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Effects of counter-rotating-wave terms on the non-Markovianity in quantum open systems
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We investigate the effect of counter-rotating-wave terms on the non-Markovianity in quantum open systems by
employing the hierarchical equations of motion in the framework of the non-Markovian quantum state diffusion
approach. As illustrative examples, the non-Markovian memory effect of a qubit embedded in a bosonic or a
fermionic environment with a detuned Lorentz spectrum at zero temperature is analyzed. It is found that the
counter-rotating-wave terms are able to enhance the observed non-Markovianity whether the environment is
composed of bosons or fermions. This result suggests that the rotating-wave approximation may reduce the
non-Markovianity in quantum open systems. Moreover, we find that the modification of the non-Markovianity
due to the different statistical properties of environmental modes becomes larger with the increase of the
system-environment coupling strength.
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I. INTRODUCTION

An accurate description of the dynamical behavior of a
quantum open system is one of the most challenging problems
in the field of quantum mechanics [1]. The unavoidable
coupling between the microcosmic quantum system and its
surrounding environment is the main difficulty in solving
this longstanding problem. The research of the dynamics
of a quantum open system has attracted considerable at-
tention in recent decades because it provides a possibility
to simulate numerous physical and chemical processes. For
example, the spin-boson model (SBM) and its extensions
can be used to describe the excitation (electronic) energy
transfer process in photosynthetic systems [2]. Traditionally,
the dynamics of a quantum open system is treated by the
perturbative theory along with the Markovian approxima-
tion [1,3]. This treatment is acceptable when the system-
environment coupling is weak enough and the environment
can be approximately described by a broadband spectrum.
For the strong-coupling regime or the environment with
memory, the Markovian approximation is no longer valid and
a more general non-Markovian dynamical formula is urgently
required [3].

When one speaks of a non-Markovian dynamical process,
it implies that the dynamics is governed by a significant
memory effect, which has many applications in realistic
physical systems [4,5]. In recent years, some rigorous theories
or schemes for defining and measuring the non-Markovianity,
i.e., the degree of non-Markovian memory effect in a dy-
namical process, have been proposed by different authors [4].
Many physical quantities have been presented as the measure
of the non-Markovianity in the previous literature, such as
trace distance [5], quantum Fisher information [6], quantum
mutual information [7], quantum fidelity [8], quantum channel
capacity [9], and k divisibility [10]. Using the trace distance
to characterize the non-Markovian quantum behavior is one
of the most popular computable schemes. Trace distance
is a metric of the distinguishability between two quantum
states; the change in the trace distance can be interpreted
as a flow of information between the quantum subsystem
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and the environment [5]. A Markovian process tends to
continuously reduce the value of trace distance or, equivalently,
the distinguishability between a pair of quantum states, which
means that the information flows from the quantum subsystem
to its environment. On the other hand, the increase of the
distinguishability means a reversed flow of information from
the environment back to the quantum subsystem, which is the
typical character of a non-Markovian quantum process.

Though the trace distance (as well as other measures) pro-
vides a computable characterization of the non-Markovianity
for an arbitrary quantum open system, almost all the existing
studies of the non-Markovianity have restricted their attention
to some exactly solvable models [4–10], say the pure dephas-
ing model and the damped Jaynes-Cummings model [11]. This
restriction is probably due to the fact that the calculation
of the non-Markovianity requires an optimization over all
the possible initial-state pairs. This optimization procedure
is rather time consuming if the analytical expression of the
quantum master equation describing the dynamical process is
unknown. However, an analytical quantum master equation
is typically obtained, in practice, via various approximations,
e.g., the rotating-wave approximation (RWA) in which all the
counter-rotating-wave terms are removed. On the other hand,
it has been shown that the counter-rotating-wave terms play a
very important role in the dynamics of the atomic population
inversion (quantum Rabi oscillation) [12], the quantum Zeno
(and anti-Zeno) phenomenon for a hydrogen in free space
[13], the long-time evolution of the entanglement (quantum
discord) in quantum open systems [14], and the quantum
phase transition between the Mott insulator and superfluid in a
Rabi-Hubbard lattice [15]. An interesting question arises here:
what are the influences of the counter-rotating-wave terms on
the non-Markovianity in quantum open systems? In Ref. [16],
the authors tried to answer this question and showed that the
RWA may lead to a dramatic reduction in the observed
non-Markovianity in the SBM. Their conclusion is based
on the second-order perturbative master equation technique,
which is valid only in the weak system-bath coupling regime.
To exceed this limitation, a nonperturbative approach to the
reduced dynamics of quantum open systems in the strong-
coupling regime is requisite. In this paper, we employ the
non-Markovian quantum state diffusion method along with a
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hierarchical equations of motion (HEOM) [17], which is a
highly efficient and nonperturbative numerical approach, to
reexamine their conclusion.

The non-Markovian stochastic Schrödinger equation of the
quantum state diffusion type was developed by Strunz and his
co-workers [18–22], which has shown momentous potential
for solving dynamical problems in quantum open systems,
including both the bosonic [18–20] and the fermionic [21,22]
environment situations. An obstacle of the non-Markovian
quantum state diffusion method is that it contains not only
the environmental noises, but also the functional derivative
under a memory integral. This defect means that a directly
numerical simulation of the non-Markovian quantum state
diffusion equation needs a lot of CPU time. Very recently, it
was shown that the numerical efficiency of the non-Markovian
quantum state diffusion can be greatly improved by deriving
a related hierarchy equation of reduced density matrices [17].
This result indicates that the non-Markovian quantum state
diffusion approach is closely associated with the popular
HEOM method, which was widely used in many previous stud-
ies [23–26]; in other words, these two important approaches
are completely equivalent under specified conditions. It is
necessary to point out that this numerical treatment adopted
in this paper (HEOM in the framework of the non-Markovian
quantum state diffusion approach) includes all the orders of
the system-bath interaction and is beyond the usual Markovian
approximation, the RWA, and the perturbative approximation.

