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Quantum centrality testing on directed graphs via PT -symmetric quantum walks
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Various quantum-walk-based algorithms have been proposed to analyze and rank the centrality of graph
vertices. However, issues arise when working with directed graphs: the resulting non-Hermitian Hamiltonian
leads to nonunitary dynamics, and the total probability of the quantum walker is no longer conserved. In
this paper, we discuss a method for simulating directed graphs using PT -symmetric quantum walks, allowing
probability-conserving nonunitary evolution. This method is equivalent to mapping the directed graph to an
undirected, yet weighted, complete graph over the same vertex set, and can be extended to cover interdependent
networks of directed graphs. Previous work has shown centrality measures based on the continuous-time quantum
walk provide an eigenvectorlike quantum centrality; using the PT -symmetric framework, we extend these
centrality algorithms to directed graphs with a significantly reduced Hilbert space compared to previous proposals.
In certain cases, this centrality measure provides an advantage over classical algorithms used in network analysis,
for example, by breaking vertex rank degeneracy. Finally, we perform a statistical analysis over ensembles of
random graphs, and show strong agreement with the classical PageRank measure on directed acyclic graphs.
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I. INTRODUCTION

Quantum walks, the quantum analog of the classical random
walk, were first introduced by Aharonov et al. [1] in his
seminal paper. Since then, they have become an important tool
in the field of quantum computation and quantum information
theory, enabling the creation of quantum algorithms faster than
their classical counterparts [2–10], finding use in modeling
complex quantum dynamical systems (such as photosynthesis
and electron transport [11–14]), and providing a universal
method of quantum computation [15,16]. This is due, in
part, to the markedly differing behavior of the quantum walk;
evolving as per the Schrödinger equation, the quantum walk
is a time-reversible rather than a diffusive Markovian process.
Coupled with inherent quantum effects such as superposition,
interference, and quantum correlations, quantum walks have
therefore become an integral tool in linking network analysis
and modeling with the problem-solving potential of quantum
computation.

One disadvantage, however, of the quantum walk is the
condition of unitarity due to the quantum nature of the
walkers. As such, the standard quantum walk is unable to
model or analyze directed network structures, without either
(a) resulting in nonunitary dynamics or (b) modifying the
framework. This serves as a particular hindrance in extending
established quantum algorithms (e.g., quantum search, cen-
trality measures, graph isomorphism) and quantum dynamical
models (such as transport of electrons or excitons) to systems
with directions or biased potentials. Compare this to a classical
random walk, where as long as the transition matrix remains
stochastic, directed networks pose no problem. Consequently,
various workarounds have been proposed for dealing with this
nonunitary behavior, for example, Szegedy quantum walks
[10,17] and open-quantum walks [17,18]. Unfortunately, there
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are numerous downsides to these approaches, each requiring a
significantly expanded Hilbert space, while not guaranteeing
probability conservation of the system under study or muting
the effect of quantum behavior (due to environmental dephas-
ing and loss in the open-quantum walk).

An alternative solution to this issue arrives in the form
of PT symmetry. First discovered by Bender and Boettcher
[19], PT symmetry started off as a simple curiosity (the
appearance of non-Hermitian Hamiltonians that exhibit a real
eigenspectra), thus allowing nonunitary probability conserva-
tion via a redefinition of the Hilbert space inner product. This
was attributed to parity-time symmetry of the non-Hermitian
Hamiltonian, and over time was generalized to allow for
non-Hermitian Hamiltonian symmetry under a combination
of any linear and nonlinear operators [19–23]. Simultaneously,
PT -symmetric Hamiltonians were finding use in theoretical
models of observed and predicted phenomena in condensed
matter [24], quantum field theory [25,26], and being observed
and implemented in numerous optical experiments [27–30],
while older non-Hermitian studies in condensed matter [31]
and nuclear physics [32] have been reformulated in the
PT -symmetry framework [33]. Recently, PT symmetry has
been used to model directed one-dimensional discrete-time
quantum walks (DTQWs) [34], and considered in the case of
continuous-time quantum walks (CTQWs) [35].

In this work, we present a rigorous framework for PT -
symmetric CTQWs, extending the formalism of Salimi and
Sorouri [35] to ensure the initial quantum state vector is
preserved. This is then broadened to the cases of multiparticle
systems and interdependent networks. By expanding on the
work of [36], in which the CTQW was shown to provide
an eigenvectorlike centrality measure for the quantum realm,
we are then able to utilize the PT -symmetric CTQW to
measure vertex centrality in several directed graph examples.
We show that our centrality scheme compares well to the
classical PageRank algorithm [37] in the case of directed
acyclic graphs (DAGs) and in some cases even breaks the
vertex rank degeneracy characterized by the PageRank.
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Unlike previous quantum centrality measures [10,17,18],
for a graph of N vertices this scheme requires a Hilbert space
of dimension N (compare this to the Szegedy quantum-walk-
based PageRank scheme, which requires an N2-dimensional
Hilbert space), and without the classical decoherence re-
quired for open-quantum systems. Furthermore, we show that
this formalism is equivalent to considering an undirected,
yet weighted, complete graph with self-loops, providing a
structural interpretation that may lead to simple experimental
implementation.

This paper is structured as follows. In Sec. II, we detail
the standard CTQW, and briefly discuss the issues with
extending this to directed graphs. A brief introduction to the
PT symmetry and pseudo-Hermitian formalism is presented
in Sec. III, tailored towards a quantum walker application.
In Sec. IV, we introduce our framework for PT -symmetric
continuous-time quantum walks, and discuss how this can
be interpreted as a mapping to a weighted and undirected
CTQW on a complete graph; the framework is then extended
to multiparticle systems and interdependent networks. A
potential application, network centrality, is presented in Sec. V,
and a statistical analysis performed to verify its performance
over an ensemble of randomly generated Erdős-Rényi and
scale-free graphs. Finally, our conclusions are provided in
Sec. VI.

II. CONTINUOUS-TIME QUANTUM WALKS

Consider an arbitrary undirected graph G(V,E), composed
of vertices j ∈ V and edges (i,j ) ∈ E. The adjacency matrix
of G is then defined as

Aij =
{

1, (i,j ) ∈ E

0, (i,j ) /∈ E.
(1)

For a continuous-time quantum walk on graph G, the Hamil-
tonian is given by the discrete Laplacian (or graph Laplacian)
of the adjacency matrix:

Hij =
(∑

k

Aik

)
δij − Aij . (2)

To find the time evolution of the walker, we solve the
Schrödinger equation, assuming for simplicity atomic units
(me = e = h̄ = 1)

i
d

dt
|ψ(t)〉 = H |ψ(t)〉 , (3)

which has the formal solution

|ψ(t)〉 = e−iH t |ψ(0)〉 . (4)

Note that the complex-valued state vector |ψ(t)〉 =∑
j aj (t) |j 〉, where aj (t) = 〈j |ψ(t)〉 ∈ C represents the prob-

ability amplitude of the walker being found at node j at
time t , with |aj (t)|2 = | 〈j |ψ(t)〉 |2 the resulting probability.
Unlike discrete-time formulations of the quantum walk, in
which probability amplitudes can only transition between
adjacent (or “local”) vertices at each time step, the CTQW
is a global process. That is, it is possible for probability
amplitude to transition to nonadjacent vertices in the graph
at each infinitesimal time step �t .

As the adjacency matrix A is real and symmetric, it is a
Hermitian matrix, and it is easy to see from Eq. (2) that H must
also be Hermitian. It therefore follows that the time-evolution
operator U = e−iH t is unitary (UU † = I ), guaranteeing that
the norm of |ψ(t)〉 is conserved under a continuous-time
quantum walk, as required.

Let us now modify G so that it is a directed graph, that
is, the edge set (i,j ) ∈ E is now described by an ordered pair
of vertices. As the adjacency matrix is no longer symmetric
(Aij �= Aji ∀ i,j ), the Hamiltonian H is no longer Hermitian,
and thus we no longer have unitary time evolution (UU † �= I ).
As a consequence, the norm squared of the quantum state is
no longer conserved,

〈ψ(t)|ψ(t)〉 = 〈ψ(0)|U †U |ψ(0)〉 �= 〈ψ(0)|ψ(0)〉 (5)

and may in fact grow or decay exponentially. Various modifi-
cations proposed for dealing with this nonunitary behavior
(for example, Szegedy quantum walks [10,17] and open-
quantum walks [17,18]) require a significantly expanded
Hilbert space, resulting in considerable resource overhead in
physical implementation.

