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Arbitrary nuclear-spin gates in diamond mediated by a nitrogen-vacancy-center electron spin

J. Casanova, Z.-Y. Wang, and M. B. Plenio
Institute of Theoretical Physics and IQST, Albert-Einstein-Allee 11, Universität Ulm, D-89069 Ulm, Germany

(Received 20 February 2017; published 11 September 2017)

We show that arbitrary N -qubit interactions among nuclear spins can be achieved efficiently in solid state
quantum platforms, such as nitrogen vacancy centers in diamond, by exerting control only on the electron spin
coupled to the nuclei. This allows to exploit nuclear spins as robust quantum registers and the direct measurement
of nuclear many-body correlators. The method takes advantage of recently introduced dynamical decoupling
techniques and avoids the necessity of external, slow, control on the nuclei. Our protocol is general, being
applicable to other nuclear spin-based platforms with electronic spin defects acting as mediators as silicon
carbide.
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I. INTRODUCTION

Nuclear spins in solid-state platforms such as diamond or
silicon carbide are natural and reliable quantum registers with
exceptional coherence times [1]. To realize the potential of
this resource for quantum computing [2], quantum simulations
[3], and quantum sensing [4,5], it is necessary to achieve
both individual nuclear spin rotations and arbitrary coherent
coupling between nuclear spins. In close proximity, nuclear
spins exhibit a natural coupling because of their intrinsic
nuclear dipolar interactions which may be exploited for
quantum simulations [6]. However, this natural coupling is
generally small as a consequence of the weak nuclear magnetic
moments [3], while the available closest internuclear distances
are always lower bounded by the lattice constants of the host
material. Furthermore, the spin active nuclear isotopes appear
in the platforms of interest with a low natural abundance, e.g.,
1.1% and 4.7% for the cases of 13C and 29Si nuclei which
are the relevant species for diamond [7,8] and silicon carbide
[9,10]. Furthermore, the positions of the nuclei are fixed which
make the modulation of the internuclear coupling challenging.

The tuning of the direct coupling of nuclear spins is
excessively demanding, although it can be suppressed (up
to a certain degree) by the application of suitably tuned
radio frequency (rf) fields [6,11,12]. However, nuclear spins
can be coupled to external magnetic fields through Zeeman
interactions [13], and more importantly, they can couple to
nearby electron spins. In this respect, the electron spin of a
nitrogen vacancy (NV) center is a promising nanoscale device
to detect and control nuclear spins using the electron-nuclear
hyperfine interaction [7,8]. The large magnetic moment of
electron spins allows a single NV center to couple strongly
to many nuclear spins. In addition, with dynamical control
achieved due to the application on the NV center of decou-
pling sequences such as Carr-Purcell-Meiboom-Gill (CPMG)
[14,15], pulse arrangements of the XY kind [16,17], and
adaptive XY sequences [18–20], one can entangle the NV
electron to individual nuclear spins (including the 14N nucleus
inherent to the NV center) for the sake of electron-nuclear
two-qubit quantum gates and quantum algorithms [21–32].

Particularly, the set of techniques developed in [18–20] al-
lows for highly selective and robust electron-nuclear quantum
gates evolving according to the Hamiltonians σzIx or σzIy

by using sequences of nonequidistant microwave decoupling

pulses. Note that σz = |ms = ±1〉〈ms ± 1| − |ms = 0〉〈ms =
0| corresponds to an effective electronic spin- 1

2 operator
[7,8], while Ix , Iy are nuclear spin operators with I = 1

2 . In
addition, in [33] it was shown how the judicious application
of a delay window achieves an interaction of the kind σzIz.
Furthermore, these techniques can incorporate a decoupling rf
field [19,20,33] to combine electron-nuclear entangling gate
generation with a suppression of the internuclear decoupling.

In this work we show that arbitrary single and N -body
nuclear spin interactions can be realized efficiently in the frame
of electron spin defects with nearby nuclear spins through a
specific combination of selective electron-nuclear gates. This
last can be achieved when the natural hyperfine couplings
between the electronic and nuclear spins are appropriately
modulated with dynamical decoupling techniques. Our method
combines the two key advantages of electron and nuclei
qubits, namely fast electronic control and the long nuclear
spin coherence times. In addition, we demonstrate how the
same techniques allow to measure directly nuclear many-body
correlators. To exemplify the protocol we use NV centers in
diamond as the model system, but our method is general and
can be used in other solid-state quantum platforms such as
silicon carbide.