Most researchers are interested in how a quantum open
system consisting of a small number of degrees of freedom,
say a few-level system, interacts with an environment whose
number of degrees of freedom tends to infinity. The decoher-
ence or the relaxation of the quantum subsystem of interest
is determined by the property of the environment to a great
extent. Generally speaking, there are two kinds of quantum
environments: one is the bosonic environment, which is usually
modeled by a set of harmonic oscillators, the other is the
fermionic environment [27,28], which can be realized by a
spin chain via the well-known Jordan-Wigner transformation
[28,29]. Most of the previous studies of the non-Markovianity
only focused on the bosonic environment case. Do the bosonic
environment and the fermionic environment have the same
effect on the non-Markovianity? To address this question,
we also extend our analysis to the fermionic environment
situation. Thus, the other purpose of the present study is to
compare the performances of these two kinds of environments
in the non-Markovian behaviors of quantum open systems.
It is also necessary to emphasize that such a spin-fermion
model (SFM) is not merely of academic interest, but it
connects with certain real physical matters. For example, the
SFM may be used to describe the Ising-Kondo lattice with
transverse magnetic field, which is a possible candidate for the
weak-moment heavy-fermion compound UR2Si2 [30].

This paper is organized as follows. In Sec. II, we show how
to derive the HEOM in the framework of the non-Markovian
quantum state diffusion method. Moreover, we also briefly out-
line the general formalism of qualifying the non-Markovianity
by using trace distance in a general quantum open system. In
Sec. III, we study the the effect of counter-rotating-wave terms
on the non-Markovianity in both the SBM and the SFM. Some
concerned discussions and the main conclusions of this paper

are drawn in Sec. IV. Additionally, in the Appendix, we derive
the exact quantum master equations of the SBM and the SFM
under the RWA by using the non-Markovian quantum state
diffusion method.

II. FORMULATION

In this section, first we would like to show how to derive
the HEOM for the SBM and the SFM. The HEOM is a set of
time-local differential equations for reduced density matrices
of the quantum subsystem, which was originally proposed by
Tanimura and his co-workers [23]. Second, we briefly outline
the basic idea of the non-Markovianity measure in terms of
the trace distance. For a better numerical performance, we
made some slight modifications to the definition of the non-
Markovianity compared with the original one in Ref. [5].

A. The HEOM approach

Let us consider a quantum open system whose Hamiltonian
can be described by

Ĥ = Ĥs +
∑

k

ωkĉ
†
kĉk +

∑
k

(g∗
k L̂ĉ

†
k + gkL̂

†ĉk), (1)

where Ĥs is the quantum subsystem of interest. In this paper,
we assume Ĥs = 1

2εσ̂z, where ε is the transition frequency
of the qubit system. Operator L̂ denotes the quantum subsys-
tem’s operator coupled to the surrounding environment, and
parameters gk are complex numbers quantifying the coupling
strength between the quantum subsystem and its environment.
Operators ĉk and ĉ

†
k are the annihilation and creation operators

of the kth environmental mode with frequency ωk , respectively.
If ĉk and ĉ

†
k satisfy the canonical commutation relations,

i.e., [ĉk,ĉ
†
k′] = δkk′ , the Hamiltonian of Eq. (1) refers to a

extended SBM. On the other hand, if ĉk and ĉ
†
k obey the

canonical anticommutation relations, i.e., {ĉk,ĉ
†
k′ } = δkk′ , the

whole system is a extended SFM.
The dynamics of the Hamiltonian Ĥ is governed by

the Schrödinger equation ∂t |�sb(t)〉 = −iĤ |�sb(t)〉, where
|�sb(t)〉 is the wave function of the whole quantum open
system. Practically, due to the large number of degrees
of freedom in the environment, it is impossible to exactly
solve this Schrödinger equation. However, by introducing the
bosonic [31] or the fermionic [32] coherent state |z〉 ≡ ⊗

k |zk〉
with ĉk|zk〉 = zk|zk〉, one can recast the Schrödinger equation
into a stochastic Schrödinger equation of the quantum state
diffusion type as follows [18–22]:

∂

∂t
|ψt (z∗)〉 = −iĤs |ψt (z∗)〉 + L̂z∗

t |ψt (z∗)〉

− L̂†
∫ t

0
dsC(t − s)

δ

δz∗
s

|ψt (z∗)〉, (2)

where |ψt (z∗)〉 ≡ 〈z|�sb(t)〉 is the total pure-state wave func-
tion under the bosonic or the fermionic coherent-state repre-
sentation, the variable zt ≡ i

∑
k gke

−iωkt zk can be interpreted
as a stochastic process and satisfies M{zt } = M{z∗

t } = 0
and M{ztz∗

s } = C(t − s) where M{·} denotes the statistical
mean over all the possible stochastic processes, and C(t) ≡
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∑
k |gk|2e−iωkt is the bath correlation function at zero temper-

ature. It is convenient to encode the frequency dependence
of the interaction strengths in the bath spectral function
J (ω) ≡ ∑

k |gk|2δ(ω − ωk); then the bath correlation function
becomes C(t) = ∫

dωJ (ω)e−iωt . The non-Markovian quan-
tum state diffusion equation given by Eq. (2) is applicable to
an arbitrary bath spectral function J (ω), and no approximation
is used in the derivation of Eq. (2).

