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Convex approximations of quantum channels
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We address the problem of optimally approximating the action of a desired and unavailable quantum channel
� having at our disposal a single use of a given set of other channels {�i}. The problem is recast to look for the
least distinguishable channel from � among the convex set

∑
i pi�i , and the corresponding optimal weights {pi}

provide the optimal convex mixing of the available channels {�i}. For single-qubit channels we study specifically
cases where the available convex set corresponds to covariant channels or to Pauli channels, and the desired target
map is an arbitrary unitary transformation or a generalized damping channel.
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I. INTRODUCTION

Quantum channels, or trace-preserving completely positive
maps, represent all possible deterministic quantum operations
one can perform over a quantum system [1]. It is well known
that dilation theorems prove that a quantum channel can be
realized by means of a unitary transformation which couples
the system to an ancilla with fixed state preparation [2,3].
This “realization” theorem is clearly a powerful theoretical
instrument, but in a realistic scenario where the available
technology is limited it may give just a poor indication about
the best effective experimental realization of a desired quantum
channel.

In the same spirit adopted to characterize the universality
of fixed quantum gates for quantum computation [1], to
study programmable devices to achieve different quantum
channels [4–7] or measurements [8,9], and to perform the
purification of noisy quantum measurements [10], in this
paper we address the problem of optimally approximating
the action of a desired and unavailable quantum channel �

over a Hilbert space H by an operational approach, when
only a given set of quantum channels {�i} for H is at our
disposal for a single use. More specifically, we want to look
for the best convex combination among the channels of the
given set that most resembles the desired �, i.e., that is the
least distinguishable from � itself. This approach clearly has
an immediate experimental application, especially when the
quantum operations effectively feasible in a laboratory are
limited due to intrinsic restrictions, unavailable technology,
or even economic reasons. Further relevance of this approach
is due to the fact that a convex sum of quantum channels
offers the possibility of performing different experiments
followed by postprocessing of experimental data [11,12], when
the quantities of interest are linear with respect to quantum
operations.

We note that when the target channel is unital and the avail-
able set corresponds to all possible unitary transformations,
our problem is related to the quantification of the distance
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between unital maps and random-unitary channels [13] and to
the disproved “quantum Birkoff’s conjecture” [14,15].

II. OPTIMAL CONVEX APPROXIMATION
OF QUANTUM CHANNELS

The probability pdiscr of optimally discriminating between
two quantum channels �0 and �1 is quantified by the
expression [16]

pdiscr(�0,�1) = 1
2 + 1

4‖�0 − �1‖�, (1)

where ‖ · ‖� denotes the completely bounded trace norm [17]
(or, equivalently, the diamond norm [18]).

By defining the positive Choi operator [19] R� = (� ⊗
I )|η〉〈η|, which corresponds to the action of the map � over
one party of a maximally entangled vector |η〉 ≡ ∑d

n=1 |n〉 ⊗
|n〉 of H ⊗ H, with d = dim(H), let us recall the identity [16]

‖�0 − �1‖�
= max

Tr[ξ †ξ ] = 1
‖(I ⊗ ξ )(R�0 − R�1 )(I ⊗ ξ †)‖1, (2)

where ‖A‖1 denotes the trace norm of A, namely [20],

‖A‖1 = Tr
√

A†A =
∑

i

si(A), (3)

{si(A)} representing the singular values of A. In the case
of Eq. (2), since the operator inside the norm is Hermitian,
the singular values just correspond to the absolute value
of the eigenvalues. We also note that any operator ξ providing
the maximum in Eq. (2) corresponds to an optimal input state
(I ⊗ ξ )|η〉 for the discrimination [21]. We recall here also the
result in Refs. [23] and [24], namely, for arbitrary unitary maps
V ≡ V (·)V † and Z ≡ Z(·)Z† one has

‖V − Z‖� = 2
√

1 − r(Z†V )2, (4)

where r(Z†V ) denotes the distance from the origin of the
complex plane of the polygon whose vertices stay on the
circle of unit radius and correspond to the singular values
of the unitary matrix Z†V . For d = 2, since there are only
two eigenvalues, one easily finds by simple geometry that
r(U ) = 1

2 | Tr[U ]|.
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The problem of the optimal convex approximation of
a quantum channel is implicitly posed by the following
definition.

