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We propose a quantum algorithm for support matrix machines (SMMs) that efficiently addresses an image
classification problem by introducing a least-squares reformulation. This algorithm consists of two core
subroutines: a quantum matrix inversion (Harrow-Hassidim-Lloyd, HHL) algorithm and a quantum singular
value thresholding (QSVT) algorithm. The two algorithms can be implemented on a universal quantum computer
with complexity O[log (npq)] and O[log (pq)], respectively, where n is the number of the training data and pq

is the size of the feature space. By iterating the algorithms, we can find the parameters for the SMM classfication
model. Our analysis shows that both HHL and QSVT algorithms achieve an exponential increase of speed over
their classical counterparts.
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I. INTRODUCTION

As an emerging interdisciplinary field, quantum machine
learning (QML) aims to aid the learning process via quantum
computing and quantum information theory [1–4]. A range of
quantum machine learning algorithms can offer an increase of
speed over their classical counterparts. One of these quantum
algorithms is phase estimation (PE), which can be used to
solve matrix computing problems, namely eigenvalue decom-
position or singular value decomposition of a matrix, or matrix
inversion. It can help a variety of machine learning algorithms
achieve an exponential speed increase, such as quantum princi-
pal component analysis [5], quantum singular value decompo-
sition (QSVD) [6], and a quantum matrix inversion algorithm
(Harrow-Hassidim-Lloyd, HHL) for solving linear systems
of equations [7]. On the basis of these algorithms proposed
in Refs. [5–7], quantum support vector machines, quantum
algorithms for least-squares regression and statistical leverage
scores, and pattern classification with linear regression have
been presented [8–10]. In addition, other quantum algorithms
also show good performance, such as quantum random access
memory, which requires only a logarithmic memory call [11];
swap tests, which can solve inner product exponentially faster
[12]; and generic Grover’s algorithms, which can solve search
problems with a quadratic speed increase [13–15]. These algo-
rithms can also accelerate many machine learning procedures
[16–24].

Herein, we focus our attention on support matrix machine
(SMMs), an important model proposed in 2015 to address
an image classification problem in machine learning [25].
Given a large number of classified training matrices, the
task of a SMM is to classify a new matrix into one of
two classes. For example, a SMM can be used to predict
whether electroencephalogram (EEG) emotion is positive or
negative in EEG classification, or whether a person is male
or female in face classification. The core of a SMM is to
preserve the structure information of the original feature
matrices, which helps to increase the robustness and accuracy
of the classification. The time complexity of the learning
algorithm of SMMs is proportional to O[poly(n,pq)], with
n being the number of training data and pq the dimension
of the feature space. However, when the size of the training
set and/or the feature space is large (e.g., terabytes or even

petabytes), a SMM may take a significant amount of time to
execute.

In this paper we propose a quantum algorithm for SMMs.
Schematically, for learning the parameters of the SMM
classification model, we first introduce the least-squares
method to re-express the quadratic programming program
approximately to the linear programming program. This
reformulation allows for a quantum solution with the quantum
matrix inversion (HHL) algorithm. In addition, we propose
a quantum singular value thresholding (QSVT) algorithm for
updating the substitution of the regression matrix. Finally, a
swap-test operation can then help to classify a query state. We
have analyzed the complexity of our algorithm, and it shows
that the two core subroutines (HHL and QSVT algorithms)
can be implemented in time O[log (npq)] and O[log (pq)],
respectively, achieving an exponential acceleration compared
with its classical counterparts.

In detail, there are two contributions in our work. First, we
introduced a least-squares reformulation in Sec. III A. Without
this reformulation, the original problem could not be solved by
the HHL algorithm directly. Second, we proposed a quantum
algorithm (QSVT) for solving singular value thresholding
(SVT) in Sec. III B 2. The QSVT algorithm achieves an
exponential speedup compared to the classical counterparts.

The remainder of the paper is organized as follows: We
give a brief overview of the SMM algorithm in Sec. II, put
forward our quantum algorithm for SMMs and analyze the
time complexity in Sec. III, and present our conclusions in
Sec. IV.