The explicit expression of the coherent state |zk〉 and
the definition of the statistical mean operator M{·} have
slight differences between the bosonic environment and the
fermionic environment. However, these differences would
not influence the derivation of Eq. (2). The physics behind
the quantum state diffusion equation of Eq. (2) is that
the environment’s effect on the quantum subsystem can be
represented as stochastic noises exerting different influences
on the quantum subsystem. These noises can have memory
effects and are said to be colored, which means these stochastic
processes are non-Markovian. The main distinction between
the SBM and the SFM is the mathematical properties of
the noise entering the stochastic Schrödinger equation: the
influence of a bosonic environment can be described exactly
by a complex-valued colored Gaussian process [18–20],
while a fermionic environment requires the use of a colored
Grassmannian noise [21,22]. In the Markovian limit, the time
scales of the environment are taken to be much shorter than
the time scales of the quantum subsystem, all these stochastic
noises reduce to white noises, and the bath correlation function
C(t) becomes a Dirac-δ function which leads to a memoryless
process [18–22].

As shown in Eq. (2), the general non-Markovian quantum
state diffusion equation contains a functional derivative with
respect to the stochastic noise under a memory integral, which
is not very convenient for a numerical simulation. However,
if the bath correlation function can be expressed as a sum of
exponential functions, this problem can be solved by making
use of the idea of the HEOM [17,33]. In this paper, we consider
the simplest case where the bath correlation function can be
written as one exponential function, i.e.,

C(t) = αe−βt , (3)

where α and β are assumed to be complex numbers. For
the more general case, i.e., C(t) = ∑

j αj e
−βj t , this scheme

still works [17,33]. Under the assumption in Eq. (3), one can
replace the non-Markovian quantum state diffusion equation
in Eq. (2) with a set of hierarchial equations of the pure-state
wave function |ψt (z∗)〉. For the bosonic environment case, the
hierarchical equations are given by [33]

∂

∂t

∣∣ψ (m)
t

〉 = (−iĤs − mβ + L̂z∗
t )

∣∣ψ (m)
t

〉
+mαL̂

∣∣ψ (m−1)
t

〉 − L̂†∣∣ψ (m+1)
t

〉
, (4)

where∣∣ψ (m)
t

〉 = ∣∣ψ (m)
t (z∗)

〉 ≡
[ ∫ t

0
dsC(t − s)

δ

δz∗
s

]m

|ψt (z∗)〉

are auxiliary pure-state wave functions. The hierarchy equation
of pure-state wave functions in Eq. (4) no longer contains
the functional derivative. However, Eq. (4) still contains the

stochastic noise, which hinders the efficiency of a numerical
simulation. To remove these stochastic noises, one needs
to take the statistical mean over all the possible stochastic
processes, which is equivalent to tracing out the degree of the
freedom of the environment; then the reduced density matrix
of the quantum subsystem in the bosonic bath case is given by
[18–20] �̂s(t) = �̂t = M{|ψt (z∗)〉〈ψt (z∗)|}. By making use of
Eq. (4) and the definition of �̂s(t), the HEOM of the SBM can
be obtained as follows [17]:

d

dt
�̂

(m,n)
t = (−iĤ×

s − mβ − nβ∗)�̂(m,n)
t

+mαL̂�̂
(m−1,n)
t + nα∗�̂(m,n−1)

t L̂†

− L̂†×�̂
(m+1,n)
t + L̂×�̂

(m,n+1)
t , (5)

where X̂×Ŷ ≡ [X̂,Ŷ ] = X̂Ŷ − Ŷ X̂ and �̂
(m,n)
t ≡

M{|ψ (m)
t (z∗)〉〈ψ (n)

t (z∗)|} are auxiliary reduced density
matrices. If L̂ is a self-adjoint dissipation operator, i.e.,
L̂ = L̂†, Eq. (5) recovers the same HEOM which is derived by
employing other methods, such as the stochastic decoupling
scheme in Ref. [25] and the Feynman-Vernon influence
functional approach in Ref. [23].

Similarly, the hierarchy equation of pure-state wave func-
tions for the SFM is given by [17]

∂t

∣∣ψ (m)
t

〉 = [−iĤs − mβ + (−1)mL̂z∗
t ]

∣∣ψ (m)
t

〉
+�(m)αL̂

∣∣ψ (m−1)
t

〉 − L̂†∣∣ψ (m+1)
t

〉
, (6)

where �(x) ≡ xmod2. Due to the anticommutative multi-
plication induced by the Grassmannian process, it is very
hard to directly numerically simulate Eq. (6) which is quite
different from that of the bosonic environment case. This
problem can be naturally eliminated by taking the average
over all the realizations of the noises, and the reduced density
matrix of the quantum subsystem in the fermionic environment
case is [21,22] �̂s(t) = �̂t = M{|ψt (z∗)〉〈ψt (−z∗)|}. Then, the
HEOM of the SFM is given by [17]

d

dt
�̂

(m,n)
t = (−iĤ×

s − mβ − nβ∗)�̂(m,n)
t

+�(m)αL̂�̂
(m−1,n)
t + �(n)α∗�̂(m,n−1)

t L̂†

+ [
(−1)n�̂(m+1,n)

t L̂† − L̂†�̂(m+1,n)
t

]
+ [

(−1)mL̂�̂
(m,n+1)
t − �̂

(m,n+1)
t L̂

]
, (7)

where auxiliary reduced density matrices are defined as
�̂

(m,n)
t = M{|ψ (m)

t (z∗)〉〈ψ (n)
t (−z∗)|}.

