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The Casimir force between macroscopic bodies is well understood, but not the Casimir force inside bodies.
Guided by a physically intuitive picture, we develop the macroscopic theory of the renormalized Casimir stress
inside planar materials (where the electromagnetic properties vary in one direction). Our theory may be applied
in predicting how inhomogeneous fluids respond to Casimir forces.
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I. INTRODUCTION

Casimir [1] and van der Waals [2] forces are the subject
of a mature research area [3–10] enjoying a renaissance [11]
since the first precision measurement of the Casimir force [12].
Current theory [9] is able to predict the force between
macroscopic bodies with an accuracy only limited by the
knowledge of the material parameters. Yet, surprisingly [13],
after almost 70 years of research, while theory describes the
Casimir force between bodies, the force inside macroscopic
bodies is poorly understood. In this paper, we develop from a
physically intuitive picture the macroscopic theory of the stress
that gives rise to Casimir forces inside inhomogeneous planar
media. Our result agrees with a previous ad hoc procedure [14],
giving both mathematical and physical justification to a
conjecture that was only tested numerically so far. Our theory is
likely to be extendable; it may open the gate to the computation
of Casimir forces inside arbitrary materials.

In this paper, we consider the force density due to vacuum
fluctuations in dielectric materials. This force density drives
the local mechanical motion inside a dielectric body, for
example inside a liquid, according to the laws of fluid
mechanics. As the force is given by momentum transfer
from quantum fluctuations, it appears mathematically as the
divergence of a stress σ ; the force on a fluid element is then
the surface integral of the stress. According to Pitaevskii [15],
σ is expressed by the vacuum expectation value of Maxwell’s
stress tensor, appropriately renormalized. This stress is the
central quantity of our paper.

Note that the Casimir and the closely related van der Waals
force density must vanish inside piecewise homogenous mate-
rials, for otherwise such materials would become unstable.
For example, liquid paint would always form lumps—and
not remain liquid, unless the van der Waals forces between
its constituents are naturally balanced out, such that no net
force remains inside the liquid. Only in the absence of such
internal forces, fluids may stay homogeneous. Therefore, in
piece–wise homogeneous materials, Casimir forces may only
act upon boundaries, i.e., between bodies [16].

In inhomogeneous media, however, the Casimir effect can
act inside the material. In solids, the Casimir stress is negligible
in comparison with the interatomic forces [17], but in fluids it
may build up sufficient pressure forcing them to move until an
equilibrium is reached. In Ref. [18] we predict, applying the
tools of this paper, that the internal Casimir force is particularly
strong near edges in the refractive–index profile. This is where
chances appear to be best for experimental tests.

Our paper develops the theoretical tools for predicting such
effects—for calculating how inhomogeneous fluids respond to
Casimir forces. We consider the simplest nontrivial class of
inhomogeneous materials: planar media. These are materials
where the electric permittivity ε and magnetic permeability
μ vary in only one spatial direction. We also assume that
both ε and μ are scalars (isotropic media). Note that in
using ε and μ we are using the concepts of macroscopic
electromagnetism [19]; we do not need to resort to the
microscopic properties of materials for getting a consis-
tent theoretical description. Our theory thus indicates that
macroscopic electromagnetism—plus quantum fluctuations—
is sufficient to predict the Casimir force, which is far from
being obvious.

Let us begin by developing heuristic arguments and intu-
itive pictures for Casimir forces, visualizing the theoretical
problems they pose and our solutions. The root of the
problem has been the interplay between quantum fluctuations
and electromagnetism that creates the Casimir force in the
first place. Figure 1 illustrates two fundamentally different
theoretical concepts of quantum fluctuations. One is Casimir’s
idea [1], inspired by Bohr [5,10], that vacuum fluctuations
of the electromagnetic field are responsible for the effect
[Fig. 1(a)], the other Schwinger’s concept [4], consistent with
Lifshitz’s theory [3], of fluctuating sources interacting with
the electromagnetic field [Fig. 1(b)]. In Casimir’s picture
[Fig. 1(a)] the zero-point energy of the electromagnetic
quantum field in and around materials creates the force, in
Schwinger’s [Fig. 1(b)] the field is not even required to be
quantized [20]. Here, quantum fluctuations in the material
induce oscillating dipoles at each point [Fig. 1(b)]. Each dipole
sends out an electromagnetic wave, the wave explores the
surroundings, and when some part of the wave is scattered
back to the source it interacts with it. In Schwinger’s picture
[Fig. 1(b)] the interaction of each fluctuating dipole with the
backscattered wave creates the Casimir force.