III. PT SYMMETRY

While non-Hermitian Hamiltonians with complex eigenval-
ues result in exponentially growing or decaying time evolution,
a wide variety of non-Hermitian Hamiltonians have been found
to possess real eigenvalue spectra. It was first noted by Bender
and Boettcher [19] that particular non-Hermitian Hamiltonians
with real spectra exhibited PT symmetry, that is,

[H,PT ] = 0, (6)

whereP : (x̂,p̂) → (−x̂, − p̂) is the parity transformation op-
erator and T : (x̂,p̂) → (x̂, − p̂) the time reflection operator
satisfying {T ,i} = 0 (antilinearity) [19,38]. On the basis of this
observation, it was posited that invariance of a Hamiltonian
under PT transformations provides a more general condition
for the reality of eigenspectra than simply Hermiticity. Im-
mediately, research into PT -symmetric Hamiltonians found it
was not so clear cut; due to the antilinearity of the PT operator,
a PT -invariant Hamiltonian may still undergo spontaneous
symmetry breaking, leading to complex-conjugate pairs of
eigenvalues [39,40]. Furthermore, although the existence of
PT symmetry is a sufficient condition for real spectra, it is not
necessary. This same property can be found in Hamiltonians
not exhibiting PT symmetry, thus failing to account for
the existence of all non-Hermitian Hamiltonians with real
eigenspectra.

An alternative framework was put forward by Mostafazadeh
[20]. Denoted pseudo-Hermiticity, it was shown that for
all diagonalizable non-Hermitian Hamiltonians exhibiting a
real eigenspectra, there exists a positive-semidefinite linear
operator V = η†η such that

H † = V HV −1. (7)

Additionally, it was proven that every PT -symmetric and di-
agonalizable Hamiltonian is pseudo-Hermitian [20]. Coupled
with the fact that V = I corresponds to the case of Hermitian
H , it was claimed that the pseudo-Hermiticity framework is
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the correct generalization of Hermiticity to non-Hermitian
Hamiltonians.

Subsequent research has further explored the connec-
tions and similarities between PT symmetry and pseudo-
Hermiticity [21], with a flurry of papers released proclaiming
the supremacy of one or the other, in the constant struggle to
be seen as the more general of the two. Of particular note,
it has been shown that even though the pseudo-Hermitian
similarity transform is decidedly linear, pseudo-Hermiticity is
a necessary and sufficient condition for H to admit antilinear
symmetry [41–43]; i.e., the condition of pseudo-Hermiticity is
equivalent to the condition [H,�] = 0, where � is an antilinear
invertible or involutory operator. On this basis, one can
conclude that any time-reversal-invariant Hamiltonian belongs
to the class of pseudo-Hermitian Hamiltonians, although the
converse is not true, as � is not always guaranteed to be T .

These two competing frameworks were finally reconciled
by Bender and Mannheim [44], who introduced the concept of
generalized PT symmetry; here, P represents any linear oper-
ator (not just parity), and likewise T represents any antilinear
operator; the chosen operators P and T need not commute.
This generalized PT -symmetry condition is necessary and
sufficient for reality of the characteristic equation

|H − λI | = 0, (8)

which results in real eigenvalues if PT and H are simulta-
neously diagonalizable, and complex-conjugate pairs if not.1

Thus, a Hamiltonian with a real eigenspectra necessarily
displays (generalized) PT symmetry, regardless of its diag-
onalizability, providing the generalization of Hermiticity so
sought after in the original parity-time and pseudo-Hermiticity
frameworks. From here on in, use of the term “PT symmetry”
will refer to generalized PT symmetry.

Under this new, more general, framework, pseudo-
Hermiticity exists as a subset of PT symmetry [22,44], and has
been expanded to include cases where H is nondiagonalizable
[43]; in such cases, it is no longer possible to satisfy the
pseudo-Hermiticity similarity transform with a linear operator
V that is positive semidefinite, leading to spontaneous sym-
metry breaking and complex-conjugate pairs of eigenvalues.
Moreover, Bender and Mannheim [44] provide a criteria to
determine whether a positive semidefinite V exists for known
PT -symmetric Hamiltonians.2 In the following section, we
will briefly outline the pseudo-Hermitian operator framework,
and provide a method for determining V = η†η in cases where
there is no spontaneous PT -symmetry breaking.

Let H be a non-Hermitian matrix. It is pseudo-Hermitian
(and thus PT symmetric), if it is related by a similarity

1This is an example of spontaneous PT -symmetry breaking. Even
though a Hamiltonian may display PT invariance (i.e., [H,PT ] = 0),
the eigenstates of H , denoted |φn〉, are not necessarily simultaneously
eigenstates of PT , due to the antilinearity of the PT operator. If this is
the case, then the eigenspectrum is composed of complex-conjugate
pairs of eigenvalues, and PT |φn〉 provides the eigenstates of PT .

2If [C,PT ] = 0 ∀ C such that C2 = 1 and [C,H ] = 0, then there
exists a positive-semidefinite linear operator V = CP such that
V HV −1 = H †.

transform to a Hermitian matrix H̃ ,

H̃ = ηHη−1, (9)

where η is frequently referred to in the literature as the pseudo-
Hermitian operator or metric. Without loss of generality,
we assume η is an Hermitian operator (η = η†). Due to the
properties of a similarity transform, the eigenvalues of H will
be the same as H̃ and necessarily real. Taking the conjugate
transpose of this result, we get

H̃ † = (η−1)†H †η† = η−1H †η. (10)

Since H̃ is Hermitian, η−1H †η = ηHη−1, and thus a pseudo-
Hermitian matrix must satisfy the following similarity trans-
form with its conjugate transpose:

H † = η2Hη−2. (11)

Rewriting this in the form η2H = H †η2, note that the right-
hand side is simply the Hermitian conjugate of the left-hand
side. This suggests that the following redefinition of the inner
product,

〈. . . | . . .〉η := 〈. . . |η2| . . .〉 , (12)

should be sufficient to conserve the system’s probability.
Indeed, by using the Schrödinger equation, we see that this is in
fact the case when working with pseudo-Hermitian operators:

d

dt
〈ψ(t)|ψ(t)〉η =

〈
d
dt

ψ(t)

∣∣∣∣η2|ψ(t)〉 + 〈ψ(t)|η2

∣∣∣∣ d
dt

ψ(t)

〉
= 〈ψ(t)|iH †η2|ψ(t)〉 − 〈ψ(t)|η2iH |ψ(t)〉
= i 〈ψ(t)|(H †η2 − η2H )|ψ(t)〉
= 0.

As Hermitian matrices are always diagonalizable by their
unitary eigenbasis (H̃ = P	P † where P −1 = P †), it follows
from the similarity relation (9) that pseudo-Hermitian matrices
must also be diagonalizable:3

H = η−1H̃η = (η−1P )	(P †η) = (P †η)−1	(P †η).

Diagonalizable matrices must admit a biorthonormal eigenba-
sis [45]

H |ψj 〉 = λj |ψj 〉 , (13)

H † |φj 〉 = λj |φj 〉 , j = 1,2, . . . ,n (14)

where 〈φi |ψj 〉 = δij and λj ∈ R due to pseudo-Hermiticity.
The completeness relation is given by

I =
∑

j

|ψj 〉 〈φj | . (15)

By applying the pseudo-Hermiticity relation [Eq. (11)] to
the biorthonormal eigenvector equations, we can deduce a
method of constructing η. For instance,

H † |φj 〉 = η2Hη−2 |φj 〉 = λj |φj 〉 . (16)

3In fact, solving this equation allows you to find an expression for
η in terms of the left eigenvectors of H , 〈φj |, and the eigenvectors of
H̃ , |ψ̃j 〉: ηij = ∑

k |ψ̃k〉i 〈φj |k .
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Premultiplying both sides by η−2,

H (η−2 |φj 〉) = λj (η−2 |φj 〉), (17)

it can be seen that

|ψj 〉 = η−2 |φj 〉 ⇔ |φj 〉 = η2 |ψj 〉 . (18)

Hence, η acts to transform between the pseudo-Hermitian
and Hermitian basis, and η2 acts to transform between
the pseudo-Hermitian biorthonormal eigenbasis. It therefore
follows that the biorthonormal eigenbasis is the basis for the
inner product space defined by Eq. (12). Combining this result
with the biorthonormal completeness relation, we arrive at a
method of constructing the pseudo-Hermitian operator η:

η =
√

η2
∑

j

|ψj 〉 〈φj | =
√∑

j

|φj 〉 〈φj | (19)

and similarly

η−1 =
√∑

j

|ψj 〉 〈φj | η−2 =
√∑

j

|ψj 〉 〈ψj |. (20)

Since we have defined V = η2, it follows that

V =
∑

j

|φj 〉 〈φj | ⇔ V −1 =
∑

j

|ψj 〉 〈ψj | . (21)

Further, as V is positive semidefinite, we can be assured that
the square-root function applied to the operators in Eqs. (19)
and (20) is well defined, albeit admitting multiple solutions.
For consistency, we will choose η to be the principal square
root, the unique positive-semidefinite square root of V .