II. ELEMENTARY ENTANGLING GATES

With the dynamical decoupling techniques in [18–20,33],
one can achieve highly selective entangling quantum gates of
the form

Qα
j (ϕ) = exp

(
iϕσzI

α
j

)
, (1)

between the NV electron spin (with Pauli operator σz) and
the j th nuclear spin (with the spin operator Iα

j and α =
x,y,z) while prolonging the electron spin coherence. Another
important feature is that, as opposed to standard dynamical
decoupling methods [14–17], the phase ϕ is fully tunable. We
will see later that this is a crucial requirement for designing
our quantum algorithm. In addition, with microwave control,
single qubit gates can be applied to the NV electron spin. These
are, for instance, Xφ = eiφ σx

2 , i.e., a rotation of an arbitrary
and controllable phase φ around the x axis, although any other
direction is available.
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III. PROTOCOL FOR N-BODY NUCLEAR INTERACTIONS

The elementary gates presented before permit the imple-
mentation of N -body interactions (denoted in the following
by Uφ) between the nuclear spins that can be individually
addressed by the NV center. In the last section we will
demonstrate numerically that the individual nuclear addressing
is possible even when a certain target spin is surrounded by
other nuclei interacting with the NV center. This last is of
great benefit when dealing with dense samples because they
contain a potentially large number of available nuclear qubits.
For example, by having the entangling gates Q

α1
j1

(ϕ1)Qα2
j2

(ϕ2)
at hand, one can demonstrate the following equality (up to an
irrelevant global phase):

Uφ = Q
α1
j1

(ϕ1)Qα2
j2

(ϕ2)X2φ+πQ
α1
j1

(ϕ1)Qα2
j2

(ϕ2)Xπ

= e
iφσx (cos ϕ1−2i sin ϕ1σzI

α1
j1

)(cos ϕ2−2i sin ϕ2σzI
α2
j2

)
, (2)

which contains two-qubit, and many-body (in this specific case
three-body) interactions involving the electron and the nuclear
spins, see the Appendix A for a detailed derivation of Eq. (2).

We want to note that an especially interesting situation
is realized when ϕ1 = ϕ2 = π

2 , i.e., when we are making an
interaction with the same phase the electron spin with different
nuclei. In this case we have Uφ = exp [−i4φσxI

α1
j1

I
α2
j2

] namely
a three-body time evolution operator where the phase φ

corresponds to the one of the central gate X2φ+π in the first
line of Eq. (2).

Now it is possible to generalize the results in Eq. (2) and
demonstrate that with the following sequence of gates

Uφ = QNX2φ+πQNXπ, (3)

where QN = ∏N
n=1 Q

αn

jn
(ϕn), N labels the total number of

addressable nuclear spins, αn = x,y,z, and by noting that
[Qαn

jn
(ϕn),Qαm

jm
(ϕm)] = 0 for n �= m, i.e., the different entan-

gling gates commute, one can find that, for ϕn = π
2 ∀n, and

in the case N = 2M (i.e., we are subsequently addressing an
even number of nuclear spins) the time evolution operator is

Ue
φ = exp

[
(−1)Mi 22Mφ σx

2M∏
n=1

I
αn

jn

]
. (4)

In the same manner, for N = 2M + 1 (an odd number of
nuclear spins are addressed) we have

Uo
φ = exp

[
(−1)(M+1)i 22M+1φ σy

2M+1∏
n=1

I
αn

jn

]
. (5)

Note that in both cases we have a (N + 1)-body evolution that
involves the electron and nuclear spins.

