined as

ER(ρ) := min

{
x

∣∣∣x � 0, ∃ a state σ,
ρ + xσ

1 + x
∈ S

}
, (21)

where S denotes the set of separable states. This measure has
two variants: σ is required to be separable in one variant but
could be arbitrary in the other variant [1]. When ρ is pure,
both variants are equal to the negativity. Theorem 8 below is
applicable to both cases.

A. Tight observable lower bounds

Theorem 7. Any state ρ in dimension d satisfies

Cgc(ρ) + (d − 2) � Ĉl1 (ρ) � Cl1 (ρ) � CR(ρ). (22)

Theorem 8. Any d × d bipartite state ρ satisfies

Egc(ρ) + (d − 2) � N̂ (ρ) � max{N (ρ),ER(ρ)}. (23)

Here Ĉl1 is the common convex-roof extension of Cl1

and CR, while N̂ is the common convex-roof extension of
N and ER. The inequality Cl1 (ρ) � CR(ρ) in Eq. (22) was
derived in Ref. [34]. To elucidate the connection between
Theorem 7 and Theorem 8, let ρ be a state in dimension d,
and ρMC := UCNOT[ρ ⊗ |0〉〈0|] be a d × d bipartite state.
Then Egc(ρMC) = Cgc(ρ) according to Theorem 4. In addition,
ER(ρMC) = CR(ρ) according to Ref. [74]; also, it is easy to
verify that N (ρMC) = Cl1 (ρ). So we have a perfect analogy
between Theorem 7 and Theorem 8.

Remark 1. In the above discussion, Cgc(ρ) = Cf (ρ) with
f (p) = d(

∏
j pj )1/d ; however, Cgc(ρMC) is in general not

equal to Cf (ρMC). Theorem 4 implies the equality Egc(ρMC) =
Cgc(ρ) but cannot guarantee the equality Cgc(ρMC) = Cgc(ρ)
except when Cgc(ρ) = 0. This subtlety is tied to the fact that
the definition of Cgc depends explicitly on the dimension.

All the inequalities in Eqs. (22) and (23) can be saturated by
certain states with high symmetry, as demonstrated in Sec. V B
later. Theorem 8 was partially inspired by Ref. [63]. Compared
with the lower bound for Egc(ρ) derived in Ref. [63], our bound
presented in Theorem 8 is much simpler and usually tighter.
The significance of Theorem 8 is further strengthened by the
fact that both N (ρ) and ER(ρ) are observable entanglement
measures. For example, in certain scenarios of practical
interest, such as in quantum simulators based on trapped ions or
superconductors, a tight lower bound for N (ρ) can be derived
by measuring a single witness operator [75]. In addition, N (ρ)
can be estimated in a device-independent way [76]. Thanks to
Theorem 8, these methods can now be applied to bound Egc(ρ)
from below. Similarly, CR(ρ) can be estimated by measuring
suitable witness operators [33,34], from which we can derive
a lower bound for Cgc(ρ).

Proof of Theorem 7. The inequality Ĉl1 (ρ) � Cl1 (ρ) fol-
lows from the convexity of Cl1 and the definition of the convex
roof. The inequality Cl1 (ρ) � CR(ρ) was derived in Ref. [34].

To prove the inequality Cgc(ρ) + (d − 2) � Ĉl1 (ρ), it suf-
fices to consider the case in which ρ is pure because both
Cgc(ρ) and Ĉl1 (ρ) are based on the convex roof. Let ρ =
|ψ〉〈ψ | with |ψ〉 = ∑

j cj |j 〉 and
∑

j |cj |2 = 1. Then we have

Cgc(ρ) + (d − 2) = d

∣∣∣∣∏
j

cj

∣∣∣∣
2/d

+ (d − 2)

�
(∑

j

|cj |
)2

− 1 = Cl1 (ρ) = Ĉl1 (ρ), (24)

where the inequality follows from Lemma 2 below.
Proof of Theorem 8. The inequality N̂ (ρ) � N (ρ) is obvi-

ous. The inequality N̂ (ρ) � ER(ρ) follows from the fact that
the negativity and robustness of entanglement are convex and
that they coincide on pure states, so they share the same convex
roof, that is, N̂ (ρ) = ÊR(ρ).

To prove the inequality Egc(ρ) + (d − 2) � N̂ (ρ), it suf-
fices to consider the case in which ρ is pure, as in the proof
of Theorem 7. Applying a local unitary transformation if
necessary, we may assume that ρ has the form ρ = |	〉〈	|
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with |	〉 = ∑
j cj |jj 〉, so that ρ is maximally correlated. Let

 = |ψ〉〈ψ | with |ψ〉 = ∑
j cj |j 〉. Then it is straightforward

to verify that Egc(ρ) = Cgc() (cf. Theorem 4) and N (ρ) =
Cl1 (). Now the inequality Egc(ρ) + (d − 2) � N̂ (ρ) follows
from Theorem 7.