The initial-state conditions of the auxiliary matrices for both
the SBM and the SFM are �̂

(0,0)
t = �̂s(0) and �̂

(m>0,n>0)
t = 0.

In numerical simulations, we need to truncate the number of
hierarchical equations for a sufficiently large integer N , which
means all the terms of �̂

(m,n)
t with m + n > N are set to be

zero. Then terms of �̂
(m,n)
t with m + n � N form a closed

set of ordinary differential equations, which can be solved
directly by using the traditional Runge-Kutta method. It is
necessary to point out that the HEOM approach is independent
of the usual Markovian approximation, the RWA, and the
perturbative approximation; in this sense, it can be regarded as
a rigorous numerical method.
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B. The measure of non-Markovianity

In this paper, we adopt the trace distance as the quantity to
characterize the non-Markovian memory effect in quantum
open systems. One of the most important features of the
non-Markovianity is the emergence of the recoherence or the
information backflow from the environment to the subsystem,
which can be reflected by the rate of change in the trace
distance between two physical initial states. The trace distance
of two quantum states ρ̂1 and ρ̂2 is defined by [5] D(ρ̂1,ρ̂2) ≡
1
2‖ρ̂1 − ρ̂2‖1, where ‖X̂‖1 ≡ Tr

√
X̂†X̂ is the trace norm or the

Schatten one-norm of an arbitrary operator X̂. For a initial-state
pair ρ̂1,2(0) and a given dynamical map �̂t that generates
the time evolution ρ̂(t) = �̂t [ρ̂(0)], one can define the rate
of change of the trace distance as follows: � [t ; ρ̂1,2(0)] ≡
d
dt

D[ρ̂1(t),ρ̂2(t)]. When � [t ; ρ̂1,2(0)] < 0, ρ̂1(t) and ρ̂2(t)
approach each other, this can be understood as the quantum
information flows from the quantum subsystem to the environ-
ment. When � [t ; ρ̂1,2(0)] > 0, ρ̂1(t) and ρ̂2(t) are away from
each other, this can be interpreted as the quantum information
flows back to the quantum subsystem. In this spirit, a measure
for the non-Markovianity of a quantum process can be defined
by [5]

N ≡ max
ρ̂1,2(0)

∫
�>0

dt� [t ; ρ̂1,2(0)], (8)

where the time integration is extended over all time intervals
t ∈ [0, + ∞) in which � [t ; ρ̂1,2(0)] is positive, and the
maximum runs over all possible initial-state pairs ρ̂1,2(0).

The definition of non-Markovianity in Eq. (8) is not suitable
for a numerical simulation in the following two aspects: first,
it is impossible to numerically simulate the dynamics of the
subsystem from zero to +∞, which means we need a cutoff
time tc for the time integration in Eq. (8). Second, it is not
very convenient to estimate whether or not � [ti ; ρ̂1,2(0)] is
positive at each given time t = ti . Thus, we make some
slight modifications in this paper: (i) we only focus on the
non-Markovianity accumulated during a finite time interval
t ∈ [0,tc], where tc is the upper bound of the time integration;
and (ii) we change the original integrand and its corresponding
integrating intervals in Eq. (8) by a simple algebra that
would not change the value of the non-Markovianity. Then an
equivalent expression of the non-Markovianity can be written
as follows:

N ≡ max
ρ̂1,2(0)

1

2

∫ tc

0
dt{|� [t ; ρ̂1,2(0)]| + � [t ; ρ̂1,2(0)]}. (9)

These modifications are also widely adopted in many previous
studies [11,16].

According to Refs. [16,34,35], the calculation of the non-
Markovianity N can be further simplified by choosing the two
initial states as two orthogonal states that lie on the boundary
of the space of physical states. For the qubit-system case, this
orthogonality implies that both of the two initial states must
be pure states [34]. Thus, in our numerical simulations, we
assume the expressions of these initial-state pairs are given by
ρ̂1(0) = |ϕs(0)〉〈ϕs(0)| and ρ̂2(0) = |ϕ⊥

s (0)〉〈ϕ⊥
s (0)|, with

|ϕs(0)〉 = cos

(
θ

2

)
|e〉 + eiφ sin

(
θ

2

)
|g〉,

and

|ϕ⊥
s (0)〉 = sin

(
θ

2

)
|e〉 − eiφ cos

(
θ

2

)
|g〉,

where |e〉 and |g〉 are the excited and the ground states of
Pauli operator σ̂z, respectively, and the initial-state parameters
θ ∈ [0,π ] and φ ∈ [0,2π ]. By randomly generating a suffi-
ciently large sample of initial-state parameter combinations
(θi,φi), one can find the optimal initial-state pair for the
non-Markovianity. According to the definition in Eq. (9), the
measure N is non-negative, and we have N = 0 if and only if
the process is Markovian. A nonzero value N > 0 implies a
non-Markovian process. It is noted that the non-Markovianity
measure N represents a physically measurable quantity and
has been demonstrated in several recent experiments [36].