Now, if the Ue
φ or Uo

φ operators act on an initial state
such that, for the even case, we have ρe

t=0 = |x±〉〈x±| ⊗ ρN

where σx |x±〉 = ±|x±〉, while the initial state for the odd
case is ρo

t=0 = |y±〉〈y±| ⊗ ρN with σy |y±〉 = ±|y±〉 and ρN

represents an initial nuclear state, we have the following two
possibilities:

Ue
φ ρe

t=0

(
Ue

φ

)† = |x±〉〈x±| ⊗ Ũ e
±φ ρN

(
Ũ e

±φ

)†
(6)

and

Uo
φ ρo

t=0

(
Uo

φ

)† = |y±〉〈y±| ⊗ Ũ o
±φ ρN

(
Ũ o

±φ

)†
, (7)

where the N -body nuclear operators Ũ e
±φ , Ũ o

±φ read

Ũ e
±φ = exp

[
−(1)Mi 22M (±φ)

2M∏
n=1

I
αn

jn

]
, (8)

and

Ũ o
±φ = exp

[
−(1)(M+1)i 22M+1(±φ)

2M+1∏
n=1

I
αn

jn

]
. (9)

It is also important to note that the gates X2φ+π and Xπ in
Eq. (3) can be replaced by Y2φ+π and Yπ where Yφ = eiφ

σy

2 ,
or for any other gate that implies a rotation on the x-y plane.
This last would give rise to a set of results similar to the ones
in Eqs. (4), (5), (8), and (9). Finally, note that, during gate
performance, the electron spin gets selectively coupled with
different target nuclei of the sample, but will also be affected
by different noise sources (see below for a description of the
typical error sources in the case of NV centers in diamond).
Therefore, since the electron spin is the mediator of nuclear
interactions, its quantum state has to be protected against errors
during the protocol which we achieve by means of dynamical
decoupling techniques.

In this manner we realized an effective N -body interaction
acting on a set of nuclei, while the electron spin gets uncoupled
after the process. We would like to note that Eqs. (8) and (9)
allows one to couple distant nuclear spins and, remarkably,
the achieved phase φ can be easily extended without affecting
significantly to the total time of the protocol. In this respect
note that φ is introduced through a single-qubit gate on the
electron spin that can be implemented in a time on the order
of nanoseconds. Furthermore, an electron spin rotation to
change |x±〉 → |y±〉 allows us to subsequently combine the
final results in Eqs. (8) and (9) to concatenate a set of N -qubit
quantum gates upon different nuclei.

In the same manner, and using again the NV center spin
as the interaction mediator, a single entangling gate Q

αn

jn
(ϕn)

can be used to individually rotate any addressable spin by an
arbitrary phase. This is achieved by simply noting that

Q
αn

jn
(ϕn)|z±〉〈z±| ⊗ ρN

(
Q

αn

jn

)† = |z±〉〈z±| ⊗ e±(iϕnI
αn
jn

)

× ρNe∓(iϕnI
αn
jn

), (10)

where σz| ± z〉 = ±| ± z〉. Hence, single nuclear spin ro-
tations can be applied without having to introduce weak
control rf fields that would require further calibration of the
system.

In the end of the computing process a selective SWAP

gate between the electron and a target nuclear spin allows
to transfer the nuclear spin quantum state to the NV
center and reconstruct the nuclear spin state, or measure
a nuclear spin operator, by optical readout applied on
the NV center which, at low temperatures, can achieve
fidelities exceeding 95% [32]. In this respect, we want to
note that a SWAP gate can be performed, up to a global
phase, as SWAPe,jn

= exp [i π
2 (σzI

z
jn

+ σxI
x
jn

+ σyI
y

jn
)] =

exp [i π
2 σzI

z
jn

] exp [i π
2 σxI

x
jn

] exp [i π
2 σyI

y

jn
], where each of the

previous two-qubit gates can be realised with [18–20,33]
plus additional single-qubit gates on the electron spin.
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Note also that a selective iSWAP gate (with iSWAPe,jn
=

exp [i π
2 (σxI

x
jn

+ σy I
y

jn
)] = exp [i π

2 σxI
x
jn

] exp [i π
2 σyI

y

jn
])

is also valid to retrieve the nuclear state
information.