So, to briefly summarize, H is necessarily pseudo-
Hermitian (and consequently PT symmetric) if it satisfies
any one of the following equivalent conditions:

(1) H is similar to a Hermitian matrix. There exists a
Hermitian operator η and a Hermitian matrix H̃ such that
H̃ = ηHη−1.

(2) H is similar to its own Hermitian conjugate. There
exists a positive Hermitian operator η such that H † = η2Hη−2.

(3) H has real eigenvalues and is diagonalizable. Note
that a matrix is diagonalizable if and only if it has n linearly
independent eigenvectors [45].

IV. PSEUDO-HERMITIAN CONTINUOUS-TIME
QUANTUM WALKS

First introduced by Salimi and Sorouri [35], pseudo-
Hermitian continuous-time quantum walks take advantage of
the pseudo-Hermitian structure of various graphs in order
to implement directed quantum walks. In their study, the
transition probability of the pseudo-Hermitian CTQW at
vertex j at time t is defined to be

Pj (t) = | 〈j |ηe−iH t |ψ(0)〉 |2. (22)

Note that this does not preserve the initial state;

Pj (0) = | 〈j |η|ψ(0)〉 |2 �= | 〈j |ψ(0)〉 |2. (23)

Thus, if |ψ(0)〉 is chosen to be an equal superposition over
all vertices, this will not be reflected in the quantum walk at
time t = 0, making this definition unsuitable for algorithms

such as centrality testing and graph isomorphism. Thus, rather
than utilize their implementation, we present an alternative
formulation.

As our aim is to experimentally produce a pseudo-
Hermitian CTQW for network analysis, rather than redefine
the Hilbert space inner product as per Eq. (12), the inner
product will not be modified. Instead, we have three options
available:

(A) No modification: implement the time-evolution oper-
ator using the normal framework for the CTQW, U = e−iH t ,
with no redefinition of the inner product. This results in a
nonunitary and non-probability-conserving time evolution, but
the pseudo-Hermiticity of the system ensures the norm squared
of the quantum walk wave function will just oscillate with no
exponential growth and decay.

(B) Modify the time-evolution operator: the nonunitary
time-evolution operator from (A) is instead modified as
follows:

Ũ (t) = ηU (t)η−1 = ηe−iH tη−1, (24)

where Ũ (t) is unitary due to the pseudo-Hermitian similarity
transform of the matrix exponential. This reflects the under-
lying directional structure of the graph, while allowing for
probability conservation. Note that while the product is unitary,
η and U (t) are nonunitary matrices.

(C) Modify the Hamiltonian: in this approach, the pseudo-
Hermitian Hamiltonian is modified via similarity transform to
make it Hermitian,

Ũ (t) = e−iH̃ t = e−iηHη−1t . (25)

This preserves the directional structure of the graph, while
allowing us to use the standard CTQW framework. Further-
more, it has the potential to be implemented experimentally
via quantum simulation.

Note that options (B) and (C) are equivalent: it is only their
resulting experimental implementations which would differ.
From here on, the modified CTQW walk outlined in (B) and
(C) will be referred to as the η-CTQW, to distinguish it from
the standard nonunitary CTQW in (A).

FIG. 1. Three-vertex directed graph.
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FIG. 2. Vertex squared norm vs time (arbitrary unit) for the
nonunitary CTQW on the directed graph Fig. 1, with the walker ini-
tially in an equal superposition of vertex states |ψ(0)〉 = 1√

3

∑
j |j〉.

Vertices 1 and 2 have equal norm squared (blue, dashed line), with
a higher time average than vertex 3 (red, dotted line). The squared
norm of the total system is given by the black, solid line.

A. Three-vertex directed graph

Consider the three-vertex graph in Fig. 1. Its Hamiltonian
is found by calculating the graph Laplacian

H =
⎡
⎣ 1 −1 −1

−1 1 −1
0 0 2

⎤
⎦. (26)

While not Hermitian (H † �= H ), the eigenvalues (λ = 0,2,2)
are all real and the eigenvectors are linearly independent; thus,
H is PT symmetric and pseudo-Hermitian.

1. Standard CTQW (non-probability-conserving)

Solving the Schrödinger equation for the standard CTQW
(Fig. 2), we find that although there is no exponential growth
or decay of the squared norm of the wave function (due to the
pseudo-Hermiticity), nevertheless, the squared norm oscillates
and is not conserved.

In order to experimentally implement this CTQW, we
wish to decompose the time-evolution operator such that
the time dependence is restricted to a single diago-
nal unitary matrix. Diagonalizing H yields the following
decomposition:

U (t) = 1

2

⎡
⎣1 −1 −1

1 0 1
0 1 0

⎤
⎦
⎡
⎣1 0 0

0 e−2it 0
0 0 e−2it

⎤
⎦
⎡
⎣ 1 1 1

0 0 2
−1 1 −1

⎤
⎦.

(27)

Note that while the diagonal matrix is unitary, the two
outer matrices are nonunitary, resulting in a nonunitary time-
evolution operator U (t).

FIG. 3. Vertex probability vs time (arbitrary unit) for the pseudo-
Hermitian η-CTQW on the directed graph Fig. 1, with the walker ini-
tially in an equal superposition of vertex states |ψ(0)〉 = 1√

3

∑
j |j〉.

Vertices 1 and 2 have equal probability (blue, dashed line), with
a higher time average than vertex 3 (red, dotted line). The total
probability of the system is given by the black, solid line.

2. η-CTQW (probability conserving)

By calculating the biorthonormal eigenbasis, we can derive
the pseudo-Hermitian operator η of the graph

η = 1

6

⎡
⎣ 3 + 2

√
2 −3 + 2

√
2

√
2

−3 + 2
√

2 3 + 2
√

2
√

2√
2

√
2 5

√
2

⎤
⎦. (28)

Thus, the modified time-evolution operator is given by Ũ (t) =
ηe−iH tη−1 (see Fig. 3 for how this affects the dynamics of the
quantum walk).

In order to find a useful decomposition, we need to be able
to diagonalize ηHη−1; i.e.,

D = S†ηHη−1S. (29)

Once S is calculated, by similarity it can also be used to
diagonalize Ũ (t). This results in the following decomposition:

Ũ (t) = S

⎡
⎣1 0 0

0 e−2it 0
0 0 e−2it

⎤
⎦S†, (30)

where

S = 1

3

⎡
⎢⎣2 − 3√

2
− 1√

2
2 3√

2
− 1√

2

1 0 2
√

2

⎤
⎥⎦. (31)

Note that, unlike the non-probability-conserving case, here all
three of the decomposed matrices are unitary.

B. Alternative interpretation

To get an understanding of the transformation from the non-
probability-conserving CTQW to the pseudo-Hermitian η-
CTQW, let us have a look at the pseudo-Hermitian Hamiltonian

032305-5



J. A. IZAAC, J. B. WANG, P. C. ABBOTT, AND X. S. MA PHYSICAL REVIEW A 96, 032305 (2017)

for the three-vertex graph discussed above:

H̃ = ηHη−1 = 1

9

⎡
⎣10 −8 −4

−8 10 −4
−4 −4 16

⎤
⎦. (32)

Describing a discrete graph structure, the η-Hamiltonian H̃ is
symmetric, yet contains fractional quantities: we may interpret
H̃ as the Laplacian of a weighted, undirected complete graph
with self-loops. (Note that this is just one valid interpretation,
and is not unique.) In doing so, it is convenient to use a more
rigorous definition of the Laplacian more suited to weighted
graphs.