Both pictures harbor similar hidden problems: infinities. In
Casimir’s picture [Fig. 1(a)] the zero-point energy E sums up
the vacuum energies of all the allowed electromagnetic modes
with eigenfrequencies ωm:

E =
∑
m

h̄ωm

2
= ∞. (1)

One sees this pictorially from trying to plot [Fig. 1(a)] the
electric field strength in the vacuum state for Casimir’s classic
example [1], the vacuum in the cavity between two perfectly
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FIG. 1. Visualization of quantum noise. (a) Casmir’s picture:
space-time diagram of the fluctuating field in the vacuum state.
Boundaries create reflections, causing the zero-point energy to depend
on them, which gives a force (as derivative of the energy with respect
to the position of the boundary). (b) Schwinger’s picture: vacuum
fluctuations induce random dipoles in materials, causing them to
interact with each other, which gives the same force.

reflecting mirrors [8]. Adding more and more cavity modes
produces finer and finer details in the fluctuating field, while the
amplitude grows without bound. Yet Casimir [1] managed to
extract the part from the diverging series in Eq. (1) that actually
does physical work and found a finite force. Procedures that
achieve this are called renormalization. In the ζ -function
renormalization [7,21], for example, the eigenfrequencies in
Eq. (1) are raised to the power 1 − s for complex s, which
defines an analytic function of s where the series converges.
The analytic continuation to s = 0 then assigns a finite value
to Eq. (1), which happens to agree with Casimir’s original
calculation [1].

An infinity also mars Schwinger’s picture of fluctuating
sources [Fig. 1(b)], but we suggest one can identify and
remove the issue in a physically motivated way (Fig. 2).
The infinity comes from the interaction of each dipole with
itself, which poses already a problem in the classical theory of

FIG. 2. Point-splitting method. Each point of the inhomogeneous
medium (different shades of gray) is split into emitter and receiver.
(a) the emitter sends out waves with phase fronts indicated by white
lines that the receiver picks up. The receiver should only respond
to the scattered wave, but electromagnetic theory includes the direct
interaction between emitter and receiver, illustrated in (b). In our
renormalization we subtract this outgoing wave. One sees that the
outgoing wavefronts are deformed in the inhomogeneous medium;
the outgoing wave depends on the local environment, including its
spatial variations. The picture shows a transformation medium [25]
with reflecting boundary (carpet cloak) where only the boundary
scatters the light, whereas ordinary media scatter light inside.

electromagnetism [22]. There, one must explicitly forbid point
charges to directly interact with themselves. In Lifshitz’s [3]
and Schwinger’s [4] theory each point of the medium is
mentally split into two points, which we view as emitter and
receiver [Fig. 2(a)] infinitesimally close to each other. The
quantum fluctuations of the emitter generate electromagnetic
waves the receiver responds to. The contribution due to the
wave directly going from emitter to receiver [Fig. 2(b)] is
deemed unphysical and removed.

Lifshitz’s [3] and Schwinger’s [4] theory works well for
arbitrary piecewise homogeneous planar materials [9]; it also
agrees with Casimir’s original result [8] for the special case of
a perfect cavity. However, the theory fails for inhomogeneous
media [14,23], for the following reason. The outgoing wave
does not only perceive the electromagnetic properties of the
material at the point of emission, but also in its vicinity, even
if emitter and receiver are infinitesimally close. The near field
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FIG. 3. Outgoing wave. Rays (curves with arrows) and wave
fronts (curves orthogonal to rays) outgoing from the emitter at
various times. The figure also contains a snapshot at a fixed time
that shows a negative image of the light flash (thick black curve) and
of the amplitude (gray) lingering behind the flash due to geometric
dispersion (Sec. II F). The figure employs the refractive–index profile
(Fig. 4) of the example (Sec. III) that depends on the z coordinate; r is
the radius around the point of emission. The amplitude of geometric
dispersion is given by Eq. (67).

does not only depend on the local values of ε and μ, but also
on their first spatial derivatives (see Sec. II and Appendix A).
This feature is ignored in Lifshitz’s [3] and Schwinger’s [4]
theory, although it appears to be inevitable in macroscopic
electromagnetism [19] where each mathematical point of
the material is not a physical point, but rather represents
the collective effect of a very great number of molecules
generating the electromagnetic response of the material [24].