IV. MEASURING NUCLEAR MANY-BODY
CORRELATIONS

The same techniques can be applied to directly measure the
expectation value of delocalized N -body nuclear operators.
This can be done through the next equality (for the sake of
simplicity we develop here the case for Ue

φ while the odd
case, i.e., the case for Uo

φ , is similar). After a set of N -body
operations we have that the final state is ρ = ρe ⊗ ρn(t), with
ρe = |α±〉〈α±| and α = x,y or z depending on the sequence
of gates we performed. Now we can take, with an electron
spin flip, the state ρe to an eigenstate of σz, i.e., ρe → |1〉〈1|
with σz|1〉 = |1〉, apply an additional gate Ue

φ and measure, for
example, the σy electronic operator. This process leads to

〈σy〉 = Tr
[
ρe ⊗ ρn(t)

(
Ue

φ

)†
σyU

e
φ

]
= Tr

[
ρe ⊗ ρn(t) e[(−1)M (−i) 22M (2φ) σx

∏2M
n=1 I

αn
jn

] σy

]
.

(11)

Now, if we select the phase φ such that (−1)M2φ =
(π

2 + 2m π ) with m ∈ Z, we find that 〈σy〉 = Tr[ρe ⊗
ρn(t) σz

∏2M
n=1 σ

αn

jn
] and one can write

〈σy〉 = Trn

[
ρn(t)

2M∏
n=1

σ
αn

jn

]
=

〈 2M∏
n=1

σ
αn

jn

〉
, (12)

where Trn[ · ] denotes the trace over the nuclear degrees of
freedom. In this manner a highly delocalized nuclear operator
gets encoded into an easy to measure electronic expectation
value.

V. IMPLEMENTATION WITH NV CENTERS

To demonstrate the working principle of our protocol we
will consider diamond technologies, i.e., a NV center in
the presence of a nuclear spin bath, as the target system
to numerically study our method. When a strong magnetic
field Bz is aligned with the NV axis, the ẑ direction, the
Hamiltonian of the coupled system in the rotating frame of the
free energy electronic spin Hamiltonian H0 = DS2

z − γeBzSz

reads (h̄ = 1)

H = A‖Sz −
∑

j

γjBzI
z
j + Sz

∑
j

�Aj · �Ij + Hc. (13)

Here, the first term A‖Sz with A‖ ≈ −(2π ) × 2.162 MHz, see
[34], and the spin-1 operator Sz = |1〉〈1| − | − 1〉〈−1|, cor-
responds to the longitudinal component of the coupling with
the 14N nucleus adjacent to the vacancy. In our simulations,
instead of using the 14N nucleus as a resource qubit, we take it
as the origin of a large detuning error with magnitude |A‖| [35]
for demonstrating the robustness of our protocol. However,
if the 14N is polarised at the beginning of the operational
process that detuning error is negligible. The constants γe =
−(2π ) × 2.8024 MHz

G and γj ≡ γ13C = (2π ) × 1.0705 kHz
G ∀j

represent the electronic and nuclear (in this case for the 13C
nucleus) gyromagnetic ratios.

The interaction between the NV center and the nuclear spins
is mediated by the hyperfine vector that we will consider as
dipolar like in the simulations, i.e., �Aj = μ0γeγj

4π |�rj |3 [ẑ − 3 (ẑ·�rj )�rj

|�rj |2 ],
where �rj is the vector that connects the NV center and each
environmental nuclei. Note also that, because of recently
developed positioning methods [19], we will take �Aj as known
quantities. The large zero field splitting D = (2π ) × 2.87 GHz
allowed us to neglect nonsecular components in Eq. (13).
Furthermore, an external microwave control can be introduced
in Eq. (13) through the term Hc = 	(|1〉〈0|eiϑ + |0〉〈1|e−iϑ )
with 	 being the Rabi frequency of the microwave field. In
this manner, we are selecting the electronic spin subspace |0〉,
|1〉 to define our qubit. In our numerical simulations we will
additionally introduce an error in 	 for considering realistic
experimental conditions. More specifically, if the required time
for a π -flip rotation of the electron spin is tπ = 1

4	
, we will

effectively introduce a Rabi frequency 	(1 + ε) with ε the
relative error that we will set as 1% [36]. As we will see in the
Appendix, we consider this error as constant because a realistic
estimation for the correlation time of amplitude fluctuations
for microwave fields is ≈1 ms [36], which is a large quantity
when compared to the time to execute each individual unit
of our dynamical decoupling sequence. For more details see
Appendix B (numerical simulations). Finally ϑ is a phase
that, for the sake of robustness, remains constant during each
microwave pulse but changes between pulses [18,38,39], see
more details in the Appendix B.