The following lemma was essentially proved in the Sup-
plemental Material of Ref. [63], though this result was not
highlighted there. See Appendix D for a self-contained proof.

Lemma 2. Any sequence of d complex numbers
c0,c1, . . . ,cd−1 satisfies

d

∣∣∣∣∏
j

cj

∣∣∣∣
2/d

�
(∑

j

|cj |
)2

− (d − 1)
∑

j

|cj |2. (25)

When d � 3, the inequality is saturated iff all |cj | are equal,
or all of them are equal except for one of them, which
equals 0.

B. Generalized concurrence of states with high symmetry

In this section we derive generalized coherence concurrence
and entanglement concurrence of certain states with high
symmetry and thereby show that the lower bounds for Cgc(ρ)
and Egc(ρ) established in Theorems 7 and 8 are tight.

Let ρ be a convex combination of the maximally coherent
state and the completely mixed state in dimension d, that is,

ρ = p(|ψ〈ψ |) + (1 − p)
I

d
, |ψ〉 = 1√

d

∑
j

|j 〉, (26)

with 0 � p � 1. Let F := 〈ψ |ρ|ψ〉 = p + 1−p

d
be the fidelity

between ρ and |ψ〉〈ψ |; then 1/d � F � 1. The following
proposition is proved in Appendix E.

Proposition 1. The state ρ in Eq. (26) with 0 � p � 1
satisfies

Ĉl1 (ρ) = Cl1 (ρ) = CR(ρ) = p(d − 1) = dF − 1, (27)

Cgc(ρ) = max{0,p(d − 1) − (d − 2)}
= max{0,dF − (d − 1)}. (28)

Proposition 1 shows that all the inequalities in Eq. (22)
of Theorem 7 are saturated by the state ρ in Eq. (26) with
(d − 2)/(d − 1) � p � 1, that is, (d − 1)/d � F � 1.

Next, we show that all the inequalities in Theorem 8 are
saturated by isotropic states with sufficiently high purity. Let
ρ be an isotropic state in dimension d × d [1], which has the
form

ρ = p(|	〉〈	|) + (1 − p)
I

d2
, |	〉 = 1√

d

∑
j

|jj 〉, (29)

with 0 � p � 1. Let F := 〈	|ρ|	〉 = p + 1−p

d2 be the fidelity
between ρ and |	〉〈	|. Then 1/d2 � F � 1 and

ρ = F (|	〉〈	|) + (1 − F )
I − |	〉〈	|

d2 − 1
. (30)

The following proposition is an analog of Proposition 1. Here
Eq. (32) follows from Ref. [63]; Eq. (31) should also be known
before. See Appendix E for a self-contained proof.

Proposition 2. The state ρ in Eq. (30) with F � 1/d2

satisfies

N̂ (ρ) = N (ρ) = ER(ρ) = max{0,dF − 1}, (31)

Egc(ρ) = max{0, dF − (d − 1)}. (32)

Proposition 2 shows that all the inequalities in Eq. (23)
of Theorem 8 are saturated by the state ρ in Eq. (30) with
(d − 1)/d � F � 1.

VI. SUMMARY

In summary, we established a general operational one-to-
one mapping between coherence measures and entanglement
measures. Any entanglement measure of bipartite pure states
is the minimum of a suitable coherence measure over product
bases; any coherence measure of pure states, with extension to
mixed states by the convex roof, is the maximum entanglement
generated by incoherent operations acting on the system and
an incoherent ancilla. Besides its foundational significance in
bridging the two resource theories, this connection has wide
applications in quantum information processing. Thanks to this
connection, many results on entanglement can be generalized
to the coherence setting, and vice versa. As an illustration,
we provided tight observable lower bounds for generalized
entanglement concurrence and coherence concurrence, which
enable experimentalists to quantify entanglement and coher-
ence of the maximal dimension in real experiments.

ACKNOWLEDGMENTS

We are grateful to one referee for constructive suggestions
and to another referee for mentioning Ref. [63]. Z.M. thanks
Prof. Jingyun Fan for helpful discussion. H.Z. acknowledges
financial support from the Excellence Initiative of the German
Federal and State Governments (ZUK 81) and the DFG. Z.M.
acknowledges support from The National Natural Science
Foundation of China (NSFC), Grants No. 11275131 and
No. 11571313. S.M.F. acknowledges support from NSFC,
Grant No. 11675113. V.V. thanks the Oxford Martin School at
the University of Oxford, the Leverhulme Trust (UK), the John
Templeton Foundation, the EPSRC (UK), and the Ministry of
Manpower (Singapore). This research is also supported by
the National Research Foundation, Prime Ministers Office,
Singapore, under its Competitive Research Programme (CRP
Award No. NRF-CRP14-2014-02), administered by the Centre
for Quantum Technologies, National University of Singapore.