Now, if the dielectric properties of the material vary,
both the outgoing wave and the scattered wave depends
on them. How does one distinguish the outgoing wave?
This is the theoretical problem, concisely. In this paper we
apply geometrical optics and insights from transformation
optics [25] to identify the outgoing wave (Fig. 3). We achieve
this for arbitrary planar ε and μ, not only for the case ε = μ

when transformation optics is exact [25]. This outgoing wave
is then removed from the interaction between emitter and
receiver. We prove (Appendix B) that this renormalization
removes the principal divergences of the Casimir stress and
we believe that the remaining stress is the complete physical
one.

As the emitter perceives its environment beyond the
immediate point of emission, the outgoing wave depends on
the local dielectric properties and their derivatives. How many
derivatives does one need to take into account? In this paper
we use a quadratic expansion of the local material parameters
(Fig. 4). We have seen that a linear expansion is insufficient
(Appendix C); the quadratic expansion is the simplest one

FIG. 4. Quadratic expansion. The refractive–index profile (black
curve) is quadratically expanded around the point of emission (gray
parabola) in order to define the direct outgoing wave from emitter to
receiver [Fig. 2(b)]. The figure illustrates the refractive index profile
of the example, Eq. (44) in Sec. III.

that works. Moreover, as waves are oscillations in space and
time described by a second-order wave equation, one needs at
least two infinitesimal steps to establish a wave, which might
explain why one needs a quadratic expansion for identifying
the outgoing wave.

Note that similar ideas have been proposed before in
attempts [26,27] to renormalize the energy-momentum tensor
of the quantum vacuum in general relativity [28]. There the
singularities of the emitted wave are removed by subtracting
certain waves defined in quadratic expansion. This procedure
did almost work, were it not for a logarithmic singularity.
Now, one knows from transformation optics [25] that certain
magnetoelectric materials with ε = μ correspond to space-
time geometries in general relativity. So why does the same
problem not occur in our theory? In classical general relativ-
ity [29] the equivalence principle requires that the medium
of space and time acts the same on all waves, regardless
of wavelength: space time is dispersionless. Yet ordinary
materials are dispersive; ε and μ depend on frequency ω and
approach unity in the limit ω → ∞. We show in Appendix A
that dispersion removes the logarithmic singularity in the
stress. Moreover, in contrast to the previous papers [26,27]
we give simple explicit expressions for the regularizer that are
ready for immediate use in numerical calculations.

Dispersion has also been the problem in the ad hoc general-
ization [14] of the Lifshitz theory [3] to inhomogeneous planar
media [8]. While our renormalizer turns out to be identical
to the one proposed there [14], the numerical examples [14]
are incorrect, as they are for nondispersive media. In truth,
the stress diverges there, but only logarithmically, which
is not easy to see numerically (because “the logarithm is
a good approximation for a constant” [19]). Moreover and
more importantly, our paper gives mathematical proof beyond
numerics that the renormalization works (see Appendix B)
and adds a physical picture to the ad hoc renormalizer [14],
a picture that also seems valid beyond planar media.

Quantum field theory in curved space [26–28] and ad hoc
renormalization [14] have not been the only attempts in
developing a theory for the Casimir stress inside materials.
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Other theories have been proposed as well [30–33] includ-
ing the perspective of going beyond standard macroscopic
electromagnetism [33]. ζ -function renormalization has been
tried [34], but as the authors put it [34]: “The functional
dependence of the needed counterterms is very involved
and the classical model necessary for renormalization lacks
physical intuition as well as motivation,” which is what we
hope to facilitate in our paper.

II. CALCULATION

In this section we substantiate the physical arguments and
visualizations of Sec. I by theoretical calculations. We begin
with a brief summary of the Lifshitz theory in planar media.