Hence, under the action of the microwave control pulses
the final Hamiltonian is

H = −
∑

j

ωj ω̂j · �Ij + F (t) σz

∑
j

�Aj · �Ij , (14)

where σz = |1〉〈1| − |0〉〈0|, F (t) = ±1 is the modulation
function appearing because of the action of π pulses upon the
electron spin, and �ωj = γ13CBzẑ − 1

2
�Aj with ωj = |�ωj | and

ω̂j = �ωj/| �ωj |. In this ideal description the detuning term A‖Sz

has been eliminated because of the external microwave driving,
however, our simulations will incorporate this detuning term
since they are performed assuming the Schrödinger equation
associated to the Hamiltonian in Eq. (13). In addition, we
will not consider electron relaxation processes because, at low
temperatures around 4 K, measurements of the relaxation time
(T1) on the order of seconds have already been reported [31,40]
which largely exceeds the time for performing entangling
nuclear gates. It is noteworthy that, in the case of [31] NV
coherence times larger than 25 ms are achieved in high purity
IIa-type diamond sample at 4.2 K. Other experiments, as the
one in [37], report NV T2 times of ≈0.6 seconds at 77 K
and, again, in samples with low nitrogen concentration. In
this manner, and according to the previously commented
experimental results, we will not consider the NV-electron
coupling because of P1 centers in the diamond lattice.

VI. NUMERICAL RESULTS

We numerically simulated the three-body nuclear time evo-
lution operator exp (i23φ I 1

x I 2
x I 3

x ) that gives rise to maximally
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σz
1 ⊗ σz

2 ⊗ σz
3

σz
1

−1

1

φ0 2π 4π

(b)

(a)

FIG. 1. Expectation value of (a) the σ z
1 operator. Solid line is the

ideal result according to the propagator in the second line of Eq. (15)
while the squares correspond to the result when the sequence of
gates in the first line of Eq. (15) is applied. (b) Expectation value
of the delocalised operator σ z

1 ⊗ σ z
2 ⊗ σ z

3 . The solid line represents
the ideal evolution while diamonds are the result of applying our
method. All the points in the plot (squares and diamonds) correspond
to the application of 3202 imperfect microwave pulses with a π pulse
time of 12.5 ns, and a total evolution time of ≈0.7 ms to generate
the propagator in Eq. (15). Note that this value is independent of the
achieved phase φ.

entangled GHZ-like states [41] when the nuclear register is ini-
tialized into the state | ↓↓↓〉. This, last can be prepared by po-
larization transfer from the electron spin, see for example, [29–
31], or by dynamical nuclear polarization (DNP) [42–44]. The
three-body nuclear propagator can be achieved by applying
the sequence in Eq. (3) with QN = ∏3

n=1 Q
αn

jn
(ϕn) where α1 =

α2 = α3 = x and ϕ1 = ϕ2 = ϕ3 = π
2 . More specifically, this is

Uφ = Qx
1

(
π

2

)
Qx

2

(
π

2

)
Qx

3

(
π

2

)
X2φ+πQx

1

(
π

2

)

×Qx
2

(
π

2

)
Qx

3

(
π

2

)
Xπ

= − exp
(
i23φ σyI

x
1 I x

2 I x
3

) = − exp
(
iφ σyσ

x
1 σx

2 σx
3

)
.