H.Z. and Z.M. contributed equally to this work.

APPENDIX A: ENTANGLEMENT MONOTONES

In this Appendix, we provide additional details on the
connection between entanglement monotones and symmetric
concave functions on the probability simplex. We then prove
Theorem 1 in the main text, which is a variant of a result
first established by Vidal [59]. This result is now well known
among the experts, but some subtlety discussed here may be
helpful to other readers.

Denote by T (Cd ) the space of density matrices on Cd and
U(d), the group of unitary operators onCd . Let Fu be the set of
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unitarily invariant functions on the space of density matrices.
We assume that each function f ∈ Fu is defined on T (Cd ) for
each positive integer d. For given d, the function satisfies

f (UρU †) = f (ρ) ∀ρ ∈ T (Cd ), U ∈ U(d). (A1)

So f (ρ) is a function of the eigenvalues of ρ. We also assume
implicitly that the number of “0” in the spectrum of ρ does
not affect the value of f (ρ). Let Fuc ⊂ Fu be the set of
unitarily invariant real concave functions on the space of
density matrices. For given d, each function f ∈ Fuc satisfies
Eq. (A1), and in addition,

f [pρ1 + (1 − p)ρ2] � pf (ρ1) + (1 − p)f (ρ2)

∀ρ1,ρ2 ∈ T (Cd ), 0 � p � 1. (A2)

Let H = Cd ⊗ Cd be a bipartite Hilbert space shared by B
and A. For simplicity, here we assume that the Hilbert spaces
for the two subsystems have the same dimension d, but this is
not essential. Any function f ∈ Fuc can be used to construct
an entanglement monotone Ef on T (H) as follows [59]. For
a pure state |ψ〉 ∈ H,

Ef (ψ) := f ( trA(|ψ〉〈ψ |)). (A3)

The monotone is then extended to mixed states ρ ∈ T (H) by
the convex roof,

Ef (ρ) := min
{pj ,ρj }

∑
j

pjEf (ρj ), (A4)

where the minimization runs over all pure state ensembles of
ρ for which ρ = ∑

j pjρj .
The following theorem is reproduced from Ref. [59], where

the reader can find a detailed proof.
Theorem 9. For any f ∈ Fuc, the function Ef defined by

Eqs. (A3) and (A4) is an entanglement monotone. Conversely,
the restriction to pure states of any entanglement monotone is
identical to Ef for certain f ∈ Fuc.

Next we clarify the relation between Theorem 9 and
Theorem 1 in the main text. Let �d be the probability simplex
of probability vectors with d components. A function on
�d is symmetric if it is invariant under permutations of
the components of probability vectors. Let Fs be the set
of symmetric functions on the probability simplex. Here we
assume implicitly that each f ∈ Fs is defined on �d for each
positive integer d. In addition, the value of f (x) does not
depend on the number of “0” in the components of x; in other
words, f (x) = f (y) whenever x 	 y (which means x ≺ y and
y ≺ x), even if x and y have different numbers of components.

Any symmetric function f on the probability simplex can
be lifted to a unitarily invariant function on the space of density
matrices,

f̌ (ρ) := f ( eig(ρ)) ∀ρ ∈ T (Cd ). (A5)

Conversely, any unitarily invariant function f on the space of
density matrices defines a symmetric function on the proba-
bility simplex when restricted to diagonal density matrices,

f̂ (p) := f ( diag(p)) ∀p ∈ �d. (A6)

It is straightforward to verify that ˆ̌f = f for any f ∈ Fs and

that ˇ̂f = f for any f ∈ Fu. So the lifting map f �→ f̌ and the

restriction map f �→ f̂ establish a one-to-one correspondence
between symmetric functions in Fs and unitarily invariant
functions in Fu.

Recall that a real function f on the probability simplex
is Schur convex if it preserves the majorization order, that is,
f (x) � f (y) whenever x ≺ y. By contrast, f is Schur concave
if it reverses the majorization order, that is, f (x) � f (y)
whenever x ≺ y [65,66]. Note that Schur convex functions
and Schur concave functions are necessarily symmetric. In
addition, symmetric convex (concave) functions are automat-
ically Schur convex (concave) but not vice versa in general.
With this background, it is not difficult to show that the maps
defined by Eqs. (A5) and (A6) preserve (Schur) convexity and
(Schur) concavity for real functions. Here we prove one of
these properties that is most relevant to the current study; the
other three properties follow from a similar reasoning. Recall
that Fsc is the set of real symmetric concave functions on the
probability simplex.

Lemma 3. The two maps f �→ f̌ and f �→ f̂ set a bijection
between Fsc and Fuc.