II. REVIEW OF SMMS

In this section, we briefly review some basic notations of
SMMs and describe the algorithmic procedures for the SMM
learning process. More detailed information can be found in
Ref. [25].

A. Notations

Let In denote the n × n identity matrix. For any ma-
trix A ∈ Rp×q , the Frobenius norm is defined as ‖A‖2

F =∑
ij a2

ij = ∑
i σ

2
i , where aij are the (i,j )th elements of

A and σi are the singular values. Given the matrix A ∈
Rp×q with rank r � min (p,q), let the thin singular value
decomposition (SVD) of A be A = U�VT = ∑r

i=1 σiuivT
i ,
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where U = [u1, . . . ,ur ] ∈ Rp×r and V = [v1, . . . ,vr ] ∈ Rq×r

satisfy UT U = VT V = Ir , and � = diag(σ1, . . . ,σr ), with
σ1 � · · · � σr > 0, are the singular values of A. For any τ >

0, let the singular value thresholding (SVT) of A be Dτ (A) =
UDτ (�)VT , where Dτ (�) = diag[(σ1 − τ )+, . . . ,(σr − τ )+]
and (σi − τ )+ = max (σi − τ,0) [26]. Obviously, Dτ (A) =∑

i:σi>τ (σi − τ )uivT
i .

To convert a matrix into a column vector, let the
vectorization of the matrix A be vec(AT ) = (a11, . . . ,

a1q,a21, . . . ,apq )T
�= a ∈ Rp×q . Similarly, there are xi

�=
vec(XT

i )
n

i=1, w �= vec(WT ), s �= vec(ST ), and λ�
�= vec(�T ).

B. Support matrix machines

A SMM algorithm aims at classifying a regularized
feature matrix into one of two classes. The ingredients
of a SMM are a training set of already classified data
and a learning algorithm. With the given training set M =
{(Xi ,yi) : Xi ∈ Rp×q,yi = ±1}ni=1, where Xi represented in
matrix form is the ith input sample and yi indicates the
class which Xi belongs to, the learning algorithm outputs the
parameters of the classification model: the regression matrix
W ∈ Rp×q and the offset term b ∈ R. Then, the class label of
a new data X can be predicted by virtue of these parameters:
y = sgn[tr(WT X) + b].

Formally, the matrix classification model SMM is defined
as follows:

arg min
W,b

1

2
tr(WT W) + C

n∑
i=1

{1 − yi[tr(WT Xi) + b]}+

+ τ‖W‖∗, (1)

where {1 − yi[tr(WT Xi) + b]}+ is the hinge loss function and
τ‖W‖∗ the penalty function.

To solve the objective function, Luo et al. [25] first
rewrote Eq. (1) by introducing the constraint S − W = 0 and
G(S) = τ‖S‖∗ (where S can be regarded as a substitution
for W) and then applied the learning algorithm based on
the ADMM (alternating direction method of multipliers).
The ADMM solves the problem by using the augmented
Lagrangian function:

L(W,b,S,�) = H (W,b) + G(S) + tr[�T (S − W)]

+ ρ

2
‖S − W‖2

F , (2)

where ρ is a hyperparameter.
The overall procedure of the SMM learning algorithm is

depicted in Fig. 1. In the kth iteration of the algorithm, the
updating of the assistant parameters Ŝ(k+1) and �̂(k+1) costs
O(1), which is much less costly than the first two procedures.
Therefore, the core of the SMM learning process is the
computations of (W(k),b(k)) and S(k):

(W(k),b(k)) = arg min
W,b

H (W,b) − tr(�̂(k)T W)

+ ρ

2
‖W − Ŝ(k)‖2

F , (3)

S(k) = arg min
S

G(S) + tr(�̂(k)T S) + ρ

2
‖W(k) − S‖2

F . (4)

FIG. 1. Entire process of SMM learning algorithm.