III. RESULTS

In this paper, we assume the dissipation operator of
the quantum subsystem is given by L̂ = σ̂− + χσ̂+, where
σ̂− = σ̂

†
+ ≡ 1

2 (σ̂x − iσ̂y). Parameter χ is a real number and
χ ∈ [0,1]. Then, the Hamiltonian given by Eq. (1) can be
recast as

Ĥχ = 1

2
εσ̂z +

∑
k

ωkĉ
†
kĉk +

∑
k

(g∗
k σ̂−ĉ

†
k + gkσ̂+ĉk)

+χ
∑

k

(g∗
k σ̂+ĉ

†
k + gkσ̂−ĉk). (10)

When χ = 0, all of the counter-rotating-wave terms are
removed and this Hamiltonian is under the RWA, while when
χ = 1, all the contributions of the counter-rotating-wave terms
are taken into consideration and this Hamiltonian is beyond
the RWA. In this sense, the parameter χ stands for the strength
of the counter-rotating-wave terms and can build a bridge
between the RWA regime and the non-RWA regime. The
introduction of the parameter χ helps us to get a deeper
understanding of the effect of counter-rotating-wave terms on
the non-Markovianity in quantum open systems.

In our numerical simulations, we assume the environment
is initially prepared in its vacuum state

⊗
k |0k〉 and the bath

density spectral function J (ω) has the Lorentz spectrum form
[18–22]

JL(ω) = 1

2π

γ0λ
2

(ω − ε + �)2 + λ2
, (11)

where λ defines the spectral width of the coupling, γ0 can
be approximately interpreted as the system-bath coupling
strength, and � is the detuning parameter which makes a
shift from the transition frequency of the qubit system. Under
this definition of the spectral function in Eq. (11), the bath
correlation function C(t) is given by

CL(t) = 1
2γ0λ exp[−(λ + iε − i�)t]. (12)

It is quite obvious to see that the bath correlation function
CL satisfies the requirement [namely, Eq. (3)] to perform
the HEOM scheme. In order to compare with previous
studies reported in Refs. [5,16], in this paper, we discuss
the dependence of the non-Markovianity on the value of the
detuning parameter �.
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FIG. 1. The non-Markovianity N for the SBM with different
initial-state parameters: optimal initial-state pair in our numerical
simulation (filled red circles), (θ,φ) = (π/8,0) (open red triangles),
(θ,φ) = (π/4,0) (open red squares), and (θ,φ) = (3π/8,0) (open red
diamonds). The filled blue stars are the result of the non-Markovianity
under RWA with optimal initial-state parameters (θ,φ) = (0,0). Other
parameters are chosen as λ = 0.1, γ0 = 0.02, ε = 2, and the upper
bound of the time integration is tc = 50.

A. The bosonic environment case

In this section, we consider the bosonic environment case.
For the RWA case χ = 0, our numerical simulations tell us that
the maximization of the non-Markovianity N is attained for
the initial-state parameter θ = φ = 0, which is consistent with
previous studies [5]. As seen in Fig. 1, the non-Markovianity
N remains zero when � is very small and becomes nonzero at
certain critical point �c (in Fig. 1, �c � 3.5λ), in which it first
increases then decreases with the detuning parameter �. This
result indicates that the decoherence or the relaxation process
in the RWA case is Markovian when 0 < � < �c and the
non-Markovianity occurs for � > �c. A crossover between
Markovian and non-Markovian regimes appears at � = �c.

For the non-RWA case χ = 1, we find that the value
of the non-Markovianty N is obviously larger than that of
the RWA case, especially in the regions where � is small.
Thus, the non-RWA case displays a stronger non-Markovian
phenomenon compared with that of the RWA situation. It is
also shown that the decoherence or the relaxation process in
the non-RWA case is non-Markovian for the entire range of
� ∈ [0,15λ] (in Fig. 1, the non-Markovianity N at � = 0
is very close to zero, but is still positive). This phenomenon
is very interesting because it suggests that the SBM without
the RWA generically exhibits non-Markovian behavior. The
same result is also noted in Ref. [37] in which the authors
demonstrated that the “eternal” non-Markovianity is typical
for the SBM beyond the RWA. Strikingly, the non-RWA
case yields at least one order of magnitude greater non-
Markovianity compared with that obtained from the RWA.
Moreover, we also consider the cases χ ∈ (0,1), as seen in
Fig. 2, with the increase of χ , which means that with the
enhancement of the influence of the counter-rotating-wave
terms, the non-Markovianty N becomes larger. These results
suggest that the counter-rotating-wave terms may enhance the
non-Markovianity, which is in agreement with previous results
[16,37].

FIG. 2. The non-Markovianity N for the SBM with different χ ’s:
χ = 1 (red circles), χ = 0.75 (magenta triangles), χ = 0.5 (green
diamonds), χ = 0.25 (purple squares), and χ = 0 (blue stars). Other
parameters are chosen the same as Fig. 1.

It is well accepted that the RWA can be regarded as a good
approximation if the system-environment coupling strength is
very weak [1,38]. This result implies that the difference of the
non-Markovianity induced by the counter-rotating-wave terms
should vanish with the decrease of the system-environment
coupling strength. To check this conclusion, we plot the N −
NRWA as a function of the coupling constant γ0 in Fig. 3. As
seen in Fig. 3, the value of N − NRWA linearly decreases as
the system-bath coupling strength becomes small. This result
meets our expectation and demonstrates that the influence of
the counter-rotating-wave terms on the non-Markovianity is
negligible only in the weak-coupling regime.

B. The fermionic environment case

Almost all of the existing studies of the non-Markovianity
in a quantum open system have restricted their attention to
the SBM and to whether the quantum statistical property of
environmental modes has effects on the non-Markovianity. To

FIG. 3. N − NRWA vs the system-bath coupling constant γ0 for
the SBM with different detuning parameters: � = 5λ (blue squares),
� = 10λ (green triangles), � = 15λ (red circles). Other parameters
are chosen the same as Fig. 1.
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FIG. 4. The non-Markovianity N for the SFM with different χ ’s:
χ = 1 (red circles), χ = 0.8 (magenta triangles), χ = 0.6 (green
diamonds), χ = 0.3 (purple squares), and χ = 0 (blue stars). Other
parameters are chosen the same as Fig. 1.

address this question, we extend our analysis to the fermionic
environment situation in this section.