The oriented incidence matrix M of an undirected graph
G(V,E), with vertex set V = {v1,v2, . . . ,vN } and edge set
E = {e1,e2, . . . ,em}, is a n × m matrix associated with a
particular orientation of the edges of G. That is, each edge
ej is given a random direction. The oriented incidence matrix
is therefore defined as follows:

Mij =

⎧⎪⎨
⎪⎩

2, if edge ej is a self-loop incident on node vi

1, if edge ej is incident away from node vi

−1, if edge ej is incident towards node vi

0, if edge ej is not incident on node vi.

(33)

Note that, unlike the standard incidence matrix, columns of the
oriented incidence matrix not associated with self-loops must
sum to zero.

Once we have calculated the oriented incidence matrix
of a weighted graph, we can compute the N × N weighted
Laplacian using the following relationship:

L = MWMT , (34)

where W is a diagonal matrix containing the weights {wij }
associated with the edges {(vi,vj )}. For a complete graph over
N vertices with self-loops and arbitrary edge weighting, it
turns out we can compute the weighted Laplacian directly,

Lij =
{∑N

k=1 wik + 3wii, i = j

−wij , i �= j
(35)

where wij = wji and the size of the set {wij } is |E| = 1
2N (N +

1). Thus, if we have an N × N pseudo-Hamiltonian H̃ , then
solving H̃ = Lij provides the edge weighting

wij =
{

1
4

∑N
k=1 H̃ik, i = j

−H̃ij , i �= j.
(36)

That is, we can interpret the η-CTQW of a directed N -vertex
graph in terms of a standard CTQW on a undirected complete
graph with self-loops, and edge weights given by wij above.
The undirected edge weightings allows us to approximate the
directed dynamics we require.

For example, let us return to the three-vertex graph
examined previously. Using the pseudo-Hamiltonian of the
graph [Eq. (32)], we can find the edge weights wij via Eq. (36).
See Fig. 4 for the result.

C. Multiparticle η-CTQW

If we wish to extend the standard CTQW to simulate P

distinguishable particles on graph G, the Hamiltonian of the

FIG. 4. Performing an η-CTQW on the three-vertex directed
graph in Fig. 1 is equivalent to performing a standard CTQW on
the undirected edge-weighted graph shown above.

system is expanded to act on a NP Hilbert space, as follows:

H (P ) = H1 ⊕ H2 ⊕ · · · ⊕ HP + 
int, (37)

where Hj is the free-particle Hamiltonian of the j th particle
on graph G, 
int represents a potential interaction between the
particles, and ⊕ is the tensor or Kronecker sum defined by

An×n ⊕ Bm×m = An×n ⊗ Im×m + In×n ⊗ Bm×m. (38)

Note that the free-particle Hamiltonians are identical (H1 =
H2 = · · · = HP ), allowing this to be rewritten as

H (P ) = H⊕p + 
int. (39)

In the case of no interaction (
int = 0), then it is trivial
to show that if H is pseudo-Hermitian, then so is H (P ), with
pseudo-Hermitian operator η(P ) given by

η(P ) = η ⊗ η ⊗ · · · ⊗ η︸ ︷︷ ︸
P

= η⊗P , (40)

and η the pseudo-Hermitian operator of the single-particle
Hamiltonian H .

When 
int �= 0, then additional care must be taken; unlike
Hermitian matrices, the pseudo-Hermitian matrices are not
closed under addition, so H (P ) is no longer guaranteed to be
pseudo-Hermitian (this can easily be shown by counterexam-
ple).

D. Interdependent networks

Aside from the Cartesian product of graphs discussed
above, another method of combining graph structures are
interdependent networks. In the real world, very few networks
operate independently, instead interacting and depending on a
myriad of other networks [46,47]: examples include modeling
cascading failures between power grids, communication net-
works, and physiological and biochemical systems. As such,
being able to extend the pseudo-Hermitian CTQW to model
interdependent networks greatly expands the scope of the
framework. In this section, we will consider an interconnected
network of two pseudo-Hermitian graphs and determine the
properties that must be satisfied for the resulting network to
have guaranteed pseudo-Hermiticity.
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Let A1 and A2 refer to the adjacency matrices of two graphs
G1 and G2, respectively. The resulting interdependent network
Hamiltonian is constructed as follows:

A =
[
A1 B0

BT
0 A2

]
, (41)

where B0 is the adjacency matrix representing the edges
connecting the two sets of vertices V (A1) and V (A2). The
Hamiltonian of this graph, defined by Eq. (2), can then be
written as

H =
[ H1 −B0

−BT
0 H2

]
, (42)

where

(Hu)ij = (Hu)ij +
∑

k

(B0)ikδij , u ∈ {1,2} (43)

and H1 and H2 are the Hamiltonians of A1 and A2, respectively.
Theorem 1. The Hamiltonian of an interdependent network

of two graphs A1 and A2, with pseudo-Hermitian Hamiltonians
H1 and H2, respectively, will itself exhibit pseudo-Hermiticity
if the internetwork connections B0 are pseudo-Hermitian and
degree regular, and the commutation relations H1B0 = B0H2

and H2B
T
0 = BT

0 H1 are satisfied.
Proof. B0 is degree regular with degree c; thus,∑

k

(B0)ikδij = cδij ⇒ Hu = Hu + cI. (44)

If we decompose the Hamilton into the sum

H =
[
H1 0
0 H2

]
+
[

0 −B0

−BT
0 0

]
= A + B, (45)

we can now prove that the interdependent network Hamilto-
nian is always pseudo-Hermitian if the two components A and
B commute and are themselves pseudo-Hermitian.

Since H1 and H2 are pseudo-Hermitian, they are therefore
diagonalizable by matrices Qu:

	u = Q−1
u HuQu, (46)

where 	u are real diagonal matrices of eigenvalues. It follows
that

Q−1
u HuQu = Q−1

u (Hu + cI )Qu = 	u + cI. (47)

That is, H1 and H2 are simultaneously diagonalizable and
exhibit real eigenspectra, satisfying the criteria for pseudo-
Hermiticity. From here, it is trivial to show that A is
diagonalized as follows:

	A =
[
	1 + cI 0

0 	2 + cI

]
= Q−1

A AQA, (48)

where

QA =
[
Q1 0
0 Q2

]
(49)

and 	A is real.
As B0 is also pseudo-Hermitian, therefore, it is also diago-

nalizable with real eigenvalues: 	B0 = Q−1
B B0QB . Similarly

to above, we can use this result to diagonalize the matrix B:

	B =
[
	B0 0

0 −	B0

]
= QT

BBQB, (50)

FIG. 5. A pseudo-Hermitian interconnected network composed
of two four-vertex pseudo-Hermitian graphs (red and yellow, respec-
tively) connected via circulant interconnections (gray, dashed line).

where

QB = 1√
2

[
QB0 QB0

QB0 −QB0

]
(51)

and 	B is real.
It follows from the above analysis that if H1 and H2 are

pseudo-Hermitian, and the interconnections adjacency matrix
B0 is pseudo-Hermitian and degree regular, that the matrices
A and B are also pseudo-Hermitian.

To ensure that the sum A + B remains pseudo-Hermitian,
we can make use of the well-known property that commutating
diagonalizable matrices are simultaneously diagonalizable
[48]. This requires the additional constraint [A,B] = 0,
resulting in the following two conditions that must be
satisfied:

H1B0 = B0H2, (52a)

H2B
T
0 = BT

0 H1. (52b)

If these are both satisfied, then A and B must be simulta-
neously diagonalized by a matrix S:

H = A + B = S
(
PA	AP T

A + PB	BP T
B

)
S−1, (53)

where PA and PB are permutation matrices. From here, we
can see that the eigenvalues of H are contained in the set
of elements {λ1 ± λB0 + 1} ∪ {λ2 ± λB0 + 1} and thus are
necessarily real. Therefore, the interdependent network of
pseudo-Hermitian graphs, which commute with their inter-
connections, also exhibits pseudo-Hermiticity. �

An example of a pseudo-Hermitian interconnected network
in which the two graph Hamiltonians commute with the
interconnections is given in Fig. 5. Note that the above
theorem is not a necessary condition for interdependent
network pseudo-Hermiticity: examples can be constructed
where [A,B] �= 0, yet A + B remains diagonalizable and
pseudo-Hermitian. Nevertheless, this result provides a useful
method of constructing interdependent networks with guaran-
teed pseudo-Hermiticity.
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V. CENTRALITY TESTING

A. Centrality introduction

In the study of network structure, centrality measures
are an integral tool, allowing the determination and ranking
of graph nodes deemed more important to the structure
[37,49–54]. At its core, a graph centrality measure satisfies
the following properties:

(i) C : G(V,E) → R|V | is a function or algorithm that
accepts a graph as input, and returns a real valued, strictly
positive vector over the set of vertices V .