In Ref. [25] it is shown that the update equation of S(k) can
be obtained by singular value thresholding [26]:

S(k) = 1

ρ
Dτ (ρW(k) − �̂(k)) = 1

ρ
U0(�0 − τ I)VT

0 , (5)

where U0 and V0 are matrices of the left and right singular
vectors of ρW(k) − �̂(k), with the corresponding diagonal
matrix whose diagonal values are greater than τ .

In summary, the ultimate target of a SMM learning
algorithm is to gain the regression matrix W and the offset b.
This process of learning also involves an additional updating
of substitution S.

III. QUANTUM SMM

In this section, we design a quantum algorithm for a SMM
based on a reformulation of the original SMM classification
model. First, we show how to transform Eq. (3) to a linear
problem that the quantum matrix inversion algorithm can
address directly. Then, we sketch the basic idea of our quantum
algorithm for a SMM and present in detail the key procedures
of the algorithm. At the same time, we analyze its time
complexity.

A. Least-squares reformulation

The quantum algorithm has shown good performance in
solving the linear equation. In order to transform the original
constraint quadratic programming problem in Eq. (3) to
the solution of a linear equation system, we introduce the
least-squares reformulation of the original SMM classification
model. Here, we take a surrogate loss function, namely the
square loss, instead of the hinge loss in Eq. (1).

First, we introduce a slack variable ei = 1 −
yi[tr(WT Xi) + b], ei ∈ R to substitute the square loss
η

2

∑n
i=1 (1 − ei − μ)2 for the hinge loss C

∑n
i=1 {ei}+ in

Eq. (1), as shown in Fig. 2. This naturally replaces the original
inequality constraints with equality constraints.
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FIG. 2. Loss functions in a SMM. The blue dashed line represents
the hinge loss 
hinge in the original objective function and the red solid
line the square loss 
square used in our method. Here we introduce a
new parameter μ to make 
hinge upper bounded by 
square strictly.

Theorem 1. There exists a square loss function


square(ei) := (1 − ei − μ)2,

which is a convex surrogate for the hinge loss:


hinge(ei) := max {0,ei}.
Using the surrogate loss transforms the objective function

(3) to the following problem:

arg min
W,b,ei

1

2
tr(WT W) + η

2

n∑
i=1

(1 − ei − μ)2 − tr(�̂(k)T W)

+ ρ

2
‖W − Ŝ(k)‖2

F ,

such that yi[tr(WTXi) + b] = 1 − ei, (6)

where η is the regularization parameter, which plays the same
role as the parameter C in Eq. (1).

Theorem 2. One of the solutions of the problem (6) is

W(k) = 1

ρ + 1

(
�̂(k) + ρŜ(k) +

n∑
i=1

α
(k)
i yiXi

)
, (7)

and the offset b(k) and α(k) = [αi
(k)] ∈ Rn are the solutions of

the following linear equation:

F
(

b(k)

α̃(k)

)
≡

(
0 1T

1 K + I/γ

)(
b(k)

α̃(k)

)
=

(
0


(k)

)
, (8)

where K = [Kij ] ∈ Rn×n and 
(k) = [
i
(k)] ∈ Rn are inde-

pendent of α̃(k) = [α(k)
i yi] ∈ Rn; specifically,

Kij = tr
(
XT

i Xj

)
ρ + 1

,



(k)
i = μyi − tr[

(
�̂(k) + ρŜ(k)

)T
Xi]

ρ + 1
. (9)

The proofs of the two theorems are shown in Appendices A
and B.

By Theorem 2, updating (W(k),b(k)) can be done by solving
Eq. (8). This simplification fits the situation in which the
quantum matrix inversion algorithm works.

B. Algorithm

Our quantum algorithm for SMMs is based on the following
model. Assume that the matrix A = [aij ] ∈ Rp×q is given by
a quantum oracle OA:

OA|i〉|j 〉|0〉 = |i〉|j 〉|aij 〉, ∀i ∈ {1, . . . ,p}, ∀j ∈ {1, . . . ,q}.
(10)

In addition, we assume that the vector y = [yi] ∈ Rn is given
by a quantum oracle Oy:

Oy|i〉|0〉 = |i〉|yi〉, ∀i ∈ {1, . . . ,n}. (11)

That is, given the indexes i and j , the oracles OA and Oy can
return the values of A and y, respectively.