(15)

We selected a three qubit nuclear register such that �A1 =
(2π ) × (−56, − 32, − 45) kHz, �A2 = (2π ) × (−7.6,39,52)
kHz, �A3 = (2π ) × (−22,13,96) kHz, all of them correspond-
ing to nuclei located in available positions of the diamond
lattice, and the static magnetic field is Bz = 0.65 T, for
more details see the Appendix. Furthermore, and although not
included in our theoretical description in Eqs. (13) and (14),
we also took into account in the simulations the effect of inter-
nuclear interactions. These produce a coupling between the ith

and j th nuclei of the form gi,j = h̄μ0γ
2
13C

2d3
i,j

[1 − 3(nz
i,j )2] with di,j

the relative distance between nuclei and nz
i,j the amplitude of

the projection in ẑ on their relative positioning vectors. In our
case we have g1,2 ≈ −(2π ) × 20 Hz, g1,3 ≈ −(2π ) × 10 Hz,
and g2,3 ≈ (2π ) × 7.5 Hz. Figure 1 shows the evolution of the
expectation value of a single nucleus σ z

1 and of the delocalised
operator σ z

1 ⊗ σ z
2 ⊗ σ z

3 . The solid line corresponds to the ideal
behavior while squares and diamonds represent the result
when our method is applied. Furthermore, we computed that
the fidelity for the creation of a three-qubit GHZ-like nu-
clear state of the form |〉 = exp (i π

4 σyσ
x
1 σx

2 σx
3 )|y+〉| ↓↓↓〉 =

|y+〉 1√
2
(| ↓↓↓〉 + i| ↑↑↑〉) is 98.8%. This state was prepared

employing the same number of imperfect pulses, 3202, as the
one used for Fig. 1. Additionally, in Appendix B (Numerical
simulations) we included a plot that presents the impact of
pulse-phase inaccuracy in our method.

VII. FURTHER APPLICATIONS

The generation of these kind of gates, single- and N -qubit,
allows to deal with problems involving fermionic interactions.
It is known that any creation or annihilation fermionic operator
admits a form in terms of tensorial products of Pauli matrices
when the Jordan-Wigner transformation is applied [45].
Hence, an appropriate application of our techniques would
be of benefit to implement dynamics that include interacting
fermions, e.g., quantum chemistry problems, in a solid-
state quantum platform. Furthermore, the access to arbitrary
multiqubit spin propagators is of interest for simulating spin
models with topological order [46], as well as to generate
dynamics and to perform measurements in different models
of quantum computing as the case of deterministic quantum
computation with one quantum bit, the DQC1 protocol,
that do not require to initially polarize the nuclear register
[47,48].

VIII. CONCLUSION

We present a protocol that allows the generation of single
and N -qubit quantum gates between nuclear spins in a solid
state register such as diamond, as well as to measure highly
delocalized nuclear spin correlators. These gates are mediated
by an effective electron spin, for example, a NV center,
externally controlled with microwave radiation in a dynamical
decoupling scheme to assure selective entangling gates and
electron spin state protection. The method is general and,
therefore, applicable to other lattice defects as silicon carbide
or germanium vacancy centers.
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APPENDIX A: ELECTRON-NUCLEI MANY-BODY GATE

Here we show how to derive Eq. (2):

Uφ = Q
α1
j1

(ϕ1)Qα2
j2

(ϕ2)X2φ+πQ
α1
j1

(ϕ1)Qα2
j2

(ϕ2)Xπ

= [
exp

(
iϕ1σzI

α1
j1

)
exp

(
iϕ2σzI

α2
j2

)]
exp (iφσx)

iσx

[
exp

(
iϕ1σzI

α1
j1

)
exp

(
iϕ1σzI

α2
j2

)]
iσx

= eiπ exp
[
iφ e

(iϕ1σzI
α1
j1

)
e

(iϕ2σzI
α2
j2

)
σx e

(−iϕ1σzI
α1
j1

)
e

(−iϕ2σzI
α2
j2

)]
= eiπ exp

[
iφ σx e

(−i2ϕ1σzI
α1
j1

)
e

(−i2ϕ2σzI
α2
j2

)]
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t1 t1
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FIG. 2. Internal structure of each X or Y composite pulses in
terms of the five elementary π pulses. These π pulses are arranged
symmetrically, see the tunable time distances t1 and t2 that distribute
the pulses, with respect to the central π pulse.