Proof. To prove the lemma, it suffices to show that the two
maps f �→ f̌ and f �→ f̂ preserve concavity. Given f ∈ Fsc,
let ρ1,ρ2 ∈ T (Cd ) be two arbitrary density matrices and 0 �
p � 1. It is well known that [66]

eig[pρ1 + (1 − p)ρ2] ≺ p eig↓(ρ1) + (1 − p) eig↓(ρ2),

(A7)

where eig(ρ) denotes the vector of eigenvalues of ρ. Conse-
quently,

f̌ [pρ1 + (1 − p)ρ2]

= f [eig (pρ1 + (1 − p)ρ2)]

� f [p eig↓(ρ1) + (1 − p) eig↓(ρ2)]

� pf ( eig↓(ρ1)) + (1 − p)f ( eig↓(ρ2))

= pf ( eig(ρ1)) + (1 − p)f ( eig(ρ2))

= pf̌ (ρ1) + (1 − p)f̌ (ρ2), (A8)

where the first inequality follows from Eq. (A7) and Schur
concavity of f , and the second inequality from the concavity
of f . Therefore f̌ is concave whenever f is concave.

On the other hand, if f ∈ Fuc, then f is concave in
particular on diagonal density matrices, which implies that
f̂ is concave.

Proof of Theorem 1. The theorem is an immediate conse-
quence of Theorem 9 and Lemma 3.

APPENDIX B: COHERENCE MONOTONES AND
COHERENCE TRANSFORMATIONS

In this section we present a self-contained proof of
Theorem 2, which connects coherence monotones and sym-
metric concave functions on the probability simplex. A variant
of this result was first presented by Du et al. [30] (Theorem 1
there). The original proof has a gap in one direction [in
particular, the reasoning leading to Eq. (12) there was not
fully justified]. Nevertheless, all essential ideas are already
manifested in the proof. It should be emphasized that the set
of coherence monotones is the same irrespective whether IO or
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SIO is taken as the set of free operations. Our study also leads
to a simpler proof of the majorization criterion on coherent
transformations under incoherent operations [49], which is the
analog of Nielsen’s majorization criterion on entanglement
transformations under local operations and classical commu-
nication (LOCC) [67]. As we shall see, the two proofs share a
key ingredient, which reflects the strong connection between
coherence measures and coherence transformations.

Recall that any quantum operation � (completely positive
trace-preserving map) has a Kraus representation, that is,
�(ρ) = ∑

n KnρK
†
n, where the Kraus operators Kn satisfy∑

n K
†
nKn = I . Denote by I the set of incoherent states

with respect to a given reference basis. Then the operator
Kn is incoherent if KnρK

†
n/pn ∈ I whenever ρ ∈ I and

pn = tr(KnρK
†
n) > 0. It is strictly incoherent if in addition K

†
n

is also incoherent. Simple analysis shows that Kn is incoherent
iff its representation with respect to the reference basis has at
most one nonzero entry in each column and strictly incoherent
if the same is also true for each row. The operation � with
Kraus representation {Kn} is (strictly) incoherent if each Kraus
operator Kn is (strictly) incoherent. Although we are primarily
concerned with incoherent operations (IO), most of our results
concerning IO also apply to strictly incoherent operations
(SIO).

1. Coherence monotones

Recall that Fsc is the set of real symmetric concave
functions on the probability simplex and that each function
f ∈ Fsc can be used to define a coherence monotone Cf [30].
When |ψ〉 is a pure state,

Cf (ψ) := f (μ(ψ)); (B1)

in general,

Cf (ρ) := min
{pj ,ρj }

∑
j

pjCf (ρj ), (B2)

where the minimization runs over all pure state ensembles of
ρ for which ρ = ∑

j pjρj .
Proof of Theorem 2. By the nature of the convex-roof

construction, Cf is automatically convex. In addition, to prove
monotonicity under selective operations, it suffices to consider
the scenario with a pure initial state ψ . Let � = {Kn} be an
arbitrary incoherent operation and |ϕn〉 = Kn|ψ〉/√pn with

pn = tr(Kn|ψ〉〈ψ |K†
n). Then

∑
n

pnCf (ϕn) =
∑

n

pnf (μ↓(ϕn)) � f

(∑
n

pnμ
↓(ϕn)

)

� f (μ(ψ)) = Cf (ψ), (B3)

where the first inequality follows from the concavity of f ,
and the second inequality follows from Lemma 4 below and
Schur concavity of f . (Note that a symmetric concave function
is automatically Schur concave.) Therefore, Cf is indeed a
coherence monotone.