Then, via the method outlined in Ref. [22], the following
quantum state can be generated:

|ψA〉 =
p∑

i=1

q∑
j=1

aij |i〉|j 〉, (12)

|ψy〉 =
p∑

i=1

yi |i〉. (13)

Note that our algorithm works with the normalized data,
namely matrices and vectors, as these data in many machine
learning algorithms are normalized.

Based on this model, our algorithm consists of two
subroutines: a quantum matrix inversion (HHL) algorithm for
estimating W(k) and b(k) and a QSVT algorithm for estimating
S(k).

The overall procedure of our algorithm includes the
following steps.

Algorithm. (W,b) = QSMM(�,S,X,y).
(1) Initialize k = 1, apply the quantum algorithm

(b(k),α̃(k)) = HHL(
(k),F), where (
(k),F) can be prepared in
terms of (X,y,�̂(k) ,̂S(k)) in Eq. (9).

(2) Extract b(k) and α̃(k) to construct the matrix W(k)

according to Eq. (7).
(3) Apply the quantum algorithm S(k) = QSVT(A(k),τ ),

where A(k) is a normalized r-rank approximate of
ρW(k) − �̂(k).

(4) Update the parameters �̂(k+1) and Ŝ(k+1) and set k =
k + 1.

(5) Repeat Steps 1–4 until the number of iterations k =
max iter; then, one can obtain the regression matrix W and the
offset b.

We begin to introduce the quantum algorithms (b,α̃) =
HHL(
,F) and S = QSVT(A,τ ) in detail in the following
subsections.

1. HHL algorithm

To obtain W(k) in Eq. (7), we should solve the normal-

ized (b(k),α̃
(k)

)
T = F−1(0,
(k))

T
, where ‖F‖ � 1. The HHL
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algorithm was proposed for solving matrix inversion problems
[7]. But the matrix should be s-sparse in Ref. [7]. In this paper,
we adopted a strategy in Ref. [5], therefore the HHL algorithm
can be used when the matrix is nonsparse. The detailed
description is shown in Appendix C. The core subroutine of
the algorithm is phase estimation (denoted UPE). Apply UPE

to the registers C and B, which is represented as follows:

UPE = UPE(A)

= (F†
T⊗IB)

(
T −1∑
τ=0

|τ 〉〈τ |C ⊗eiAτ t0/T

)
(H⊗t ⊗IB), (14)

where register C with t qubits is used to store the estimated
eigenvalues of an Hermite matrix A, register B with s qubits
stores the input state |ψ〉, F†

T is the inverse quantum Fourier
transform, and

∑T −1
τ=0 |τ 〉〈τ |C ⊗ eiAτ t0/T is the conditional

Hamiltonian evolution [7].
We now give the HHL algorithm for solving the refor-

mulated SMM to estimate the parameters W(k) and b(k). In
Appendix C, we show how to prepare the input |ψ
〉 and
e−iFt0 .

Input. A quantum state |ψ
〉 and a unitary e−iFt0 .
Output. A quantum state proportional to |b,α̃〉 ≈ F−1|ψ
〉.
Algorithm. (b,α̃) = HHL(
,F).
(1) Prepare three quantum registers: register C for storing

the estimated eigenvalues |λi〉 of F, register B for storing
the input state |ψ
〉, and register R with an ancilla qubit for
storing the inverse of the eigenvalues λ−1

i of F. Prepare the
three registers in the state

|ψ0〉 = |0〉R(|0〉|0〉 · · · |0〉)C(|ψ
〉)B, (15)

where |ψ
〉 = |0,
〉 = ∑n+1
i=1 φi |i〉.