A. Lifshitz theory

Consider a planar isotropic medium with scalar ε and μ

depending on the Cartesian coordinate z and frequency ω. We
define the refractive index n and impedance Z as

n2 = εμ, Z2 = μ/ε. (2)

The Casimir-force density f inside the material is the
divergence of the Casimir stress σ , the Minkowski stress in
the vacuum state [15]. For planar isotropic media the stress
tensor is diagonal [8] and hence only σzz makes a contribution
to the force:

f = ∇ · σ = (0,0,∂zσzz). (3)

According to the Lifshitz theory [8] the physically relevant
stress component σzz is given by the formula

σzz = − h̄c

2π

∫ ∞

0

∑
P=E,M

1

νP

(
w2 − ∂z∂z0

)
gP

∣∣∣∣∣
r0→r

dκ (4)

where c is the speed of light in vacuum, κ denotes the
imaginary wave number to the imaginary frequency ω = icκ ,
and w2 abbreviates the expression

w2 = εμκ2 − ∂2
x − ∂2

y , (5)

while the νP denote

νE = μ, νM = ε (6)

for the two polarizations E and M of the electromagnetic waves
in the planar medium. The polarizations are defined as follows:
in the E polarization, the electric field vector lies in the plane
orthogonal to z (and is orthogonal to the wave vector); in the
M polarization it is the magnetic field. The scalar Green’s
functions gP (r,r0) satisfy the wave equation [8]

∇ · 1

νP

∇gP − n2κ2

νP

gP = δ(r − r0). (7)

They describe for the two polarizations the amplitudes of
electromagnetic waves emitted at r0 and received at r .
According to the point-splitting method, one calculates the
stress first for r0 �= r and then takes the limit r0 → r . Note
that the Green’s functions are real, because ε and μ are real
for purely imaginary frequencies [3].

Close to the point of emission the field diverges. There the
derivatives in Eq. (7) outweigh n2κ2 such that we can ignore

this term: electrostatics (κ = 0) dominates the near field. Close
to the emission point we can also ignore any spatial variations
of ε and μ; the Green’s equation (7) reduces to the Poisson
equation with the solution

gP ∼ − νP

4π |r − r0| for r ∼ r0, (8)

which shows the principal, Coulomb-type singularity of the
field at the point of emission. However, as the stress depends
on derivatives of the Green’s functions, see Eq. (4), further
details of the near field become important. They call for more
careful consideration, as follows.

B. Fourier method

Let us Fourier transform the Green’s functions with respect
to the spatial coordinates x and y the electromagnetic functions
ε and μ do not depend on. We obtain from Eq. (4) the stress:

σzz = − h̄c

(2π )2

∫ ∞

0

∫ ∞

0
W u du dκ,

W =
∑

P=E,M

1

νP

(
w2 − ∂z∂z0

)
g̃P

∣∣∣∣∣
z0→z

, (9)

where W is the spectral stress density and u denotes the
amplitude of the x and y Fourier components (we have
performed the integration over the angle), and

w2 = εμκ2 + u2, (10)

while the Fourier-transformed Green’s functions satisfy the
differential equation

∂z

1

νP

∂z g̃P − u2 + n2κ2

νP

g̃P = δ(z − z0). (11)

Note that in calculating the stress with the Fourier method
the limit z0 → z is taken first, before all integrations, as the
notation of Eq. (9) indicates.

The Lifshitz regularization [3] assumes the medium to
be homogeneous in the vicinity of the emission point. For
an infinitely extended homogeneous medium, we obtain for
Eq. (11) the retarded solutions

g̃P = − νP

2w
exp (−w|z − z0|). (12)

Substituting the two g̃P into the expression for the stress,
Eq. (9), we see that σzz diverges like �4 where � is a cut–off
of each of the integrals in Eq. (9). However, more careful
analysis (Appendix A) reveals that the unrenormalized, bare
stress diverges like

σzz ∼ α4�
4 + α2�

2 + α ln � (13)

with the terms

α4�
4 = h̄c

(2π )2

∫ �

0

∫ �

0
2w udu dκ,

α2�
2 = − h̄c

(2π )2

∫ �

0

∫ �

0

n2Z′2w4 + n′2Z2u4

4n2Z2w5
u du dκ. (14)

The primes denote derivatives with respect to z. The co-
efficient α of the logarithm is complicated (Appendix A)
but turns out to vanish for physical media with dispersion
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where ε and μ depend on frequency and approach unity
for κ → ∞ (Appendix A). The other two singularities do
not disappear in general, although α2�

2 becomes linear due
to the u–integration, as the near field of the emitter is an
evanescent field [35] that contains arbitrarily large spatial
Fourier components, even for finite frequencies. We recover
the �4 Lifshitz divergence, but we have also obtained a �2 or
� singularity when ε or μ depend on z. The latter is the math-
ematical reason why the original Lifshitz renormalization [3]
fails in inhomogeneous planar media [14,23].