As seen in Fig. 4, we find that the consideration of
the counter-rotating-wave terms in the SFM may greatly
enhance the non-Markovianity which is similar to the SBM
case. Moreover, we also confirm that the difference of the
non-Markovianity induced by the counter-rotating-wave terms
linearly grows with the increase of the system-environment
coupling strength in the fermionic environment case. Our
numerical simulations show that the non-Markovianity N of
the SFM under the RWA has the same value as that of the
SBM case. In other words, the value of the non-Markovianity
N is independent of the quantum statistical property of
environmental modes under the RWA. In fact, one exactly
derives the quantum master equations for the SBM and the
SFM under the RWA. As we show in the Appendix, these two
quantum master equations are the same at zero temperature,
which means the decoherence or the relaxation processes of
the SBM and the SFM are identical in the RWA case. Similar
results are also reported in Refs. [39] in which the authors
found that the SBM (a two-level system coupled to a set
of harmonic oscillators) and the SFM (a two-level system
coupled to a set of spins which are equivalent to fermions with
a Jordan-Wigner transformation) share the same dynamical
behavior at zero temperature.

Next we explore the influence of the quantum statistical
property of environmental modes (Bose-Einstein statistics or
Fermi-Dirac statistics) on the non-Markovianity beyond the
RWA. We define a quantity δN ≡ |NB − NF| to detect the
modification of the non-Markovianity due to the different
quantum statistical properties of environmental modes. In
Fig. 5, we display the δN as a function of the system-
environment coupling strength γ0. It is shown that the value
of δN becomes large with the increase of γ0, which implies
that the modification of the non-Markovianity due to the
different quantum statistical properties of environment modes
may be very obvious in the strong-coupling regime. Our
finding also suggests that the reduced dynamics in a bosonic
environment and a fermionic environment is equivalent in the

FIG. 5. δN ≡ |NB − NF| beyond the RWA vs the system-bath
coupling constant γ0 with different �: � = 5λ (green triangles),
� = 10λ (blue squares), � = 15λ (red circles). Other parameters are
chosen the same as Fig. 1.

weak-coupling regime. This result is in agreement with that of
Ref. [40].

This interesting phenomenon can be physically understood
as follows: the main difference between the bosonic envi-
ronment and the fermionic environment can be traced back
to the Pauli exclusion principle. For the fermionic environ-
ment, the Pauli exclusion principle restricts the multifermion
excitation process in each individual environmental mode,
say |0〉k → (c†k)�|0〉k is definitely forbidden if � � 2, while
for the bosonic environment, such a multiboson excitation
process is allowed without the upper limit of �. Generally
speaking, the multiboson excitation process often happens
in the strong-coupling regime or at high temperature, and
thus the dynamical behaviors of the SBM and the SFM
can be regarded as identical in the weak-coupling regime
or at low temperature due to the fact that the multiboson
excitation process is negligible in these two situations. This
explanation is consistent with discussions shown in the
Appendix: the RWA in the SBM naturally forbids these
multiboson excitation processes if the environment is initially
prepared in its vacuum state

⊗
k |0k〉 (the RWA requires the

total excitation number should be conservative). That is why,
under the RWA, the SBM and the SFM share the same quantum
master equation. However, at high temperature or without the
RWA, such a restriction disappears, and we expect that the
dynamical behaviors of the SBM and the SFM are distinctly
different. This conclusion is also in agreement with previous
studies [39].

IV. DISCUSSIONS AND CONCLUSIONS

Here we present a brief discussion about the introduction
of the parameter χ in Eq. (10). Most of the existing articles
of quantum open systems only focus on two particular limits:
the system totally with and without the RWA. In this paper, we
let the strength of the counter-rotating-wave terms be tunable
by introducing the parameter χ , which is a very intuitive way
to discuss the relationship between the counter-rotating-wave
terms and the non-Markovianity. The parameter χ leads to an
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extended model in which we can bridge these two particular
limits in a continuous path. Furthermore, we take the parameter
χ into account for being not only motivated by theoretical
curiosity but also inspired by the related discussion in the
single-mode version of SBM, namely, the quantum Rabi model
[41]. In fact, for this light-matter coupled system, the tunable
strength of the counter-rotating-wave terms leads to the so-
called anisotropy [42]. It has been found that the existence of
anisotropy can significantly affect many interesting properties
of the quantum Rabi model, e.g., the universality of the
quantum phase transition [43], the quantum Fisher information
[44], and the squeezing of the light field [45]. There are already
several proposals to realize the anisotropic form coupling in
some potential experimental candidates, such as the cavity
quantum electrodynamics (QED), the superconducting circuit,
and the spin-orbit-coupling systems [42]. In Ref. [42], the
authors found that the experimental data of the Bloch-Siegert
shift in the ultrastrong-coupling regime can be perfectly fitted
in terms of the anisotropic Rabi model which is neither totally
with nor without the RWA. There is even a proposal for the
realization of the anisotropic counter-rotating-wave coupling
in a many-body system [46]. Therefore, we are motivated to
explore the non-Markovian effect in quantum open systems in
a way that the strength of the counter-rotating-wave terms is
controlled by the tunable parameter χ .