Now we come to the converse, which is based on Ref. [30].
Let C be an arbitrary coherence monotone, then C(ψ) is
necessarily a symmetric function of μ(ψ) given that monomial
unitaries (including permutations) are incoherent. Define

f on the probability simplex as follows: f (x) = C(ψ(x)),
with |ψ(x)〉 = ∑

j

√
xj |j 〉. Then f is clearly symmetric. To

prove concavity, let x,y be two probability vectors, and z =
px + (1 − p)y with 0 � p � 1. Let |ψ(y)〉 = ∑

j

√
yj |j 〉 and

|ψ(z)〉 = ∑
j

√
zj |j 〉. Construct the quantum operation with

the following two Kraus operators:

K1 = √
p diag

(√
x0

z0
,

√
x1

z1
, . . . ,

√
xd−1

zd−1

)
,

K2 =
√

1 − p diag

(√
y0

z0
,

√
y1

z1
, . . . ,

√
yd−1

zd−1

)
.

(B4)

Here xj/zj and yj/zj for 0 � j � d − 1 can be set to 1
whenever zj = 0, in which case either p(1 − p) = 0 or xj =
yj = 0. Note that K1,K2 are strictly incoherent and satisfy
K

†
1K1 + K

†
2K2 = I . In addition,

K1|ψ(z)〉 = √
p|ψ(x)〉, K2|ψ(z)〉 =

√
1 − p|ψ(y)〉.

(B5)

Since C is a coherence monotone by assumption, we deduce
that

C(ψ(z)) � pC(ψ(x)) + (1 − p)C(ψ(y)), (B6)

which implies that

f [px + (1 − p)y] = f (z) � pf (x) + (1 − p)f (y). (B7)

Therefore, f is both symmetric and concave. In addition, the
coherence monotone C coincides with Cf when restricted to
pure states.

Note that the above proof applies when either IO or SIO
is taken as the set of free operations. Therefore, the set of
convex-roof coherence monotones (measures) does not change
under the interchange of IO and SIO.

2. Coherent transformations under incoherent operations

Lemma 4 below was inspired by Refs. [49] and [30]. It is
a key ingredient for proving Theorem 2 and for establishing
the majorization criterion on coherence transformations. Upon
completion of this paper, we discovered that Lemma 4 follows
from Theorem 1 in Ref. [56]. However, the proof there
crucially depends on Theorem 1 in Ref. [30] by the same
authors, which is a variant of Theorem 2 in our main text
that we try to prove. To avoid circular argument and to
make our presentation self-contained, the discussion here is
instrumental.

Lemma 4. Suppose |ψ〉 is an arbitrary pure state and � =
{Kn} is an arbitrary incoherent operation acting on |ψ〉. Let
pn = tr(Kn|ψ〉〈ψ |K†

n) and |ϕn〉 = Kn|ψ〉/√pn when pn > 0.
Then

μ(ψ) ≺
∑

n

pnμ
↓(ϕn). (B8)

Although |ϕn〉 is not well defined when pn = 0, this fact
does not cause any difficulty because Kn|ψ〉 is what really
matters in our calculation, and it vanishes when pn = 0.
Alternatively, we may restrict the summation in Eq. (B8) to
the terms with pn > 0, and the conclusion is the same. Similar
comments also apply to several other equations appearing in
this paper but will not be mentioned again to avoid verbosity.
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Proof. By assumption each Kraus operator Kn is incoherent
and thus has at most one nonzero entry in each column.
Therefore, Kn can be expressed in the form Kn = PnK̃n, where
Pn is a permutation matrix and K̃n is upper triangular. The
normalization condition

∑
n K

†
nKn = ∑

n K̃
†
nK̃n = I implies

that
∑

j,n (K̃∗
n )

jk
(K̃n)j l = δkl for all k,l. Since K̃n are upper

triangular, we deduce that

∑
n

r∑
j=0

(K̃∗
n )

jk
(K̃n)j l = δkl ∀r � min{k,l}. (B9)

Let |ϕ̃n〉 = K̃n|ψ〉/√pn, then
√

pn(ϕ̃n)j = ∑
k (K̃n)jkψk , so

that

r∑
j=0

∑
n

pnμj (ϕ̃n)

=
r∑

j=0

∑
n

pn|(ϕ̃n)j |2

=
∑
k,l

∑
n

r∑
j=0

(K̃∗
n )

jk
(K̃n)j lψ

∗
k ψl

=
r∑

k=0

|ψk|2 +
∑
k,l>r

∑
n

r∑
j=0

(K̃∗
n )

jk
(K̃n)j lψ

∗
k ψl

=
r∑

k=0

|ψk|2 +
∑

n

r∑
j=0

∣∣∣∣∣
∑
l>r

(K̃n)j lψl

∣∣∣∣∣
2

�
r∑

k=0

|ψk|2 =
r∑

k=0

μk(ψ), (B10)

where the third equality follows from Eq. (B9).
Since permutations of basis states are incoherent, without

loss of generality we may assume that the coefficients |ψj | of
ψ in the reference basis are in decreasing order. Then Eq. (B10)
implies that

μ(ψ) ≺
∑

n

pnμ(ϕ̃n) ≺
∑

n

pnμ
↓(ϕ̃n) =

∑
n

pnμ
↓(ϕn);

(B11)

here the last step follows from the relation |ϕn〉 = Pn|ϕ̃n〉 with
Pn being a permutation, that is, μ(ϕn) 	 μ(ϕ̃n).