C. Ad hoc renormalization

In order to renormalize the Casimir stress one should
subtract from the Green’s function gP the near field g0 of
the emitter:

g → g − g0. (15)

In the original Lifshitz renormalization [3] g̃0 is given by
Eq. (12). Philbin et al. [14] proposed to replace this by

g̃0p = −1

2

√
νP (z)νP (z0)√
wP (z)wP (z0)

exp

(
−

∣∣∣∣∫ z

z0

w dz

∣∣∣∣). (16)

Substituting g̃0p into Eq. (9) for the stress one gets

σzz = α4�
4 + α2�

2 (17)

with exactly the terms of Eq. (14) and hence all the singular-
ities, apart from the logarithmic one. As the latter disappears
for dispersive media, we have thus proved mathematically
that this renormalizer does indeed remove all the physically
relevant singularities of the Casimir stress in planar media.

One might be content with Eq. (16) were it not for the
unsettling thought that removing the infinity is necessary
but not sufficient for identifying the correct renormalization.
Subtracting one infinity from the other does not guarantee the
right result, because the correct renormalizer might also make
a finite contribution to the remaining finite stress, correcting it.
In addition to the mathematical requirement of canceling the
singularities, a physical motivation is essential, which is what
we are going to develop now.

D. Geometrical formulation

Figure 2 shows the physical picture we have in mind:
The renormalizer removes the wave directly going from
emitter to receiver, because this wave describes the unphysical
interaction of the dipole with itself (mentally split into emitter
and receiver). Given that the near field depends on both
the values and the derivatives of the material parameters, as
Eqs. (13)–(14) indicate, how can we distinguish the outgoing
from the scattered wave?

Scattering is a deviation from geometrical optics, because
in geometrical optics a flash of light would just propagate
along the ray trajectories; nothing is reflected there—nothing is
scattered. Hence we identify the outgoing wave by geometrical
optics. Since the defining feature, the flash of light, is a feature
of wave propagation in physical, three-dimensional space, we
consider geometrical optics in real space, not in Fourier space,
but then transform our result for use in the Fourier method
(Appendix B).

First we cast the wave equation in geometrical form. In
the rest of the paper we drop the polarization index p for
keeping the notation uncluttered. We represent the scalar Green
functions as

g = ν(z) ν(z0) D (18)

and obtain from Eq. (7) the wave equation:

∇ · ν∇D

n2ν
− Rz

z

2
D − κ2D = δ(r − r0)

n2ν
(19)

with the abbreviation

Rz
z = 2(∇ν)2

n2ν2
− 2∇2ν

n2ν
. (20)

For ε = μ = n the medium establishes an exact spatial
geometry [25] with the infinitesimal optical length ds as line
element,

ds2 = n2(dx2 + dy2 + dz2). (21)

In this geometry of light the term n−3(∇ · n∇D) in the wave
equation (19) is the Laplacian of the scalar D, while Rz

z is the
zz component of the Ricci tensor [25]. Equation (19) describes
the propagation of one polarization component taken from the
conformally coupled wave equation of the electric or magnetic
field [25].

E. Geometrical optics

After having given the wave equation a geometrical appear-
ance, it is elementary to find the form of the Green’s function in
geometrical optics. Let us write D in terms of the amplitude A
and phase ϕ where we, for reasons of convenience, consider
real wave numbers k and make the transition to imaginary
k = iκ later. We thus put

D = A eiϕ (22)

and obtain from the real part of Eq. (19):

∇ · ν∇A
n2ν

= �A + δ(r − r0)

n2ν
, (23)

� = (∇ϕ)2

n2
− k2 + Rz

z

2
, (24)

while we get for the imaginary part:

∇ · (νA2∇ϕ) = 0. (25)

The latter, an equation of continuity, describes the transport of
photons from the point of emission along the gradient of the
phase.