In conclusion, we investigate the effect of counter-rotating-
wave terms on the non-Markovianity in quantum open systems
by employing the non-Markovian quantum state diffusion
approach along with the HEOM. This numerical technique
is applicable for both the SBM and the SFM without the usual
Markovian, rotating-wave, and perturbative approximations.
It is found that the counter-rotating-wave terms are able to
enhance the observed non-Markovianity in quantum open
systems whether the environment is composed of bosons or
fermions. This result suggests that the RWA may inherently or
inevitably introduce the Markovian assumption. We also find
that the modification of the non-Markovianity induced by the
counter-rotating-wave terms, i.e., N − NRWA, becomes small
as the system-bath coupling strength decreases, regardless of
the SBM or the SFM. This finding means that the influence
of the counter-rotating-wave terms can be ignored in the
weak-coupling regime, which is consistent with many previous
studies about the application scope of the RWA. Moreover, it
is shown that the deviation of the non-Markovianity due to
the different quantum statistical properties of environmental
modes, i.e., δN , becomes large with the increase of system-
bath coupling strength, which implies that the influence of
quantum statistical properties of environmental modes on
the non-Markovianity of quantum open systems becomes
significant in the strong-coupling regime.

Though these results are achieved in the detuned Lorentz
spectrum, our numerical scheme can be expected to generalize
to other bath spectral functions. In recent years, the HEOM
method has been extended to arbitrary spectral functional
forms [47]. It would be very interesting to recheck the
relationship between the non-Markovianity and the RWA
in other bath spectral density functions J (ω) cases, such
as the sub-Ohmic, Ohmic, and super-Ohmic spectrums. In
addition, the non-Markovian quantum state diffusion method
can be generalized to the finite-temperature environment

situation [19,48], in which one can map the finite-temperature
environment onto a larger zero-temperature environment by
using the thermofield method [49], which doubles the number
of the stochastic processes required. This result indicates that
the numerical scheme proposed in this paper can also be
adopted to explore the effect of environmental temperature
on the non-Markovianity. Finally, due to the generality of the
quantum open system, we expect our results to be of interest
for a wide range of experimental applications in quantum
computation and quantum information processing.
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APPENDIX

In this appendix, we would like to derive the exact master
equation of Eq. (10) under the RWA by employing the
non-Markovian quantum state diffusion approach. Regardless
of the bosonic or the fermionic environment cases, the
non-Markovian quantum state diffusion equation for the
Hamiltonian in Eq. (1) is given by Eq. (2). The main difficulty
in solving this stochastic differential equation comes from
the exact treatment of the functional derivation. Following
the scheme proposed in Refs. [18–22], one can replace the
functional derivative with a time-dependent operator of the
form

δ

δz∗
s

|ψt (z∗)〉 = Ô(t,s,z∗)|ψt (z∗)〉, (A1)

and the Ô(t,s,z∗) operator can be functional expanded as
follows:

Ô(t,s,z∗) = Ô0(t,s) +
∫ t

0
Ô1(t,s,ν1)z∗

ν1
dν1

+
∫ t

0

∫ t

0
Ô2(t,s,ν1,ν2)z∗

ν1
z∗
ν2

dν1dν2 + · · · . (A2)

The necessary condition for the Ô(t,s,z∗) operator to contain
a finite number of noise-dependent terms in this expansion
is L̂×L̂× . . . L̂×Ĥs = 0. And the equation of motion of
Ôn(t,s,ν1,ν2, . . . ,νn) is determined by the following consis-
tency condition:

∂

∂t

δ

δz∗
s

|ψt (z∗)〉 = δ

δz∗
s

∂

∂t
|ψt (z∗)〉, (A3)

where initial conditions are given by Ô0(t,t) = L̂ and
Ôn(t,t,ν1,ν2, . . . ,νn) = 0 for n � 1.

For the RWA case, i.e., Ĥs = 1
2εσ̂z and L̂ = σ̂−, only the

zero-order terms in the functional expansion are required
[18–22], namely, Ô(t,s,z∗) = Ô0(t,s) = f (t,s)σ̂−, where
f (t,s) is a unknown time-dependent coefficient. By substi-
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tuting the above expression into the consistency condition,
one can find that f (t,s) needs to satisfy the following self-
consistent equation:

∂

∂t
f (t,s) = [iε + F (t)]f (t,s), (A4)

where

F (t) =
∫ t

0
C(t − s)f (t,s)ds,

with f (t,s = t) = 1. Then, the non-Markovian quantum state
diffusion equation in Eq. (2) can be rewritten as

d

dt
|ψt (z∗)〉 = − i

2
εσ̂z|ψt (z∗)〉 + σ̂−z∗

t |ψt (z∗)〉
− F (t)σ̂+σ̂−|ψt (z∗)〉.

The deterministic master equation can be derived from
the above stochastic differential equation by statistical mean
over all the possible stochastic processes. For the bosonic
environment case,

d

dt
�̂t =M

{−→
d

dt
|ψt (z∗)〉〈ψt (z∗)|

}

+ M
{
|ψt (z∗)〉〈ψt (z∗)|

←−
d

dt

}

= − i

2
εσ̂z�̂t + i

2
ε�̂t σ̂z

+ σ̂−M{z∗
t |ψt (z∗)〉〈ψt (z∗)|} − F (t)σ̂+σ̂−�̂t

+ M{|ψt (z∗)〉〈ψt (z∗)|zt }σ̂+ − F ∗(t)�̂t σ̂+σ̂−,

where
←−
d and

−→
d are the left and right time derivative with

respect to |ψt (z∗)〉, respectively. The above equation can be
further simplified by making use of the Novikov’s theorem
[20],

M{|ψt (z∗)〉〈ψt (z∗)|zt }

= M
{ ∫ t

0
dsC(t − s)