= eiπ exp
{
iφ σx

[
cos (ϕ1) − 2i sin (ϕ1)σzI

α1
j1

]
× [

cos (ϕ2) − 2i sin (ϕ2)σzI
α2
j2

]}
. (A1)

Now, if the global phase factor eiπ is neglected, we get the
result at Eq. (2). Note that we used Qα

j (ϕ) = exp (iϕσzI
α
j ) and

Xφ = eiφ σx
2 in concordance with the definitions in the main

text.

APPENDIX B: NUMERICAL SIMULATIONS

To obtain Fig. 1, we chose a electron nuclear configuration
such that the hyperfine vectors for the three 13C nuclei are

�A1 = (2π ) × (−56, − 32, − 45) kHz,

�A2 = (2π ) × (−7.6,39,52) kHz, (B1)

�A3 = (2π ) × (−22,13,96) kHz.

The static Bz field is aligned with the NV axis (the z axis)
and has a value of 0.65 T. We drive the electron spin with
microwave pulses in the form of top-hat functions with a
π -pulse time of 12.5 ns. The microwave sequence is made of
three different steps, one for each of the operations Qx

1(π
2 ),

Qx
2(π

2 ), and Qx
3(π

2 ), driven by an appropriate dynamical
decoupling sequence. Note that each of these steps is repeated
twice because the gates Qx

1(π
2 ), Qx

2(π
2 ), and Qx

3(π
2 ) appear in

front and behind the central gate X2φ+π in the first line of
Eq. (15) in the main text.

To implement each step, we use repetitively several AXY-8
blocks [18] where each block has the following structure
XYXYYXYX with X (or Y ) being a composite pulse contain-
ing 5 π pulses, see Fig. 2. In addition one should note that each
π pulse is applied along an axis in the x-y plane determined
by the phase ϑ

x,y

j . This can be seen noting that each π pulse
is generated through the Hamiltonian Hc =	(|1〉〈0|eiϑ +

θ
0 0.2 0.4 0.6 0.8 1.0 1.2

0.93

0.95

0.97

0.99

F

FIG. 3. Fidelity of state preparation F under the presence of a
random error ±θ (in degrees) in the pulse-phases ϑ

x,y

j see Fig. 2. We
observe a fidelity decrease for larger values of θ . Each point in the
plot has been taken by averaging 100 runs of the scheme in Eq. (15).

|0〉〈1|e−iϑ ). To assure robustness, see [18], we set these phases
as ϑx

1 = π/6, ϑx
2 = 0, ϑx

3 = π/2, ϑx
4 = 0, and ϑx

5 = π/6,
while the ϑ

y

j are shifted by an amount π/2 with respect to ϑx
j .

That is ϑ
y

j = ϑx
j + π/2. The gate Qx

1(π
2 ) required ≈ 69 μs to

be displayed (we used the 11th harmonic of the decoupling
sequence and 440 microwave pulses, i.e., 88 robust composite
pulses. The other gates Qx

2(π
2 ) and Qx

3(π
2 ) are implemented

in ≈107 μs (440 microwave pulses, i.e., 88 robust composite
pulses) and ≈177 μs (720 microwave pulses, i.e., 144 robust
composite pulses), respectively, by making use of the 17th
harmonic in both cases. Each block has a distinct interpulse
spacing to assure that the final achieved phase for each of
the the Qx

j gates is π/2. In addition, one can calculate that
the largest time to execute an AXY-8 block is ≈9.8 μs, which
corresponds to the case of the Qx

3(π
2 ) gate. One can get this time

interval by dividing the total time to implement Qx
3(π

2 ), 177 μs,
by the number of AXY-8 blocks that is equal to 144/8 = 18.
In the same manner, for the other gates it is possible to obtain
that the times to display each individual AXY-8 block are
6.9 and 9.8 μs. Hence, as these time intervals are very small
with respect to the correlation time of the microwave’s Rabi
frequency fluctuation (≈1 ms, see [36]) we will consider this
error as constant.

Finally, in Fig. 3 we show the behavior of the fidelity for a
situation of growing pulse-phase errors. More specifically, we
simulated the state preparation fidelity of the same three-qubit
GHZ state in the main text where each pulse-phase has a
random error of ±θ that accounts for the possible inaccuracy
on the pulse-phase selection. Each point in the plot was
calculated by averaging the results of 100 runs of our gate
scheme.
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