In geometrical optics, phase rules the waves; the dominant
feature of wave propagation is phase propagation. In a formal
sense, geometrical optics gives the asymptotics D0 for D in
the limit of large wave numbers k as

D0 = A0 eiks (26)

with A0 being independent of k. In leading order, we obtain
from Eqs. (23)–(24) the eikonal equation

(∇s)2 = n2 (27)

showing that s is the optical path length as perceived by
the geometry of light, Eq. (21). The amplitude A0 is then
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entirely enslaved to the phase as the solution of the equation
of continuity,

∇ · (
νA2

0∇s
) = 0 (28)

with, from Eqs. (8) and (18), the condition

A0 ∼ − 1

4πν |r − r0| for r ∼ r0. (29)

Although the geometrical D0 is introduced in a formal sense
as an approximation, D0 turns out to describe correctly
the divergence of the full D wave in the vicinity of the
emission point (Appendix B). Additionally, we see from
Fourier–transforming D0 of Eq. (26) with respect to time that
D0 corresponds to the flash of light A0 δ(ct − s) along the
geodesics, which shows that D0 is the outgoing wave.

F. Geometric dispersion

Geometrical optics gives the outgoing wave, but it turns out
we also need to consider the next-order correction. For finding
it, we write the phase as

ϕ ∼ ks + β/k + · · · (30)

and consider the leading correction D1 to the D0 of geometrical
optics:

D ∼ D0 + D1, D1 = −eiks b

ik
, b = A0β. (31)

To first order in k−1 we obtain from Eqs. (23), (24), (27),
and (30) the expression:

2β1 = ∇ · ν∇A0

n2νA0
− Rz

z

2
for r �= r0 with

β1 = ∇s · ∇β

n2
. (32)

Assuming β is a function of s we see from Eq. (27) that β1

is the derivative of β with respect to s, so β is the integral of
β1. As β1 is finite for r → r0 the integral is well behaved at
the point of emission where the phase and hence β vanishes.
Consequently, we can write

β =
∫ s

0
β1 ds. (33)

From this also follows that b = A0β is finite for r → r0

despite the amplitude A0 diverging there.
How does the leading correction to geometrical optics, D1,

behave in time? The factor 1/(ik) in Fourier space corresponds
to an integration in time of the δ function we obtained in
Sec. II E, which gives a step function �. Causality requires
that the wave vanishes outside the light cone, so the Fourier-
transformed D1 is �(ct − z) b. Due to geometric dispersion,
the wave lingers with amplitude b after the outgoing flash has
passed. Of course, higher-order corrections will then let the
wave recede.

Note that geometric dispersion is the primary case of
scattering in an inhomogeneous medium without sharp bound-
aries, as scattering is the deviation of wave propagation from
geometrical optics and D1 is the leading correction; D1

describes the first reflection the outgoing wave encounters.
According to Huygen’s principle [35], we can view the wave

propagation as a continuous succession of propagations (D0)
and reflections (D1). When geometrical dispersion vanishes so
does scattering altogether.

G. Quadratic expansion

In the renormalization of the Casimir force, we subtract
the direct wave between emitter and receiver (Fig. 2). This
wave is sensitive to the local environment around the point of
emission, as the singularities of the stress show, see Eq. (14).
They depend on ε and μ, and their first spatial derivatives.
Therefore one might be tempted to expand ε and μ to linear
order, fit the outgoing wave to this expansion, calculate the
resulting stress, and subtract it from the bare stress, in the
hope of getting a finite result. We tried it, it did not work
(Appendix C). A quadratic expansion is needed, which also
fits quite naturally the physical picture of wave propagation:
waves are oscillations in space and time; to establish a wave
one needs two spatial increments, hence quadratic expansion.
We thus expand n as

n = n0 + n′
0(z − z0) + n′′

0

2
(z − z0)2 (34)

and similarly ν. In the following we use cylindrical coordinates
{r,φ,z} where the point of emission lies on the z axis (r =
0), for taking advantage of the cylindrical symmetry of the
outgoing wave. In a homogeneous medium, the wave would
also be spherically symmetric with optical path length s = n0ρ

where ρ denotes the spherical radius,

ρ =
√

r2 + (z − z0)2. (35)