Definition. The optimal convex approximation of a quantum
channel � with respect to (w.r.t.) a given set of quantum
channels {�i} is given by

∑
i p

opt
i �i , where {popt

i } denotes
the vector of probabilities{

p
opt
i

} = arg min
{pi }

‖� − ∑
i pi�i‖�. (5)

The effectiveness of the optimal convex approximation is then
quantified by the {�i} distance

D{�i }(�) ≡ min
{pi }

‖� − ∑
i pi�i‖�, (6)

which provides through Eq. (1) the worst probability of
discriminating the desired channel � from any of the available
channels

∑
i pi�i . Clearly, our definition of optimal convex

approximation can be suitably changed by referring to any
other figure of merit that quantifies the distance between
quantum operations [25,26].

Since we have in mind an operational approach where the
channels in the set {�i} are experimentally available, we al-
ways assume that this set contains the identity map I. We note
that the formulation of the diamond norm as a semidefinite
program satisfying strong duality [27–29] allows its efficient
calculation. Moreover, the convexity of the norm itself allows
one to search for the minimum by means of standard software
of convex optimization [30,31].

From the convexity of the diamond norm, one obtains the
upper bound

D{�i }(�) � min
i

‖� − �i‖� = min
i

D�i
(�). (7)

On the other hand, since from Eq. (2) one has

‖�0 − �1‖� � 1

d

∥∥R�0 − R�1

∥∥
1, (8)

one obtains the lower bound

D{�i }(�) � 1

d
min
{pi }

‖R� − R∑
i pi�i

‖1. (9)

From the unitarily invariance of the diamond norm, note also
that for all unitary maps V and Z one has the symmetry

D{�i }(�) = D{V◦�i◦Z}(V ◦ � ◦ Z), (10)

where ◦ denotes the composition of maps. Clearly, if the set
itself {�i} is invariant, then

D{�i }(V ◦ � ◦ Z) = D{�i }(�), (11)

and the probabilities of the optimal convex approximation for
V ◦ � ◦ Z are just a permutation of those for �. This is the
case, for example, when the available channels are unitary
maps corresponding to a (projective) representation of some
elements of a group.

III. DISTANCE OF A UNITARY MAP
FROM COVARIANT CHANNELS

Let us consider the case where the set of available channels
is given by C = {I, 1

d2−1 (d Tr[·]I − I)}. The convex hull is

clearly given by the channels

Cp(ρ) = (1 − p)ρ + p

d2 − 1
(d Tr[ρ]I − ρ), (12)

with p ∈ [0,1]. Indeed, Eq. (12) describes all covariant
channels for SU(d), namely, the channels E satisfying

U †
gE[UgρU †

g ]Ug = E(ρ) (13)

for all ρ and unitary Ug ∈ SU(d) [32]. Note also that
Eq. (12) includes all depolarizing channels (for p ∈ [0,(d2 −
1)/d2]). For any orthogonal basis of unitaries {Vi} con-
taining the identity V0 ≡ I (and hence with Tr[Vi] = 0
and Tr[V †

i Vj ] = dδij for i,j = 1, . . . ,d2 − 1) we have also

C = {I, 1
d2−1

∑d2−1
i=1 Vi(·)V †

i }. This means that the optimal
convex approximation of a channel � with respect to
covariant channels can be achieved by the convex mix-
ture of the identity map and equally weighted orthogonal
rotations.

Let us now study the case of qubits, where the target map
� is a unitary transformation, which, up to a global phase, can
be parameterized as

U (α,β,γ ) =
(

cos αeiβ sin αeiδ

− sin αe−iδ cos αe−iβ

)
, (14)

with α ∈ [0,π/2] and β ∈ [0,2π ], and δ ∈ [0,2π ]. Denote,
as usual, the Pauli matrices as σ0 = I , σ1 = σx , σ2 = σy ,
and σ3 = σz. The convex hull of the set {I, 1

3

∑3
i=1 σi(·)σi}

provides all covariant channels as in Eq. (12), for d = 2. Of
course, the convex approximation of the map U(α,β,δ) =
U (α,β,γ )(·)U †(α,β,γ ) is rather poor, since the set is
highly constrained. However, we can give here a com-
plete analytical solution, and the physical interpretation of
the result is crystalline and exemplary for more intricate
situations.