(2) Perform the unitary operation UPE(F) on the state.
UPE(F) expands |ψ
〉 into the eigenstates |ui〉 of F with
corresponding eigenvalues λi and we have the state

|ψ1〉 = |0〉R
n+1∑
i=1

〈ui |ψ
〉|λi〉C |ui〉B. (16)

(3) Apply a controlled rotation RRC
f ,

|0〉R|z〉C →
⎛⎝γ

z
|1〉 +

√
1 − γ 2

z2
|0〉

⎞⎠R

|z〉C, (17)

to the register R, controlled by the register C, where γ is a
constant. This rotation transforms the state to

|ψ2〉=
(√

1− γ 2

λ2
i

|0〉+ γ

λi

|1〉
)R

n+1∑
i=1

〈ui |ψ
〉|λi〉C |ui〉B. (18)

(4) Uncompute the registers C and B to obtain the state

|ψ3〉 =
(√

1 − γ 2

λ2
i

|0〉 + γ

λi

|1〉
)R

(|0 · · · 0〉)C
n+1∑
i=1

〈ui |ψ
〉|ui〉B.

(19)

Remove the register C and measure the register R to be |1〉.
We have the state proportional to

|ψ4〉 =
n+1∑
i=1

〈ui |ψ
〉/λi |ui〉. (20)

(5) Finally, represent the state in the basis of training
set labels to acquire the desired parameters that exist in the
coefficients of the state [8]:

|b,α̃〉 = 1√
l

(
b|0〉 +

n∑
i=1

α̃i |i〉
)

, (21)

with l = b2 + ∑n
i=1 α̃2

i .

Here, amplitude estimation can then be used to extract b(k)

and α̃(k), and now we can obtain the matrix W(k) according to
Eq. (7).

In summary, the HHL algorithm can be represented as the
following unitary operation:

UHHL = (IR ⊗ U†
PE)

(
RRC

f ⊗ IB
)
(IR ⊗ UPE), (22)

where RRC
f is given in Eq. (17).

Analysis. We now discuss the error of the HHL algorithm.
Define the condition number of F as κ , and t0 = O(κ/ε).
Therefore, only the eigenvalues in the interval 1/κ � |λj | � 1
are taken into account. The estimation of eigenvalue λ̃j :=
2πj/t0 in step (2) introduces error O(1/t0) = O(ε/κ) which
translates into error O(ε/(λκ)) in λ−1 in step (3) [7]. With
λ � 1/κ taking t0 = O(κ/ε) induces a final error of O(ε).

We now analyze the time complexity. In phase estimation,
O(t2) operations and one call to the conditional Hamiltonian
evolution (

∑T −1
τ=0 |τ 〉〈τ |C ⊗ eiFτ t0/T ) are needed, where t is

the number of qubits in register C [4]. The preparation of the
unitary e−iFt0 costs time O[t2

0 ε−1log (npq)] which is shown
in Appendix C. As t decides the accuracy of the estimated
eigenvalues, t is not very large to some extent. When the size
of the training data and feature space is large, the preparation
of the unitary e−iFt0 dominates the time complexity of phase
estimation.

The probability of obtaining λ−1 determines the number of
iterations of the algorithm. This probability is determined by
the amplitude square γ /λi , and this value is at least �(1/κ2)
with γ = O(1/κ) and λ � 1. Hence, O(κ2) repetitions are
needed to ensure success with high probability. By virtue of the
amplitude amplification algorithm [15], only O(κ) repetitions
are sufficient to achieve a constant success probability of the
postselection process.

In conclusion, the total evolution time of the algo-
rithm is O[t2

0 ε−1 log (npq)]O(κ) = O[κ3ε−3 log (npq)]. In
contrast, the matrix inversion via classical method needs time
O[poly(npq)].