In an inhomogeneous medium, we determine the leading
corrections to s, assuming s to be proportional to ρ with
quadratic expansion of the proportionality factor in r and
z − z0. For r = 0 the geodesic is a straight line in the
z direction, and so the geodesic length is simply the z integral
of n in quadratic order, Eq. (34) integrated. For r �= 0 we need
to solve the eikonal equation, Eq. (27), to quadratic order, and
get

s = ρ

(
n0 + n′

0

2
(z − z0) + n′′

0

6
(z − z0)2 − n′2

0 r2

24n0

)
. (36)

The r-dependent term in Eq. (36) describes the correction to
the geodesic length s for small r > 0.

The amplitude A0 we find in a similar way: knowing that in
homogeneous media A0 is given by −(4πνρ)−1 we postulate
quadratic corrections to this principal dependence. We obtain
from Eq. (28) and our previous result, Eq. (36), to quadratic
order:

A0 = − 1

4π
√

ν0ν

(
1

ρ
+ n2

0R

48
ρ

)
(37)

where R is the curvature scalar [25] in three dimensions (3D):

R = −4n′′
0

n3
0

+ 2n′2
0

n4
0

. (38)

We see that, to quadratic order, the outgoing wave in geo-
metrical optics depends entirely on geometric quantities—the
geodesic length and the curvature scalar, apart from a mere
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prefactor containing ε for the M and μ for the E polarization.
The stress of the wave is calculated in Appendix B.

Now we turn to the amplitude b of geometric dispersion.
Using a quadratic expansion of ε and μ we can only deduce
b to zeroth order, as Eq. (32) depends on second derivatives.
From our results, Eqs. (36)–(38), follows

β1 = 1

24n2
0

(
n′2

0 − 2n0n
′′
0

n2
0

+ 6ν0ν
′′
0 − 9ν ′2

0

ν2
0

)
(39)

for z → z0 and r → 0 independent of the order of limits. We
then obtain from Eqs. (33) and (36)–(37) to zeroth order:

b = − n0

4πν0
β1. (40)

For media with ε = μ = n, establishing exact geome-
tries [25], we see that b is proportional to n0n

′′
0 − 2n′2

0 . When
does geometric dispersion cease to exist, when is geometrical
optics exact? The general solution of the differential equation
n′′n = 2n′2 is n = a(z − z1)−1 with some constants a and
z1 of the dimension of a length. A geometry with this n

in the line element of Eq. (21) is the Beltrami space in
3D [36], the only maximally symmetric curved space [37]
for planar n. Consequently, for planar media with ε = μ,
scattering vanishes if and only if n establishes a maximally
symmetric space.

There is another interesting aspect of geometric dispersion,
one that is immediately relevant to the Casimir effect.
Substitute in the Casimir stress, Eq. (4), gP = ν2

0D1 with
D1 = e−κsb/κ and b given by Eq. (40). One finds that the
stress vanishes exactly, if we take the limit z0 → z first and
r → 0 later, as we should do in the Fourier method. Geometric
dispersion causes no Casimir force. Furthermore, as geometric
dispersion describes the first instance of scattering the outgoing
wave encounters—the first reflection—we realize that the
Casimir force does not depend on primary reflections in the
material, only on secondary ones, and on multiple reflections.
Recall Lifshitz’s famous formula [3] for the Casimir stress
between planar mirrors [8]: it only depends on the product of
the reflection coefficients of the two mirrors, not on single
reflections. Our result generalizes this feature to arbitrary
planar media.

Note however, that for a different order of limits, for
example if we take r → 0 first and then consider z ∼ z0

later, e−κsb/κ does make a contribution to the stress, a
contribution that diverges for z0 → z (but not for κ → 0).
This contribution needs to be taken into account if the Casimir
stress is renormalized in other procedures than the Fourier
method, for example by subtracting g0 in physical space.

III. EXAMPLE

In this section we study an example (Fig. 4) that allows
us to derive analytic expressions for the central ingredients of
our theory, the outgoing wave in geometrical optics and the
geometric dispersion (Fig. 3). We are not concerned whether
this example is practically relevant—examples elsewhere [18]
are—it should only allow us to derive analytic expressions
where we can compare the approximations of Sec. II G with
exact results. The example is geometrical in nature: it is

the planar refractive-index profile that implements constant
negative curvature (in a sense made precise below).