Then, for qubits, the covariance distance of the unitary map
U(α,β,δ) is given by

DC[U(α,β,δ)] ≡ min
p∈[0,1]

‖U(α,β,δ) − Cp‖�. (15)

Since the difference of the Choi operators RU and RCp
can be

diagonalized over orthonormal Bell states [16], one obtains

‖U(α,β,δ) − Cp‖�

= 1

2

∥∥RU − RCp

∥∥
1

= 2

3
p +

√
16

9
p2 +

(
1 − 4

3
p

)
DI [U(α,β,δ)]2, (16)

where DI [U(α,β,δ)] = ‖U(α,β,δ) − I‖� = 2(1 − cos2 α

cos2 β)1/2. Equation (16) provides via Eq. (1) the
minimum-error discrimination between arbitrary unitary
channels and covariant channels. No maximization is
present in Eq. (16) because any maximally entangled state
can always be used as an input to achieve the optimal
discrimination, thus allowing one to choose ξ = I√

2
in

Eq. (2).
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FIG. 1. Optimal convex approximation of a unitary mapU(α,β,δ)
for qubits w.r.t. the set including the identity map and the map
1
3

∑
i σi(·)σi . The problem is solved by finding the closest covariant

channel to the unitary map in the diamond norm, as in Eq. (15).
The covariance distance DC[U(α,β,δ)] is a piecewise function of the
diamond norm x ≡ DI [U(α,β,δ)] = ‖U(α,β,δ) − I‖�, as given in
Eq. (17).

The minimization over p of Eq. (16) gives for the covariance
distance the piecewise function

DC[U(α,β,δ)]

=

⎧⎪⎨
⎪⎩

x, 0 � x � 1,
1
4 [x2 +

√
3x2(4 − x2)], 1 � x �

(
15+√

33
6

)1/2
,

1
3 (2 + √

16 − 3x2),
(

15+√
33

6

) 1
2 � x � 2,

(17)

where, for brevity, we posed x ≡ DI [U(α,β,δ)]. The mini-
mum is achieved for p = 0, p = 1

8 [3x2 −
√

3x2(4 − x2)], and
p = 1 in the three respective pieces. Being just a function
of DI [U(α,β,δ)], the covariance distance DC[U(α,β,δ)] is
independent of the parameter δ.

In Fig. 1 the covariance distance DC[U(α,β,δ)] for unitary
maps is plotted vs the diamond norm DI [U(α,β,δ)]. It is
quite easy to physically interpret the result: as long as the
unitary U (α,β,δ) is close enough to the identity (i.e., x � 1)
nothing can be done to approximate its action, whereas, for
U (α,β,δ) sufficiently far from the identity, the optimal convex
approximation is an equally weighted rotation by the three
Pauli matrices. In fact, in these two cases the upper bound
in Eq. (7) is saturated with equality. Finally, between these
two situations, one has to suitably weight the two previous
strategies with probability p = 1

8 [3x2 −
√

3x2(4 − x2)].

IV. PAULI DISTANCE OF A UNITARY MAP

For a set given by the identity map V0 ≡ I and (d2 − 1)
unitary maps Vi , with corresponding traceless and orthogonal
unitary operators, the optimal convex approximation of a quan-
tum channel � corresponds to the closest generalized Pauli
channel, namely, to a channel of the form

∑d2−1
i=0 piViρV

†
i ,

which provides the minimum Pauli distance:

DP (�) ≡ D{Vi }(�). (18)

FIG. 2. Optimal convex approximation of a unitary mapU(α,β,δ)
w.r.t. the set including the identity map and the three rotations by the
three Pauli matrices. The problem is solved by finding the closest
Pauli channel to the unitary map in the diamond norm. The solution
provides the Pauli distance DP [U(α,β,δ)], here plotted vs α and β,
for a fixed value of δ, namely, δ ≡ π/8.

Let us study in more detail the case of qubit channels
and consider � as the unitary map U(α,β,γ ), using again
the parametrization of Eq. (14). Exploiting the invariance
properties of the set of Pauli matrices, according to Eq. (11),
a number of symmetry relations for the Pauli distance can be
derived, which can be summarized as follows [33]:

DP [U(α,β,δ)] = DP
[
U

(
α,

π

2
± β,δ

)]
= DP

[
U

(
α,β,

π

2
± δ

)]
= DP

[
U

(π

2
− α,δ,β

)]
. (19)

For specific unitaries U (α,β,δ) we can find exact results for
the optimal convex approximation:

(i) for β = δ = 0 one has

DP [U(α,0,0)] = | sin 2α|, (20)

with pertaining optimal weights given by {popt
i } =

{cos2 α,0, sin2 α,0};
(ii) for α = 0 one has

DP [U(0,β,δ)] = | sin 2β|, (21)

with {popt
i } = {cos2 β,0,0, sin2 β};

(iii) for α = π/2 one has

DP [U(π/2,β,δ) = | sin 2δ|, (22)

with {popt
i } = {0, sin2 δ, cos2 δ,0}.