2. QSVT algorithm

Herein we propose a QSVT algorithm for estimating
S(k). Suppose A(k) is a normalized matrix that is a good
r-rank approximate of ρW(k) − �̂(k), with ‖A(k)‖ � 1. In the
following, we simplify the notation A(k) as A. Then, using the
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Gram-Schmidt decomposition, we have

|ψA〉 =
p∑

i=1

q∑
j=1

aij |i〉|j 〉 =
r∑

k=1

σk|uk〉|vk〉, (23)

where r is the rank of A, and σk are just the singular values
of A, with uk and vk being the left and right singular vectors.
Note that uk are just the eigenvectors of AA† and vk are the
eigenvectors of A†A. The eigenvalues of AA† or A†A are
both λk = σ 2

k . Based on quantum Random Access Memories
(QRAM), the preparation of |ψA〉 costs time O[log (pq)].

By taking a partial trace of |ψA〉〈ψA|, we can obtain a mixed
state ρAA† [10]:

ρAA† = trj (|ψA〉〈ψA|) =
p∑

i,i ′=1

q∑
j=1

aij a
∗
i ′j |i〉〈i ′|, (24)

where ρAA† represents the positive Hermitian matrix AA†.
The QSVT algorithm is now presented as follows:
Input. A quantum state |ψA〉, a unitary e−iρAA† t0 , and a

constant τ .
Output. A quantum state proportional to |ψS〉 =∑r ′
k=1 (σk − τ )|uk〉|vk〉.
Algorithm. S = QSV T (A,τ ).
(1) Prepare three quantum registers in the state

|ψ0〉 = |0〉R(|0〉|0〉 · · · |0〉)C(|ψA〉)B. (25)

(2) Perform the unitary operation UPE(ρAA† ) on the state.
According to the ideas of quantum principal component
analysis in Refs. [5,10], we have the state

|ψ1〉 = |0〉R
r∑

k=1

σk

∣∣σ 2
k

〉C |uk〉|vk〉. (26)

(3) Apply a controlled rotation RRC
f ′ to the register R,

controlled by the register C. RRC
f ′ is defined as follows: if

σj > τ ,

|0〉R|z〉C

→
⎛⎝γ (

√
z − τ )√
z

|1〉 +
√

1 − γ 2(
√

z − τ )2

z
|0〉

⎞⎠R

|z〉C ;

(27)
otherwise do nothing.
This rotation transforms the state to

|ψ2〉 =
(

γ (σk − τ )

σk

|1〉 +
√

1 − γ 2(σk − τ )2

σ 2
k

|0〉
)R

⊗
r ′∑

k=1

σk

∣∣σ 2
k

〉C |uk〉|vk〉

+ |0〉R
r∑

k=r ′+1

σk

∣∣σ 2
k

〉C |uk〉|vk〉. (28)

(4) Uncompute the registers C and B, remove the register
C, and measure the register R to be |1〉. Then, we have the

state proportional to

|ψ3〉 =
r ′∑

k=1

(σk − τ )|uk〉|vk〉 = |ψS〉. (29)

In summary, the QSVT algorithm can be represented as the
following unitary operation:

UQSVT = (IR ⊗ U†
PE)

(
RRC

f ′ ⊗ IB
)
(IR ⊗ UPE), (30)

where RRC
f ′ is proposed in Eq. (27).

Analysis. We now discuss the error of the QSVT algorithm.
Define the condition number of ρAA† as κ , and t0 = O(κ/ε).
Therefore, only the eigenvalues σ 2

k in the interval 1/κ � σ 2
k �

1 are taken into account. The estimation of eigenvalues σ̃ 2
k :=

2πk/t0 in step (2) introduces error O(1/t0) = O(ε/κ). This
error translates into error O[ε/(σkκ)] in (1 − τ/σk) after the
controlled rotation RRC

f ′ in step (3). With σ 2
k � 1/κ taking

t0 = O(κ/ε) induces a final error of O(
√

ε/κ).
We now discuss the time complexity of the QSVT algo-

rithm. Clearly, the preparation of the unitary operation e−iρAA† t0

dominates the time complexity of phase estimation, and it costs
time O[t2

0 ε−1 log (pq)]. The probability of obtaining (σk − τ )
determines the number of iterations of the algorithm, and it is
determined by the amplitude square γ (σk − τ )/σk . This value
is at least �(1/κ2) with γ = O(1/κ) and σk � 1. Hence, O(κ2)
repetitions are needed to ensure success with high probability.
Using amplitude amplification [15], to achieve a constant
success probability of the postselection process only needs
O(κ) repetitions. Therefore, the total evolution time of the
algorithm is O[t2