(ii) The highest values obtained correspond to vertices
deemed more “important” or “central” to the graph structure.

However, with this general definition comes several caveats.
First, note that no meaning has been attributed to vertices
with low centrality values; this is deliberate, as noise grows
successively larger for vertices beyond the topmost ranked
vertices [55]. As such, centrality measures convey very little
information regarding a majority of vertices; they are solely
for determining the most central nodes (ranking all the vertices
is more the domain of influence measures [56]). Second, what
constitutes “importance” is subjective, and depends on the
application or model to be analyzed, and how information
“flows” throughout the network [57].

To account for the numerous ways we may quantify
importance, various methods exist for measuring how central
or important particular vertices are in a network structure;
degree centrality, closeness centrality, eigenvector centrality,
PageRank centrality, to name a few. It is pertinent to note
that many of these centrality measures can be reformulated as
classical random walks. For instance, the degree centrality is
based on walks of length one, and is useful in models requiring
direct and immediate influence between adjacent nodes.
Moreover, it is trivial to show that the degree centrality is
proportional to the limiting distribution of a random walk [58].

Eigenvector centrality, on the other hand, is a useful
measure when considering long-term “indirect” influence
between vertices; if a vertex with low degree is adjacent to
a vertex with a high number of connections, the first vertex
will likewise have a high eigenvector centrality measure [57].
Based on the spectral properties of a graph, the eigenvector
centrality is defined by C

(ev)
j = vj , where v is the eigenvector

of the adjacency matrix with maximum eigenvalue [59].
Also referred to as the principal eigenvector, it is chosen to
ensure (via the Perron-Frobenius theorem, assuming that A is
irreducible) that the ranking C

(ev)
j remains strictly positive. It

has been shown by Bonacich [60] that

vj ∝
∑

i

∞∑
n=1

λ1−n(An)ij , (54)

where λ is the maximum (principal) eigenvalue. As (An)ij
represents the number of walks of length n between vertices i

and j , it can be seen that the eigenvector centrality performs
walks of all lengths, weighted inversely by length, from each
node. It should be noted that this result allows us to draw
interesting parallels with the CTQW; consider the CTQW
time-evolution operator for infinitesimal time dt :

U (t) = e−iHdt =
∞∑

n=0

1

n!
(−idt)nHn. (55)

That is, like the eigenvector centrality, the CTQW performs
walks of all lengths at each infinitesimal time step dt ,
weighted inversely by walk length. Thus, at the very least, the
CTQW may provide the means for an eigenvectorlike quantum
centrality measure.

Unfortunately, the classical eigenvector centrality can
provide ineffectual results when applied to directed graphs,
for a multitude of reasons. For example, vertices not in a
strongly connected component will be assigned an eigenvector
vertex centrality of 0, as A is no longer irreducible and the
Perron-Frobenius theorem is no longer valid. Furthermore,
“dangling nodes” (vertices or components with in-degree and
zero out-degree) found in directed acyclic subgraphs can result
in the eigenvector centrality “localizing” or accumulating at the
affected vertices [61,62]. Furthermore, in the case of directed
acyclic graphs, the eigenvector centrality provides no useful
centrality information whatsoever: the centrality measure of
every vertex is identically assigned to be zero.

To rectify these issues, a wide range of variations to
the eigenvector centrality have been proposed, including
PageRank and Katz centrality. Of these, PageRank is arguably
the most well known spectral centrality measure, due to its
use in the Google search engine [37]. Designed to take into
account directed networks, the PageRank improves on the
eigenvector centrality by modifying the adjacency matrix to
ensure stochasticity and irreducibility, while also introducing
a “random surfer effect,” a nonzero probability 1 − α (where
α ∈ [0,1]) that a walker at a vertex can transition to any other
adjacent or nonadjacent vertex. In practice, α is generally
chosen to be 0.85, providing a good compromise between
information flow via hyperlinks and the random surfer effect.
Note that, while a modification of the eigenvector centrality,
the PageRank’s use of a stochastic transition matrix conse-
quently allows it to be modeled in terms of a random walk of
length one at each time step.

Due to the close relationship between centrality measures
and classical measures, directed quantum walks provide
a natural starting point for exploring quantum centrality
algorithms. For example, the quantum PageRank algorithm
utilizes the discrete-time Szegedy quantum walk [10,17], while
the quantum stochastic walk (QSW) makes use of its hybrid
classical-quantum regime to rank centrality of directed graphs
[17,18]. However, both approaches have their drawbacks; both
require expanding the Hilbert space beyond that required for
a standard quantum walk, hindering practical implementation,
with additional classical decoherence suppressing quantum
behavior in the QSW. The CTQW also naturally lends itself
to centrality analysis, and may provide a quantum analog to
the eigenvector centrality, minus issues due to nonstochas-
ticity and nonirreducibility due to its quantum propagation.
Unfortunately, as the CTQW is not defined for directed and
non-Hermitian graphs, possible applications regarding spectral
centrality analysis has not been fully explored in the literature.
Fortuitously, the pseudo-Hermitian η-CTQW extends the
CTQW formalism to directed graphs, while preserving the
eigenspectrum of the original graph.

In this section, we propose a quantum centrality measure
based on the pseudo-Hermitian η-CTQW, which has the
advantage of a purely quantum propagation and smaller state
space than both the quantum PageRank and QSW.
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B. Proposed quantum scheme and examples

Taking a similar approach to the quantum PageRank, we
propose the following measure for assigning a centrality value
to vertex j on a directed graph represented by the pseudo-
Hermitian Hamiltonian H :

vj = lim
T →∞

1

T

∫ T

0

∣∣∣∣∣〈j | e−iηHη−1t

(
1√
N

∑
k

|k〉
)∣∣∣∣∣

2

dt. (56)

Note that this method simply requires a Hilbert space of
dimension N . This scheme will then be applied to the three-
vertex graph discussed previously.

First, consider the non-probability-conserving standard
CTQW walk in the previous section. As the pseudo-Hermitian
Hamiltonian preserves the graph eigenspectra, we expect the
resulting dynamics to reflect properties that can be classically
extracted from the spectra, such as vertex centrality. Thus,
one potential way of extracting this information is simply to
calculate the time average of the probability on each vertex,
and normalize it by the total probability time average.

Solving the Schrödinger equation for the unmodified
Hamiltonian evolving the initial state |ψ(0)〉 = 1√

3
(|1〉 + |2〉 +

|3〉), we get the exact solution

|ψ(t)〉 = 1√
6

√
5 − 3 cos(2t)(|1〉 + |2〉) + 1√

3
|3〉 , (57)

where

〈ψ(t)|ψ(t)〉 = 2 − cos(2t). (58)

The total probability has a time average over t = [0,π ] (one
period) of ∫ π

0
〈ψ(t)|ψ(t)〉 dt = 2π, (59)

therefore, calculating the time average of this result over t =
[0,π ]:

1

2π

∫ π

0
| 〈j |ψ(t)〉 |2dt = 5

12
〈j |1〉 + 5

12
〈j |2〉 + 1

6
〈j |3〉 .

(60)

That is, by this centrality measure, vertices 1 and 2 are ranked
equal first, followed by vertex 3.