Note that in all the above specific examples the optimal
vector of probabilities has just two nonzero elements. More
generally, however, the optimal convex approximation requires
three or even all four σi operations. For generic values of α, β, δ
one can look for a numerical solution. As an example, in Fig. 2
we present the result of the optimal convex approximation
of the unitary maps U(α,β,π/8). The unitary maps which
are worst approximated correspond to α = β = δ = π

4 [along
with those related by the symmetries in Eqs. (19)], and their
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FIG. 3. Optimal convex approximation of a generalized damping
channel 
(q,γ ) w.r.t. the set including the identity map and the three
rotations by the three Pauli matrices. The problem is solved by finding
the closest Pauli channel to 
(q,γ ) in the diamond norm. The solution
provides the Pauli distance DP [
(q,γ )], here plotted vs q and γ .

Pauli distance equals 3
2 and is achieved for equal weights pi =

1
4 , namely, by the completely depolarizing channel.

V. PAULI DISTANCE OF A GENERALIZED
DAMPING CHANNEL

A generalized damping channel 
(q,γ ) for qubits is
described by the completely positive map


(q,γ )[ρ] = q(Aγ ρAγ + Cγ ρC†
γ )

+ (1 − q)(Bγ ρBγ + C†
γ ρCγ ), (23)

where Aγ = (1 0
0

√
1 − γ

), Bγ = (
√

1 − γ 0
0 1), and Cγ = (0

√
γ

0 0 ), with
0 � q, γ � 1. This channel is a mixture of an ampli-
tude damping channel (q = 1) and an amplitude ampli-
fication channel (q = 0), and thus q plays the role of
the temperature.

Let us look for the optimal convex approximation of

(q,γ ) w.r.t. the set of Pauli matrices. From Eq. (11) we note
that the identity σx ◦ 
(q,γ ) ◦ σx = 
(1 − q,γ ) provides the
symmetry relation DP [
(q,γ )] = DP [
(1 − q,γ )].

We have numerically solved the problem, and the results
are plotted in Fig. 3, where we show the Pauli distance of
DP [
(q,γ )] vs q and γ . The pertaining weights {popt

i } of the
optimal Pauli approximation are of the form {1 − 2p,p,p,0}.
On one hand, one has p

opt
1 = p

opt
2 , namely, the rotations by σx

and σy are equally weighted. In fact, this condition guarantees
that the convex approximation enjoys the same covariance
property of 
(q,γ ), i.e.,

V(φ) ◦ 
(q,γ ) = 
(q,γ ) ◦ V(φ) ∀φ, (24)

where V(φ) = eiφσz (·)e−iφσz denotes the rotation map around
σz. On the other hand, the additional result p

opt
3 = 0 stems

from the fact that any phase rotation by σz would make the
resulting Pauli channel more distinguishable from 
(q,γ ),
which instead preserves the phase of the off-diagonal matrix
elements of quantum states. We have numerical evidence
that the optimal probability satisfies p

opt
1 � γ

4 , along with the

FIG. 4. Optimal convex approximation of a generalized damping
channel 
(0.7,γ ) vs the parameter γ , with respect to the set of Pauli
channels. The Pauli distance DP [
(0.7,γ )] is plotted as the solid line;
the upper and lower bounds given by Eq. (25), by the dashed lines.

following bounds for the Pauli distance:

γ |1 − 2q| � DP [
(q,γ )] � 1
2 [γ |1 − 2q| + f (q,γ )],

(25)

with the function f (q,γ ) given in Eq. (A6) in the Appendix,
where in fact these bounds are proved.

In Fig. 4 we plot the Pauli distance for the channel 
[0.7,γ ]
vs the parameter γ , along with the upper and lower bounds. It
is apparent that these bounds are tighter for decreasing values
of γ , and the upper bound is indeed very good.

VI. CONCLUSIONS

Let us conclude our paper with the following observations.
Imagine that we want to approximate N parallel uses of a map
� acting on an (unknown) N -partite quantum state, and we
have at our disposal a set of maps {�i} with which we can act
independently on each subsystem. The optimal convex approx-
imation in this case provides the distance D{⊗N

j=1�ij
}(�⊗N ).