As a side remark, Eq. (B10) in the proof of Lemma 4
actually holds for a larger class of operations whose Kraus
operators have upper triangular form up to permutations on
the left. Such operations may generate coherence, but Eq. (B8)
still holds nevertheless if the coefficients |ψj | of ψ in the
reference basis are in decreasing order. However, in general
this conclusion no longer holds if the coefficients do not have
this property. Although this property can be recovered by a
suitable permutation, the permutation required may destroy the
upper triangular structure of the Kraus operators, which cannot
be recovered by permutations only on the left, in contrast with
the scenario of incoherent operations. That is why Lemma 4
cannot hold in general for this wider class of operations, as
expected.

3. The majorization criterion on coherence transformations

In addition to proving Theorem 2, Lemma 4 enables us
to construct a simple proof of the majorization criterion on
coherence transformations under incoherent operations [49].
The result is the analog of Nielsen’s majorization criterion on
entanglement transformations under LOCC [67].

Theorem 10. The pure state |ψ〉 can be transformed to |ϕ〉
under IO or SIO iff μ(ψ) is majorized by μ(ϕ).

The conclusion concerning IO was first presented in
Ref. [49]; the original proof of the “only if” part has a gap,
which was corrected upon completion of our work. In view of
this gap, several recent works have derived weaker forms of
Theorem 10. In particular, the conclusion concerning SIO was
established in Refs. [28] and [32].

Proof. Suppose |ψ〉 can be transformed to |ϕ〉 under an
incoherent operation � = {Kn}. Let |ϕn〉 = Kn|ψ〉/√pn with

pn = tr(Kn|ψ〉〈ψ |K†
n). Then all |ϕn〉 with pn > 0 are identical

to |ϕ〉 up to phase factors. So μ(ψ) ≺ μ(ϕ) according to
Lemma 4, that is, μ(ψ) is majorized by μ(ϕ). Obviously, the
same reasoning applies if � = {Kn} is strictly incoherent.

The proof of the other direction follows the approach
presented in Ref. [49]. Since diagonal unitaries are incoherent,
without loss of generality we may assume that the coefficients
ψj ,ϕj of |ψ〉, |ϕ〉 in the reference basis are real and non-
negative.

If μ(ψ) is majorized by μ(ϕ), then μ(ψ) = Aμ(ϕ) with
A a suitable doubly stochastic matrix [65–67]. Such a matrix
can always be written as the product of a finite number of T

matrices, that is, A = T1T2 · · · Tk , where each Tj for 1 � j � k

acts nontrivially only on two components, on which it takes
on the form

T =
(

a 1 − a

1 − a a

)
, 0 � a � 1. (B12)

By induction and the assumption that permutations are free,
we may assume that A is a T matrix of the form A = diag(T ,I )
with 0 < a < 1, so that μ(ψ) = diag(T ,I )μ(ϕ). In addition,
we may assume that the first two components ϕ0,ϕ1 of |ϕ〉 are
not zero simultaneously since, otherwise, the action would be
trivial. Let

K1 = √
a diag

(
ϕ0

ψ0
,
ϕ1

ψ1
,1, . . . ,1

)
,

K2 = √
1 − a diag(K ′

2,1, . . . ,1), K ′
2 =

(
0 ϕ0

ψ1
ϕ1

ψ0
0

)
.

(B13)

Then the two operators K1,K2 are strictly incoherent and
satisfy K

†
1K1 + K

†
2K2 = I . In addition,

K1|ψ〉 = √
a|ϕ〉, K2|ψ〉 = √

1 − a|ϕ〉. (B14)

So the two operators K1,K2 define a strictly incoherent
quantum operation that achieves the desired transformation
from |ψ〉 to |ϕ〉.

When there is no deterministic transformation from |ψ〉
to |ϕ〉, it is of interest to determine the maximal probability
of such transformations. This problem has been solved in
Ref. [30] recently. The result is reproduced below for the
convenience of the reader.
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Theorem 11. Let P (ψ → ϕ) be the maximal probability of
transforming |ψ〉 to |ϕ〉 under IO. Then

P (ψ → ϕ) = min
m�0

∑
j�m μ

↓
j (ψ)∑

j�m μ
↓
j (ϕ)

. (B15)

Theorem 11 still holds if IO is replaced by SIO. This is clear
from the proof presented in Ref. [30] and Theorem 10, which
imply that the incoherent operation achieving the maximal
probability can be chosen to be strictly incoherent. It is worth
pointing out that the sum

∑
j�m μ

↓
j (ψ) for each positive

integer m is a bona fide coherence measure associated with the
function fm(p) = ∑

j�m p
↓
j , which is symmetric and concave

[30,68]. Theorem 11 is the analog of a similar result on
entanglement transformations under LOCC, first established
in Ref. [68]. The idea of the proof in Ref. [30] also mirrors
the analog in the entanglement setting. Not surprisingly,
the majorization criterion plays a crucial role in proving
Theorem 11 as it does in proving the result in Ref. [68]. Also,
the proof relies on Theorem 1 in Ref. [30], which is a variant of
Theorem 2 in our main text. Since these stepping stones have
been corroborated, Theorem 11 is well established by now.