Next, consider the probability-conserving η-CTQW case
Ũ (t) = ηe−iH tη−1. As we have an exact representation of η,
we are also able to solve for |ψ̃(t)〉 exactly:

|ψ̃(t)〉 = 1√
243

√
101 − 20 cos(2t)(|1〉 + |2〉)

+ 1√
243

√
41 + 40 cos(2t) |3〉 . (61)

Calculating the time average,

1

π

∫ π

0
| 〈j |ψ̃(t)〉 |2dt = 101

243
δj1 + 101

243
δj2 + 41

243
δj3. (62)

The numerical values of the CTQW and η-CTQW centrality
rankings have been tabulated in Table I, alongside the classical
PageRank (α = 0.85) and eigenvector centrality rankings.
Note that the two CTQW rankings strongly agree with the
classical PageRank and eigenvector rank. Furthermore, the

TABLE I. Centrality ranking of the vertices of three-vertex graph
(Fig. 1), using the classical PageRank method, the non-probability-
conserving pseudo-Hermitian CTQW, and the probability-conserving
pseudo-Hermitian CTQW (η-CTQW).

Eigenvector PageRank CTQW η-CTQW

1 0.5 0.475 0.416667 0.415638
2 0.5 0.475 0.416667 0.415638
3 0 0.05 0.166667 0.168724

numerical values of the two CTQW rankings only differ
by a maximum of about 1.23%, indicating that the pseudo-
Hermitian similarity transform preserves information regard-
ing vertex centrality in this particular example. A general
statistical analysis will be carried out in the subsequent section.

Let us now consider a four-vertex pseudo-Hermitian di-
rected graph, as shown in Fig. 6. Note that this graph is
composed of two sets of equivalent vertices: vertices 1 and
3 (in-degree = 2 and out-degree = 1), and vertices 2 and 4
(in-degree = 1 and out-degree = 2). Like the three-vertex
graph analyzed previously, the CTQW probability can also
be solved exactly, and thus the same method is applied to
determine the vertex centrality.

The results of the CTQW and η-CTQW centrality test can
be seen in Table II. In this case, both CTQW formulations
and the eigenvector centrality ranked vertices 1 and 3 above
vertices 2 and 4. Intuitively, this is perhaps expected, as vertices
1 and 3 have a greater in-degree and lower out-degree than
vertices 2 and 4, resulting in walker probability accumulating
on these two vertices. Interestingly, the classical PageRank
measure does not distinguish between these two sets of
vertices, as the limiting distribution of a (classical) random
walk on this graph results in a unitary distribution. The
agreement of the CTQW-based measures to the eigenvector
centrality, as opposed to the PageRank, lends further credence
to the suggestion that the CTQW measures centrality via a
similar process to the eigenvector centrality.

As a final example, we briefly examined a pseudo-
Hermitian interdependent network consisting of a four-vertex
directed graph and a three-vertex directed graph, connected
via complete interconnections (i.e., B0 = J ). The graph and
various centrality rankings of the vertices are shown in Fig. 7;

FIG. 6. Four-vertex directed graph.
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TABLE II. Centrality ranking of the four vertices of Fig. 6,
using the classical PageRank method, the non-probability-conserving
pseudo-Hermitian CTQW, and the probability-conserving pseudo-
Hermitian CTQW (η-CTQW).

Eigenvector PageRank CTQW η-CTQW

1 0.292893 0.25 0.386364 0.339192
2 0.207107 0.25 0.113636 0.160808
3 0.292893 0.25 0.386364 0.339192
4 0.207107 0.25 0.113636 0.160808

it can be seen that the pseudo-Hermitian η-CTQW centrality
ranking strongly agrees with the classical PageRank and
eigenvector results, with the only disagreement involving
the rankings of vertices 3 and 6, as well as 1 and 4 (both
display degeneracy in the classical measures), Fig. 7. Of
note, the η-CTQW does a better job of ranking the vertices
than the standard nonunitary CTQW in this case, perhaps
indicating that the pseudo-Hermitian CTQW, itself a mapping

FIG. 7. Top: interdependent network, consisting of a directed
four-vertex graph (red) connected to a directed three-vertex graph
(yellow) via complete interconnections (gray, dashed line). Above:
centrality ranking of the vertices, ordered from highest ranking to
lowest ranking vertex. Measures used include the classical PageRank
(black, solid line), the eigenvector centrality (blue, dashed line),
the standard CTQW (red, dotted line), and the pseudo-Hermitian
η-CTQW (green, dotted-dashed line).

TABLE III. Vigna’s τ rank correlation coefficient compared for
various classical (PageRank and eigenvector) and quantum (nonuni-
tary CTQW and pseudo-Hermitian η-CTQW) centrality measures
applied to the seven-vertex interdependent network in Fig. 7.

PageRank Eigenvector CTQW η-CTQW

PageRank 1.0 0.912 0.937 0.896
Eigenvector 0.912 1.0 0.896 0.906
CTQW 0.937 0.896 1.0 0.761
η-CTQW 0.896 0.906 0.761 1.0

of a directed graph to an undirected, yet weighted, complete
graph, provides a better overall picture of the vertex ranks.
In particular, the η-CTQW is the only ranking to break the
top-ranked tie seen in the other measures, assigning slightly
more importance to vertex 3 compared to vertex 6.

Another method of quantifying the correlation between the
various centrality methods is to calculate their rank correlation
coefficients. One such metric is Kendall’s rank correlation
coefficient, commonly referred to as Kendall’s τ coefficient
[63]. By counting the number of pairwise disagreements
between two ranked lists of length N , and dividing by
normalization factor

(
N

2

)
, Kendall’s τ may take values −1 �

τ � 1, where τ = 1 denotes perfect agreements between the
ranked lists, τ = 0 denotes no correlation, and τ = −1 denotes
perfect anticorrelation (i.e., one list is the reverse of the other).
In the field of centrality analysis, Kendall’s τ has become the
definitive metric [64–67], by means of its ubiquity, efficient
computability [68], and the fact that variants exist that take
into account ties [69]. Despite this, Kendall’s τ coefficient
is not particularly suited towards comparing centrality mea-
sures. Measures with highly correlated top-ranked vertices
may produce comparatively low τ values, as Kendall’s τ

equally weights all discordant pairs, regardless of where they
appear in the ranking. Recently, weighted modifications have
been proposed, specifically catered to comparing centrality
measures, which use a hyperbolic weighting function to more
heavily weight correlations of the top-ranked vertices. These
include the AP (average precision) correlation [70] and Vigna’s
τ correlation coefficient [71]. As Vigna’s τ further takes into
account ties, we will apply Vigna’s τ correlation coefficient to
analyze the results of Fig. 7.

The results of this analysis can be seen in Table III. All
compared centralities display very high correlation (τ � 0.8),
with the exception of the CTQW and η-CTQW, with a
correlation value of τ = 0.761 (still a significant result). This
is most likely due to the degeneracy seen in the CTQW
ranking, which is completely broken in the η-CTQW; these
resulting ties slightly lower the τ value, even though they
do not cause disagreeing rankings per se. Finally, note that
the η-CTQW achieves its highest correlation value with the
eigenvector centrality at τ = 0.906, edging out correlation
with the PageRank at τ = 0.896.

In these three examples, we have seen that the pseudo-
Hermitian CTQW preserves the vertex centrality information
from the original directed graphs, resulting in a vertex
rank identical (barring broken degeneracy) to the classical
PageRank. While these relatively small examples allow us
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to verify the results of the centrality ranking by intuitively
and qualitatively examining the graph structures by eye,
this analysis is not sufficient to ensure that the centrality
ranking proposed here generalizes to other PT -symmetric
graph structures. To do so, a statistical analysis featuring
randomly generated directed graphs is required.

C. Random directed networks

To investigate the reliability of the pseudo-Hermitian
CTQW on directed graphs, a statistical analysis will be
undertaken using randomly generated directed networks. Here,
we consider two classes of random networks: Erdős-Rényi
networks and scale-free networks.

A random Erdős-Rényi graph, denoted G(N,p), is com-
prised of N vertices with edges randomly distributed via a
Bernoulli distribution with probability p. For such a network,
the vertex degree distribution P (k) (the fraction of vertices
with degree k) is binomial in form,

P (k) =
(

N − 1
k

)
pk(1 − p)N−k−1, (63)

resulting in most vertices with degree close to np, the mean
number of connections [72,73]. In order to produce a PT -
symmetric directed graph satisfying the Erdős-Rényi degree
distribution, we take three approaches. First, we generate
numerous directed Erdős-Rényi graphs (with parameters N =
15, p = 0.3) using the Python software package NETWORKX
[74], and selecting from these 300 which satisfy pseudo-
Hermiticity. An example is presented in Fig. 8, alongside
a plot of the PageRank, nonunitary CTQW, and η-CTQW
centrality measures for the pictured example. In this particular
example, all three measures agree on the location of the top
two ranked vertices, with slight discrepancies for the remaining
vertices. Note that, from here onward, the classical eigenvector
centrality is no longer included as a comparison, as we can no
longer guarantee its performance; a majority of the graphs in
this and subsequent ensembles contain acyclic and nonstrongly
connected components that result in an eigenvector centrality
value of zero.