−→
δ

δz∗
s

|ψt (z∗)〉〈ψt (z∗)|
}

= F (t)σ̂−�̂t ,

and

M{z∗
t |ψt (z∗)〉〈ψt (z∗)|}

= M
{ ∫ t

0
dsC∗(t − s)|ψt (z∗)〉〈ψt (z∗)|

←−
δ

δz∗
s

}

= F ∗(t)�̂t σ̂+,

where
←−
δ and

−→
δ are the left and right functional derivative

with respect to z∗
s , respectively. Finally, the exact quantum

master equation of the SBM with the RWA is given by

d

dt
�̂t = − i

2
ε[σ̂z,�̂t ] + F (t)[σ̂−�̂t σ̂+ − σ̂+σ̂−�̂t ]

+ F ∗(t)[σ̂−�̂t σ̂+ − �̂t σ̂+σ̂−].
(A5)

If the spectral function J (ω) is the Lorentz spectrum with
zero detuning, i.e., � = 0, the self-consistent equation of F (t)

in Eq. (A4) becomes

d

dt
F (t) = F 2(t) − λF (t) + 1

2
γ0λ.

The analytical expression of the above equation is

F (t) = F ∗(t)

= 1

2

{
λ − � tanh

[
1

2
�t + arc tanh

(
λ

�

)]}
,

where � =
√

λ2 − 2γ0λ; then the quantum master equation of
Eq. (A5) recovers the result reported in Ref. [50], where the
stochastic decoupling scheme proposed by Shao is adopted.
The exact solution of Eq. (A5) can be expressed in the standard
basis {|e〉,|g〉} as follows:

�̂t =
[

�ee(0)G2(t) �eg(0)G(t)e−iεt

�ge(0)G(t)eiεt �gg(0)G2(t)

]
,

where the decay factor is given by

G(t) = −
∫ t

0
F (s)ds

= exp

(
−1

2
λt

)[
cosh

(
1

2
�t

)
+ λ

�
sinh

(
1

2
�t

)]
.

Compared with previous results reported in Refs. [1,11], a
phase shift e±iεt occurs in the nondiagonal elements in our
expression. However, considering the fact that the definition
of the non-Markovianity adopted in this paper is invariant
under a time-local unitary transformation [16], one can easily
eliminate this phase shift, which does not change the value
of the non-Markovianity, by using �̂t → Û (t)�̂t Û

†(t) with
Û (t) = exp( i

2εtσ̂z). Then one can recover the same results
in Refs. [1,11], which convinces us that the non-Markovian
quantum state diffusion approach truly captures the dynamical
behavior of a quantum open system.

For the fermionic environment case, the deterministic
quantum master equation can be derived by

d

dt
�̂t =M

{−→
d

dt
|ψt (z∗)〉〈ψt (−z∗)|

}

+ M
{
|ψt (z∗)〉〈ψt (−z∗)|

←−
d

dt

}

= − i

2
εσ̂z�̂t + i

2
ε�̂t σ̂z

+ σ̂−M{z∗
t |ψt (z∗)〉〈ψt (−z∗)|} − F ∗(t)�t σ̂+σ̂−

− M{|ψt (z∗)〉〈ψt (−z∗)|zt }σ̂+ − F (t)σ̂+σ̂−�t .

Making use of the Novikov theorem of the Grassmannian noise
[21,22],

M{|ψt (z∗)〉〈ψt (−z∗)|zt }

= −M
{ ∫ t

0
dsC(t − s)

−→
δ

δz∗
s

|ψt (z∗)〉〈ψt (−z∗)|
}

= −F (t)σ̂−�̂t ,
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and

M{z∗
t |ψt (z∗)〉〈ψt (−z∗)|}

= −M
{ ∫ t

0
dsC∗(t − s)|ψt (z∗)〉〈ψt (−z∗)|

←−
δ

δz∗
s

}

= M
{ ∫ t

0
dsC∗(t − s)|ψt (z∗)〉〈ψt (−z∗)|

←−
δ

δ(−z∗
s )

}

= F ∗(t)�̂t σ̂+,

one can obtain the exact quantum master equation of the SFM
which has the same expression as that of Eq. (A5). The same
dynamical behavior observed in the RWA case indicates that
it is hard to identify a distinction between the bosonic and
fermionic environments from the viewpoint of the reduced
dynamics. The fact that the SBM and the SFM under the RWA
share the same quantum master equation is not a coincidence
because the RWA restricts the multiboson excitation process,
i.e., |0〉k → (c†k)�|0〉k with � � 2, at zero temperature, which

leads to the same structures of the bosonic and the fermionic
environments. This result suggests that the RWA may eliminate
the peculiarity induced by the quantum statistical property of
environmental modes at zero temperature.

It is necessary to point out that the decoherence or the
relaxation dynamics in bosonic and fermionic environments
are generally different for the case χ �= 0. This is because
the higher-order terms of the functional expansion in Eq. (A2)
also contribute to the dynamical behavior. We strongly suspect
that these higher-order terms are able to enhance the non-
Markovianity regardless of the SBM or the SFM. In the non-
RWA case, no exact closed master equation can be obtained
by the process outlined in this appendix (the non-Markovian
quantum state diffusion method) due the fact that the number of
the functional expansion of the Ô(t,s,z∗) operator in Eq. (A2)
is infinite (because L̂×L̂× . . . L̂×Ĥs �= 0 in the non-RWA
case). However, it has been reported that an exact closed
quantum master equation of the SBM without the RWA can be
derived by employing the dynamical map technique proposed
in Ref. [51].
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