APPENDIX C: PROOF OF LEMMA 1

Proof. Expand |ψ〉 in the reference basis |ψ〉 =∑
jk cjk|jk〉, then μ(ψ) = (|cjk|2)jk . Let ρB be the reduced

density matrix for subsystem B, then the diagonal of ρB reads
diag(ρB) = (

∑
k |cjk|2)j . It follows that μ(ψ) ≺ diag(ρB) ≺

eig(ρB) 	 λ(ψ), where eig(ρB) denotes the vector of eigen-
values of ρB, and we have applied the majorization relation
diag(ρB) ≺ eig(ρB) [66]. The inequality Crk(ψ) � Erk(ψ) is
an immediate consequence of the relation μ(ψ) ≺ λ(ψ).

Let r = Erk(ψ) be the Schmidt rank of |ψ〉. If μ(ψ) 	
λ(ψ), then Crk(ψ) = Erk(ψ) = r . If Crk(ψ) = Erk(ψ) = r ,
then |{j |cjk = 0 ∃k}| � r given that ρB has rank r . By the
same token |{k|cjk = 0 ∃j}| � r . So the coefficient matrix
cjk has exactly r nonzero components, with at most one
on each row and each column. Therefore, |ψ〉 has the form
|ψ〉 = ∑r−1

j=0 aj |π1(j )π2(j )〉 with
∑

j |aj |2 = 1, where π1,π2

are two permutations of basis states. In addition, |aj |2 coincide
with the Schmidt coefficients of |ψ〉, which implies Eq. (6)
after redefining π1,π2 if necessary. Conversely, the relation
μ(ψ) 	 λ(ψ) holds automatically whenever |ψ〉 has the form
of Eq. (6).

APPENDIX D: PROOF OF LEMMA 2

Proof. Lemma 2 is trivial when d = 1,2, so we assume
d � 3 in the following discussion. Note that both sides of the
inequality in Eq. (25) are invariant under permutations of cj

and are independent of the phase factors, so we may assume
that c0 � c1 � · · · � cd−1 � 0 without loss of generality; then
it suffices to consider the nontrivial case c0 > 0. Define

h({cj }) :=d

(∏
j

cj

)2/d

−
(∑

j

cj

)2

+ (d − 1)
∑

j

c2
j ,

(D1)

then it remains to show that h � 0.

First, consider the special case c0 = · · · = cd−2 = a and
cd−1 = b with a > 0 and 0 � b � a. Since h is homogeneous,
we may assume a = 1, so that 0 � b � 1. Then

h({cj }) =g(b) := db2/d + (d − 2)b2 − 2(d − 1)b. (D2)

The first and second derivatives of g(b) are given by

g′(b) = 2b(2−d)/d + 2(d − 2)b − 2(d − 1),

g′′(b) = 2(d − 2)

d
(d − b2(1−d)/d ).

(D3)

According to these formulas, it is easy to verify that g′(b) has
only two zeros 0 < b0 < b1 = 1 in the interval 0 < b � 1.
In addition, g′(b) > 0 when 0 < b < b0 and g′(b) < 0 when
b0 < b < 1. Therefore, the minimum of g(b) over the interval
0 � b � 1 can only be attained at b = 0 or b = 1. Since g(0) =
g(1) = 0, we conclude that h({cj }) = g(b) � 0 for 0 � b � 1,
and the inequality is saturated iff b = 0 or b = 1.

Next, consider the general case. Since h is homogeneous,
we may assume that

∑
j c2

j = 1 without loss of generality. Let
s := ∑

j cj ; then

h({cj }) = d

(∏
j

cj

)2/d

− s2 + (d − 1). (D4)

If s <
√

d − 1, then h > 0. If s = √
d − 1, then h � 0 and

the inequality is saturated iff cd−1 = 0, in which case we have
c0 = c1 = · · · = cd−2 = 1/

√
d − 1. If s = √

d, then c0 =
c1 = · · · = cd−1 = 1/

√
d and h = 0. It remains to consider the

scenario
√

d − 1 < s <
√

d, in which case cj > 0 for all j .
Now, we investigate the minimum of h({cj }) for a given

value of s. Suppose the minimum is attained at a given point.
Using the method of Lagrangian multipliers, it is easy to
show that c0, c1, . . . , cd−1 take on two different values, that
is, c0 = · · · = ck−1 > ck = · · · = cd−1, where 1 � k � d − 1.
Note that not all cj can take on the same value due to
the constraint