Our second approach to generating pseudo-Hermitian di-
rected Erdős-Rényi networks was motivated by computational
constraints with using NETWORKX, and a desire to generate
larger pseudo-Hermitian graphs in a slightly more systematic
way. Here, we first create an undirected graph of N vertices
with edges given by Bernoulli distribution with probability p.
We then upper triangularize the resulting adjacency matrix,
by setting everything below the diagonal to zero, in effect,
imbuing direction on every edge in a systematic fashion.
By restricting the adjacency matrix to be triangular, it is
trivial to see that the Hamiltonian will also be triangular, with
eigenvalues given by the diagonal elements of H , the set of
vertex in-degree:

λ = {deg−(vi)|i = 1, . . . ,N}, (64)

where deg−(vi) is a function returning the in-degree of vertex
vi . As such, we ensure a real eigenspectrum, and simply
restrict our random graph generator to output graphs with
diagonalizable Hamiltonians in order to guarantee pseudo-
Hermiticity. Note that, as the adjacency matrix is triangular,

FIG. 8. Top: randomly generated pseudo-Hermitian Erdős-Rényi
graph G(15,0.3), with bidirectional edges allowed. Above: centrality
ranking of the vertices, ordered from most central to least central
as per the classical PageRank (black, solid line). This is compared
to the nonunitary CTQW (blue, dotted line) and pseudo-Hermitian
η-CTQW (red, dashed line).

all graphs in this ensemble are directed acyclic graphs, and
thus the classical eigenvector centrality no longer produces
useful results (it assigns all vertices a centrality measure of
zero).

An example of a randomly generated pseudo-Hermitian
directed Erdős-Rényi graph using this method is shown in
Fig. 9, generated with parameters N = 25 and p = 0.3,
alongside the results of the PageRank and η-CTQW centrality
measures. It can be seen that the η-CTQW and the PageRank
strongly agree on the relative vertex rankings, identically
ranking the top four most central vertices, and satisfying the
same general trend thereafter. This indicates that the η-CTQW
continues to yield an admissible vertex centrality measure for
larger, randomly generated graphs than in the previous section.

In the above two methods of pseudo-Hermitian Erdős-
Rényi network generation, we are able to generate random
graphs with bidirectional edges (allowing information to
flow cyclically) and directed acyclic graphs, respectively.
While only the former will permit use of the eigenvector
centrality, the η-CTQW centrality algorithm may provide a
usable centrality measure over both classes. To get a better
understanding of how the η-CTQW centrality measure behaves
over directed graph structures, we therefore introduce a third
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FIG. 9. Top: randomly generated directed pseudo-Hermitian
Erdős-Rényi graph G(25,0.3), where every edge is directed. Above:
centrality ranking of the vertices, ordered from most central to
least central as per the classical PageRank (black, solid line).
This is compared to the nonunitary CTQW (blue, dotted line) and
pseudo-Hermitian η-CTQW (red, dashed line).

method of pseudo-Hermitian Erdős-Rényi network generation,
an intermediary between the two previously discussed classes.
Here, we generate pseudo-Hermitian Erdős-Rényi networks as
per our second (directed acyclic) approach, before introducing
one bidirectional edge to the structure. Due to this addition,
the overall graph is no longer directed acyclic, however, all but
one vertex form a directed acyclic subgraph.

Scale-free networks, compared to Erdős-Rényi networks,
exhibit a power law degree distribution of the form P (k) ∼
k−γ , due to a few very strongly connected vertices or
“hubs,” with a majority of vertices in the structure having
significantly lower degree [75,76]. As such, this makes them
well suited to modeling a wide array of physical systems
and networks with similar characteristics, for example, power
grids, the World Wide Web, social networks, and biochemical
molecules [77,78]. To generate random pseudo-Hermitian
scale-free graphs, we make use of the directed Barabási-Albert
algorithm: at each time step, a vertex with m directed edges
is introduced to the system, and preferentially attached to

existing vertices with higher degrees (with probability of being
connected to vertex i given by pi = ki/

∑
j kj ). This process

continues until we have a graph containing the required number
of vertices.

A fortunate side effect of the directed Barabási-Albert
algorithm is that if we choose all m edges introduced with
each additional vertex to be inward-pointing edges [resulting
in deg−(vi) = m ∀ i], then the graph is necessarily lower
triangular, leading to a Hamiltonian with real eigenspectrum
as given by Eq. (64). Similarly, if we choose all m edges
introduced with each vertex to be outward-pointing edges
[resulting in deg+(vi) = m ∀ i], the Hamiltonian will be upper
triangular and Eq. (64) continues to hold. Thus, like the Erdős-
Rényi case described previously, to ensure pseudo-Hermiticity
we simply ensure the resulting randomly generated scale-
free Hamiltonian is diagonalizable. As before, the directed
Barabási-Albert algorithm leads to the generation of directed
acyclic graphs.

Figure 10 shows a pseudo-Hermitian directed graph con-
structed via the Barabási-Albert algorithm with parameters
N = 25, m = 4, such that the in-degree vertex distribution is
scale free. By examining the classical PageRank and η-CTQW
centrality measures, we see that they provide identical rankings
for all 20 vertices, correctly picking out and ordering the four
“hubs” (marked in red) with larger in-degree. Meanwhile, in
Fig. 11 we have a pseudo-Hermitian directed graph constructed
via the Barabási-Albert algorithm with parameters N = 100,
m = 3, such that the out-degree is scale free, and constant
in-degree of 3. Again, the PageRank and η-CTQW display
a high correlation, with the ranking of the top four most
central vertices identical. However, in this case a subtlety
must be addressed: the PageRank algorithm is known to
correlate with in-degree [79,80], as is the η-CTQW scheme
by construction of the Hamiltonian in Eq. (2). Hence, rather
than assigning higher measures to vertices that are out-degree
hubs, both algorithms are preferentially selecting top-ranked
vertices based on in-degree distribution. These correspond to
the vertices at which the probability flow of a random walk is
likely to accumulate after significant time.

D. Statistical analysis

So far, we have considered particular Erdős-Rényi and
scale-free randomly generated graphs; to explore how the
pseudo-Hermitian CTQW centrality scheme behaves in gen-
eral, it is pertinent to undertake a statistical analysis of
an ensemble of random graphs. Ensembles of 300 random
Erdős-Rényi (N = 25, p = 0.3, random bidirectional edges
permitted), 100 random Erdős-Rényi (N = 25, p = 0.3, one
bidirectional edge permitted), 100 random Erdős-Rényi (N =
25, p = 0.3, directed acyclic), 100 random in-degree scale
free (N = 20, m = 3), and 100 random out-degree scale
free (N = 40, m = 3) were generated, and the PageRank,
nonunitary CTQW, and η-CTQW vertex ranking determined
for each graph. The mean and standard deviations of these
centralities are plotted in Fig. 12 (for Erdős-Rényi ensembles)
and Fig. 13 (for scale-free ensembles), with the η-CTQW com-
pared to both the nonunitary CTQW and classical PageRank.
Furthermore, Vigna’s τ rank correlation coefficient has been
averaged across the ensemble, and is displayed on each plot.
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FIG. 10. Top: randomly generated 20-vertex pseudo-Hermitian
graph, with scale-free in-degree distribution where m = 4. The more
highly connected “hubs” (vertices with higher in-degree) are labeled
in red. Above: centrality ranking of the vertices, ordered from most
central to least central as per the classical PageRank (black, solid
line). This is compared to the nonunitary CTQW (blue, dotted line)
and the pseudo-Hermitian η-CTQW (red, dashed line).

Studying the results of Figs. 12 and 13, we may draw
several conclusions. First, the η-CTQW continues to reflect the
directed structure of the network, agreeing with the nonunitary
CTQW across all ensembles on the top five ranked vertices.
This agreement is similarly reflected in Vigna’s tau correlation
coefficient, with τ �∼ 0.6 for every ensemble, with lower
values perhaps due to small discrepancies for lower ranked
vertices.