Since obviously the convex hull of {⊗N
j=1�ij } contains all the

N -fold tensor products ⊗N
j=1(

∑
i pij �i), one has

D{⊗N
j=1�ij

}(�
⊗N ) � min

{pij
}

∥∥∥∥�⊗N − ⊗N
j=1

( ∑
i

pij �i

)∥∥∥∥
�

�
∥∥∥∥�⊗N −

( ∑
i

p
opt
i �i

)⊗N∥∥∥∥
�
, (26)

where {popt
i } denotes the vector of probabilities pertaining to

the optimal convex approximation of a single copy of the target
map �. The interesting fact is that generally both inequalities
in Eq. (26) can be strict, and a simple explicit example is
provided in the following.

Consider the unitary map U corresponding to the phase
rotation

U =
(

ei π
6 0

0 e−i π
6

)
(27)

and its convex approximation w.r.t. {I,Z}, whereZ = σz(·)σz.
Thus, according to Eq. (21), the optimal convex approximation
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is the closest dephasing channel �(p) = pI + (1 − p)Z toU ,
and one has

D{I,Z}(U) =
√

3

2
, (28)

with corresponding optimal weight popt = 3
4 . The diamond

norm for the two-fold tensor product can be evaluated as

‖U⊗2 − �(3/4)⊗2‖� � 1.314. (29)

A tiny improvement is found by looking for the closest tensor
product of dephasing channels as

min
q1,q2∈[0,1]

‖U⊗2 − �(q1) ⊗ �(q2)‖� � 1.312, (30)

with optimal weights q
opt
1 = q

opt
2 � 0.77. By allowing correla-

tions, a larger improvement is obtained by the optimal convex
approximation, and one has

D{I⊗I,Z⊗I,I⊗Z,Z⊗Z}(U⊗2)

= min
{pij }

‖U⊗2 − (p00I ⊗ I + p10Z ⊗ I

+p01I ⊗ Z + p11Z ⊗ Z)‖�
� 1.281, (31)

where the optimal weights are given by p
opt
00 � 0.60, p

opt
10 =

p
opt
01 � 0.20, and p

opt
11 = 0. The resulting optimal convex

approximation is obviously a channel with correlated uses.
The first inequality in Eq. (26) comes from the fact that

the introduction of correlations in the approximating map can
be beneficial even if the target map is indeed the product of
independent maps (as happens, for example, in the optimal
cloning of quantum states [34]). The second inequality is
due to the fact that the distance ‖�0 − �1‖� quantifying
the distinguishability of two channels is not additive or
multiplicative when considering multiple copies, namely, we
clearly only know that ‖�0 − �1‖� � ‖�⊗N

0 − �⊗N
1 ‖�. This

also implies that we do not have a direct expression for the
scaling with N of the distance between a quantum channel
and its convex approximations. The results related to the
quantum Chernoff bound for quantum states [35,36], suitably
generalized to the case of quantum channels might be useful

for a systematic study of the scaling of the optimal convex
approximations with the number of uses.

APPENDIX: PROOF OF THE BOUNDS IN EQ. (25)

Let us consider the use of input state |0〉 or |1〉 for discrimi-
nating a generalized amplitude damping channel 
(q,γ ) from
a Pauli channel P = ∑3

i=0 piσi(·)σi . Then the diamond norm
is bounded as

‖
(q,γ ) − P‖� � ‖(
(q,γ ) − P)|u〉〈u|‖1 (A1)

for u = 0,1. A straightforward calculation gives

‖(
(q,γ ) − P)|0〉〈0|‖1 = 2|γ (1 − q) − (p1 + p2)|, (A2)

‖(
(q,γ ) − P)|1〉〈1|‖1 = 2|γ q − (p1 + p2)|. (A3)

Then the Pauli distance DP [
(q,γ )] of the damping channel
can be bounded as

DP [
(q,γ )]

≡ min
{pi }

‖
(q,γ ) − P‖�

� min
{pi }

max{2|γ (1 − q) − (p1 + p2)|,2|γ q − (p1 + p2)|}
= γ |1 − 2q|,

where the minimum is achieved for p1 = p2 = γ

4 . This proves
the lower bound in Eq. (25).

The upper bound can be simply obtained by choosing the
Pauli channelPγ with p0 = 1 − γ

2 , p1 = p2 = γ

4 , and p3 = 0.
Then, obviously,

DP [
(q,γ )] � ‖
(q,γ ) − Pγ ‖�. (A4)

The diamond norm in Eq. (A4) can be explicitly evaluated as

‖
(q,γ ) − Pγ ‖� = 1
2 [γ |1 − 2q| + f (q,γ )], (A5)

with

f (q,γ )

= {8(1−γ ) − 4(2 − q)
√

1−γ + γ 2[2 − 4q(1 − q)]}1/2.

(A6)
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