0 ε−1 log (pq)]O(κ) = O[κ3ε−3 log (pq)]. In
contrast, the matrix inversion via the classical method needs
time O[poly(pq)].

C. Classification

With the parameters W and b, we can classify a query state
X via the method presented in Ref. [8]. First, we construct the
training-data state via quantum oracles:

|ψt̃〉 = 1√
Nt

⎛⎝b|0〉|0〉 + |0〉|λ�〉 +
∑

α̃i yi>0

α̃i |i〉|xi〉
⎞⎠, (31)

and the query state

|ψx̃〉 = 1√
Nx

(
|0〉|0〉 +

n∑
i=0

|i〉|x〉
)

, (32)

where Nt and Nx are the norms of these states. The inner
product of the two states

〈
ψt̃

∣∣ψx̃
〉 = 1√

NtNx

⎛⎝b + 〈λ�|x〉 +
∑

α̃i yi>0

α̃i〈xi |x〉
⎞⎠ (33)

reveals the label of the classification problem

yj = sgn

⎡⎢⎣
⎛⎝λ� +

∑
α̃iyi>0

α̃ixi

⎞⎠T

x + b

⎤⎥⎦. (34)
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Then, a swap-test operation can be used to find the value, and
the algorithm achieves an exponential increase of speed over
its classical counterpart.

IV. CONCLUSIONS

We have shown that quantum mechanics can be used to
speed up the learning and classification process of an important
matrix classifier SMM in machine learning. The algorithmic
complexity of the two key subroutines can be O[log (npq)] and
O[log (pq)], respectively. Aiming at the two cores of the SMM
learning procedure, the least-squares reformulation has been
utilized for estimating the parameters (W(k),b(k)); therefore,
the HHL algorithm can be used to address the reformulated
SMM classification model. Furthermore, a QSVT algorithm
is proposed for estimating S(k). This algorithm can also be
a subroutine in other quantum machine learning algorithms
for solving the singular value thresholding problem. Finally,
we give the classification process, which can be implemented
quantum mechanically. Our analysis shows that the core
subprocedures can achieve an exponential acceleration over
classical counterparts. We hope that our algorithm can inspire
more fruitful results in quantum machine learning.
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APPENDIX A: PROOF OF THEOREM 1

Proof. Obviously, for all the ei , 
hinge(ei) � 
square(ei) when
μ � 5/4. Then, the square loss is the upper bound of the hinge
loss. Along with the convexity of the square function, 
square(ei)
meets the surrogate property [27].

APPENDIX B: PROOF OF THEOREM 2

Proof. To solve Eq. (6), we construct the Lagrange function
as follows:

L(W,b,e; α) = 1

2
tr(WT W) + γ

2

n∑
i=1

(1 − ei − μ)2

− tr(�̂(k)T W) + ρ

2
‖W − Ŝ(k)‖2

F

−
n∑

i=1

αi{yi[tr(WT Xi)+b]−1+ei}, (B1)

where αi are the Lagrange multipliers.
Taking partial derivatives of L with respect to W, b, ei , and

αi to be zero, respectively, we have

∂L

∂W
= 0 → W = 1

ρ + 1

(
�̂(k) + ρŜ(k) +

n∑
i=1

αiyiXi

)
,

∂L

∂b
= 0 →

n∑
i=1

αiyi = 0,

∂L

∂ei

= 0 → ei=αi

γ
− μ + 1, i = 1, . . . ,n,

∂L

∂αi

= 0 → yi[tr(WT Xi) + b] − 1 + ei = 0, i = 1, . . . ,n.