Still, this statistical analysis has its drawbacks. The shaded
areas, representing one standard deviation from the mean
centrality values, indicate general ranking agreement across an
ensemble only when narrow enough and with a steep enough
gradient such that each consecutive point, when moved upward
or downward by one standard deviation, does not cause a swap
in ranking [e.g., Fig. 13(a)]. Further, the converse is not true:
a large standard deviation does not imply a lack of agreement
in ranking. In fact, two centrality measures could produce the
exact same ranking across an entire ensemble, yet one measure
might simply have a greater variance in the values it assigns

FIG. 11. Top: randomly generated 100-vertex pseudo-Hermitian
graph, with scale-free out-degree distribution where m = 3. The top
10 vertices where network flow is likely to accumulate are labeled
in red. Above: centrality ranking of the vertices, ordered from most
central to least central as per the classical PageRank (black, solid
line). This is compared to the nonunitary CTQW (blue, dotted line)
and the pseudo-Hermitian η-CTQW (red, dashed line).

to the vertices. Similarly, Vigna’s τ correlation coefficient,
while a better indicator of overall rank agreement, continues
to suffer from the fact that small discrepancies in ranking
of lower-ranked vertices negatively affect the coefficient
value. Thus, while these approaches might be useful in
determining correlation between various centrality measures,
they distract from the main question: How frequently do
two centrality measures agree on the k topmost ranked
vertices?

In order to answer this quantitatively, we employ the Jaccard
measure of set similarity [81]. This provides an indicator of
how well each centrality measure is able to determine the
identity of the top k highest centrality individuals. First, for
each graph, unordered sets containing the n most central
vertices according to each measure were compared, the
fraction of matching vertices providing a quantitative value

032305-13



J. A. IZAAC, J. B. WANG, P. C. ABBOTT, AND X. S. MA PHYSICAL REVIEW A 96, 032305 (2017)

FIG. 12. Centrality measure values for the pseudo-Hermitian η-CTQW (red, dashed line), compared against the non-unitary CTQW ranking
(blue), and PageRank ranking (black), averaged over an ensemble of (a) 300 Erdős-Rényi graphs with random bidirectional edges, (b) 100
Erdős-Rényi graphs with one bidirectional edge, (c) 100 Erdős-Rényi directed acyclic graphs.

for the agreement between the two measures. Finally, these
were averaged over the entire ensemble, providing a general
measure of the agreement between the PageRank and the
η-CTQW, with uncertainty approximated by calculating the
Agresti-Coull 95% confidence interval [82]. The results of
the statistical analysis are presented in Fig. 14. When consider-
ing just the most central vertex, the PageRank and η-CTQW are
in excellent agreement in the case of the directed acyclic Erdős-
Rényi and scale-free ensembles, ranging from 95% to 100%
agreement. As the number of vertices compared increases,
there is a small decrease in the Jaccard set similarity, with
all three ensembles of random graphs exhibiting agreement
factors in the range of 90% for the top two and three
most central vertices. By the time we consider five vertices,
scale-free networks retain an excellent agreement of 100%
and 92%, while the directed acyclic Erdős-Rényi ensemble
exhibits a reasonably good agreement factor of 78%. These
trends can be partially explained by considering the behavior
of the degree distributions:

(i) Erdős-Rényi networks, with a majority of vertices
having degree close to the mean, generally result in the highest
ranked vertices having similar centrality measures. As such,
beyond the top three, small variations in the PageRank and
η-CTQW vertex ordering appear, leading to discrepancies.

(ii) In-degree scale-free networks, with a small number
of highly connected vertices, should easily distinguish these
vertices (the hubs) as most central to the network. Beyond
the hubs, the power law characteristic results in the majority
of remaining vertices having similar degree, leading to small
variations in vertex ordering, and thus the discrepancies
observed between the PageRank and η-CTQW as more
vertices are compared.

However, comparing the η-CTQW and PageRank for
the nondirected acyclic Erdős-Rényi ensembles (those with
bidirectionality of edges permitted), we see a significant
reduction in the agreement of the top five vertices. For
instance, in Fig. 14, it can be seen that topmost vertex
Jaccard set similarity between the PageRank and η-CTQW
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FIG. 13. Centrality measure values for the pseudo-Hermitian η-CTQW (red, dashed line), compared against the nonunitary CTQW ranking
(blue), and PageRank ranking (black), averaged over an ensemble of (a) 100 directed in-degree scale-free graphs, and (b) 100 directed out-degree
scale-free graphs. The shaded areas represent the region within one standard deviation of the mean.

on the ensemble with one permitted bidirectional edge
is 43%; this drops to 13% when random bidirectional

FIG. 14. Chart showing the Jaccard set similarity between the
classical PageRank algorithm and the η-CTQW centrality scheme for
an ensemble of 300 directed Erdős-Rényi graphs with bidirectional
edges permitted, 100 directed Erdős-Rényi graphs with undirected
edges, 100 directed in-degree scale-free graphs, and 100 directed
out-degree scale-free graphs. Each bar represents the unordered set
containing the n most central vertices as determined by the PageRank
and η-CTQW scheme, while the vertical axis gives the average
fraction of matching vertices between these two sets. The error bars
indicate the Agresti-Coull 95% confidence interval.

edges are permitted. This could be due to a multitude of
factors:

(1) The PageRank might provide a significantly different
rank to other classical measures, which the η-CTQW is more
inclined to agree with; this difference may be magnified on
nondirected acyclic graphs.

(2) Localization of the η-CTQW may be occurring, due to
either classical effects [59,62] or quantum effects (Anderson
localization).

Interestingly, the η-CTQW centrality measure appears to
allows us to apply an eigenvectorlike quantum centrality
algorithm that agrees readily with the classical PageRank on
directed acyclic graphs, on which the eigenvector centrality
provides inconclusive results, while failing to agree with
PageRank on nondirected acyclic graphs.

Ultimately, whatever the reason, further investigation is
required to determine the likely cause of the discrepancy.
Note that this is not a negative result per se, depending on the
model represented by the graph structure, the η-CTQW could
be providing a better result of marking influential and central
nodes. However, this analysis is beyond the scope of this paper,
and is reserved for future research. Nevertheless, the results
presented here show that the η-CTQW provides centrality
rankings for several classes of randomly generated graphs that
are consistent with the classical PageRank algorithm.

VI. CONCLUSION

In this paper, we have introduced and expanded a frame-
work for continuous-time quantum walks on directed graphs,
by utilizing PT symmetry. In the case of interdependent
networks of directed graphs, a sufficient condition for ensuring

032305-15



J. A. IZAAC, J. B. WANG, P. C. ABBOTT, AND X. S. MA PHYSICAL REVIEW A 96, 032305 (2017)

PT symmetry was detailed, and the directed walk formalism
was shown to be equivalent to simulating a continuous-time
quantum walker on an undirected, weighted, complete graph
with self-loops. This may potentially lead to easily im-
plementable experimental directed continuous-time quantum
walks.

Finally, we have introduced a quantum scheme for
centrality testing on directed graphs, by utilizing PT -
symmetric continuous-time quantum walks; unlike other
directed quantum-walk-based centrality measures, our method
does not require expanding the Hilbert space to ensure unitary
behavior. A statistical analysis was performed, confirming the
CTQW centrality measure proposed here is consistent with
classical centrality measures for various classes of randomly
generated directed acyclic graphs.

Preliminary results on four-vertex pseudo-Hermitian di-
rected graphs have shown that the CTQW centrality ranking
is able to distinguish nonequivalent sets of vertices that the
classical PageRank cannot. This is likely due to the CTQW
providing an eigenvectorlike centrality measure in the quantum
regime; calculating the rank correlation coefficients supports

this interpretation. However, further work is required to fully
understand the distinguishing power of the pseudo-Hermitian
CTQW centrality measure.

Quantum walks remain an important physical tool, linking
the fields of information theory, quantum computation, and
complex quantum dynamical modeling. Following on from
this work, we aim to utilize the PT -symmetric CTQW frame-
work to model and simulate behavior in physical biochemical
systems, such as electron or exciton transport. Future work
will also involve exploring methods of implementing the
PT -symmetric CTQW centrality scheme on physical systems.
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