∑
j c2

j = 1 and s <
√

d . In the case d = 3,
straightforward calculation shows that k = 2, in which case
we have

c0 = c1 = 2s + √
6 − 2s2

6
, c2 = s − √

6 − 2s2

3
. (D5)

In general, we have k = d − 1; otherwise, the values of
ck−1,ck,cd−1 can be adjusted so that the value of the product
ck−1ckcd−1 decreases, while ck−1 + ck + cd−1 and c2

k−1 + c2
k +

c2
d−1 are left invariant, which leads to a contradiction. The fact

k = d − 1 implies that

c0 = · · · = cd−2 = s +
√

(d − s2)/(d − 1)

d
,

cd−1 = s −
√

(d − s2)(d − 1)

d
. (D6)

Since c0 = · · · = cd−2 > cd−1 for
√

d − 1 < s <
√

d, it fol-
lows that h({cj }) > 0 according to the discussion after
Eq. (D3). This observation completes the proof of Lemma 2.

APPENDIX E: PROOFS OF PROPOSITIONS 1 AND 2

Proof of Proposition 1. Equation (27) can be derived as
follows. The equality Cl1 (ρ) = p(d − 1) = dF − 1 is easy
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to verify; the equality Ĉl1 (ρ) = Cl1 (ρ) follows from the
inequality Ĉl1 (ρ) � Cl1 (ρ) and the convexity of Ĉl1 (ρ),
which implies that Ĉl1 (ρ) � pĈl1 (ψ) = p(d − 1) = Cl1 (ρ);
the equality CR(ρ) = Cl1 (ρ) follows from Theorem 6 in
Ref. [34]. Alternatively, CR(ρ) can be computed based on
the symmetry consideration that ρ is invariant under arbitrary
permutations of the basis states.

To derive Eq. (28), let ρj = |ϕj 〉〈ϕj | with

|ϕj 〉 = 1√
d − 1

d−1∑
k=0,k =j

|k〉, j = 0,1, . . . ,d − 1. (E1)

Then

1

d

d−1∑
j=0

ρj = a|ψ〈ψ | + (1 − a)
I

d
(E2)

with a = (d − 2)/(d − 1). Observing that Cgc(ρj ) = 0 for
each j = 0,1, . . . ,d − 1, we conclude that Cgc(ρ) = 0 when
p = (d − 2)/(d − 1), which further implies that Cgc(ρ) = 0
for 0 � p � (d − 2)/(d − 1). When p � (d − 2)/(d − 1),

Cgc(ρ) � p − a

1 − a
Cgc(ψ)

= p(d − 1) − (d − 2) = dF − (d − 1). (E3)

On the other hand, the opposite inequality follows from
Theorem 7 and Eq. (27). This observation confirms Eq. (28).

Proof of Proposition 2. Equation (31) can be derived as
follows. When 1/d2 � F � 1/d, we have N̂ (ρ) = N (ρ) =
ER(ρ) = 0 because ρ is separable. When F � 1/d, the
equality N (ρ) = dF − 1 is straightforward to verify. The

equality N̂ (ρ) = N (ρ) follows from the inequality N̂ (ρ) �
N (ρ) and the convexity of N̂ (ρ), which implies that

N̂ (ρ) �
F − 1

d

1 − 1
d

N̂ (|	〉〈	|) = dF − 1 = N (ρ). (E4)

Finally, the equality ER(ρ) = dF − 1 can be derived based
on the symmetry consideration that ρ is invariant under the
transformation U ⊗ U ∗ for any unitary U . (Here U ∗ denotes
the complex conjugate of U with respect to a given basis; by
contrast, the Hermitian conjugate of U is denoted by U †.)

To derive Eq. (32), let

|�〉 = 1√
d − 1

d−2∑
j=0

|jj 〉 (E5)

and F0 = |〈	|�〉|2 = (d − 1)/d. Then∫
dU [(U ⊗ U ∗)(|�〉〈�|)(U ⊗ U ∗)†]

= F0(|	〉〈	|) + (1 − F0)
I − |	〉〈	|

d2 − 1
, (E6)

where the integral is taken with respect to the normalized Haar
measure on the unitary group. Noting that Egc(|�〉〈�|) = 0,
we conclude that Egc(ρ) = 0 when F = F0, which implies
that Egc(ρ) = 0 for 1/d2 � F � F0. When F � F0,

Egc(ρ) � F − F0

1 − F0
Egc(	) = dF − (d − 1). (E7)

On the other hand, the opposite inequality follows from
Theorem 8 and Eq. (31). This observation confirms Eq. (32).
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