(B2)

Then, with y2
i = 1, substituting the first and third

equations into the fourth in Eqs. (B2) to eliminate W
and ei , we obtain b + ∑n

j=1 αjyj
tr(XT

i Xj )
ρ+1 + αiyi

γ
= μyi −

tr[(�(k)+ρS(k))
T Xi ]

ρ+1 , (i = 1, . . . ,n); thus, with the second equation
in Eqs. (B2), the solution can be straightforwardly given by
Eq. (8).

APPENDIX C: PREPARATION OF |ψ�〉, e−iFt0 , AND e−iρAA† t0

Preparation of the input |ψ
〉 of the HHL algorithm. The
main part of 
i in Eq. (9) can be reworded as the inner product
of two vectors:

tr[(�̂(k) + ρŜ(k))
T

Xi]

= vec(�̂(k)T + ρŜ(k)T )T vec
(
XT

i

)
:= 〈

λ
(k)
�

∣∣xi

〉 + ρ〈s(k)|xi〉, (C1)

where {|xi〉}ni=1, |s(k)〉, and |λ(k)
� 〉 are the quantum states in the

basis of the training set space. Here, we have

|ψ
〉= 1√
Nψ


[
|0〉+

n∑
i=1

(
μyi−

〈
λ

(k)
�

∣∣xi

〉+ρ
〈
s(k)

∣∣xi

〉
ρ+1

)
|i〉

]
,

(C2)

with Nψ

being the norms of |ψ
〉. Based on QRAM [11],

a swap test can be used to evaluate these inner products.
Therefore, the preparation of |ψ
〉 costs time O[log (npq)]
[12].

Preparation of the input e−iFt0 of the HHL algorithm. The
unitary e−iFt0 can be simplified to the direct preparation and
exponentiation of the matrix K [8]. To prepare the matrix K
with elements

Kij = tr
(
XT

i Xj

)
ρ + 1

= vec
(
XT

i

)T
vec

(
XT

j

)
ρ + 1

= xi · xj

ρ + 1
,

we can take a partial trace of a quantum state

|ψ〉 = 1√
n

n∑
i=1

|i〉|xi〉

to acquire the normalized

K = tr2{|ψ〉〈ψ |} :=
n∑

i,j=1

〈xi |xj 〉|xi ||xj ||i〉〈j |. (C3)

Here, |ψ〉 can be prepared in time O[log(npq)].
Then, the unitary e−iFt0 can be simulated via the methods

outlined in Ref. [8]. Here, t0 is the total evolution time with
t0 = �tT , i.e., the interval �t times the number of steps T in
the phase estimation. For the time slice �t , the unitary e−iF�t

can be simplified to the direct preparation and exponentiation
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of the matrix K with error O(�t2):

e−iF�t = e−i�tγ −1Ie−i�tJe−i�tK + O(�t2),

with J = (0 1T

1 0 ). As K in Eq. (C3) is Hermitian, the
exponentiation of the matrix K can be prepared by applying
the algorithm in Ref. [5] in terms of a density matrix
description with error O(�t2): e−iK�t (σ ) ≈ tr1{e−iSwap�t

K ⊗ σeiSwap�t } = σ − i�t[K,σ ] + O(�t2), where Swap =

∑n
p,q=1 |p〉〈q|⊗|q〉〈p|. Thus, using T = O(t2

0 ε−1)
copies of K to implement e−iKt0 to accuracy ε is in time
O[t2

0 ε−1 log (npq)].
Preparation of the input e−iρAA† t0 of the QSVT algorithm.

The unitary e−iρAA† t0 can also be simulated via O(t2
0 ε−1)

copies of e−iρAA†�t for the time slice �t : e−iρAA†�t (σ ) ≈
tr1{e−iSwap�tρAA† ⊗ σeiSwap�t }. As the preparation of |ψA〉 is
O[log (pq)], the time complexity of implementing e−i ρAA† t0

to accuracy ε is O[t2
0 ε−1 log (pq)].
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