A. Constant curvature

We assume that the medium establishes an exact spatial
geometry for electromagnetic waves, i.e., we require [25]:

ε = μ = n(z). (41)

Additionally, we require the Rz
z component of the Ricci

tensor [25], Eq. (20), to be constant:

Rz
z = −2n′′

n3
+ 2n′2

n4
= const. (42)

Consider a radial plane around the z axis, i.e., the plane {r,z}
with φ = const in cylindrical coordinates. On radial planes,
the curvature scalar in 2D agrees with the Ricci component
Rz

z in 3D for n = n(z). In 2D we can use visual intuition for
curved spaces and tools from conformal mapping [36]. We
know, for instance, that the surface of the sphere is a space
of constant two-dimensional curvature. We also know that
we can represent the sphere in stereographic projection [25]
by the refractive-index profile of Maxwell’s fisheye [25,38].
With conformal mapping, using the exponential map [25], we
can map Maxwell’s fisheye to the refractive–index profile of
Mikaelian’s lens [39]:

n = sechz (43)

where we rescaled space by an arbitrary constant length a

such that r and z are dimensionless. One easily obtains from
Eq. (42) that Rz

z = +2, so the hyperbolic-secant profile of
the Mikaelian lens implements a space of positive constant
curvature. Now, if we replace z by iz we get a negative
curvature in Eq. (42), provided of course that n remains real,
which it does for n = sech(iz) = secz. We obtain Rz

z = −2
for

n = secz. (44)

In the hyperbolic secant of Eq. (43) we can also shift z by iπ/2
and get −icschz. The imaginary prefactor changes the sign in
Eq. (42):

n = cschz (45)

defines a second profile of constant negative curvature with
Rz

z = −2. The secant profile (Fig. 4) is confined between
{−π/2,π/2} where secz diverges, but it represents an open
space, because light will never reach the rim at {−π/2,π/2}, as
it becomes infinitely slow. The hyperbolic-cosecant profile also
establishes an open space, although being confined to {0,∞},
because it diverges for z → 0. In contrast, the hyperbolic
secant corresponds to a closed space—the surface of the
sphere. There, for z → ±∞, light becomes infinitely fast,
reaching in a finite time infinity (and beyond).

One can multiply these three profiles with constant factors,
rescale, and shift z, which give three-parameter solutions
to Eq. (42), a second-order differential equation with one
parameter, the constant on the right-hand side. We have
obtained the complete solution. This solution includes, as
limiting cases, the profiles n1 exp(−z/a) of zero curvature, i.e.,
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coordinate-transformed flat space [25], and also the Beltrami
plane [36]:

n = 1

z
. (46)

The latter is not only a space of constant curvature in 2D, but
a maximally symmetric space [37] in 3D. In the following we
focus on the secant profile of Eq. (44), our test case.

B. Green’s function

First we calculate the Fourier-transformed Green’s function
as the causal solution of the inhomogeneous differential
equation, Eq. (11), with ε = μ = ν = n(z) and n(z) given
by Eq. (44). We apply the Wronskian method (Appendix A)
where g̃ is the product of two solutions of the homogeneous
equation divided by their Wronskian. The two solutions are
interchanged at z = z0, which produces the jump in the
derivative of g̃ required for generating the δ function on the
right-hand side of Eq. (11). The homogeneous solutions are to
be chosen such that one decays for z → −π/2 and the
other for z → +π/2. They are the Legendre functions [40]
P −κ

ν (± sin z) with index

ν = 1
2 (−1 +

√
1 − 4u2) (47)

not to be confused with the other ν defined in Eq. (6). The
Legendre functions reflect the pedigree of the secant profile
that originates from the imaginary sphere. The waves on the
sphere are the spherical harmonics [40] that are made of
Legendre functions. Note that we use the Legendre functions
on the branch cut; they are defined by Eq. 3.4(6) of Ref. [40].
We calculate the Wronskian using the asymptotics of the
Legendre functions [40] and find for the Green’s function:

g̃ = Kκ
ν P −κ

ν (sin z) P −κ
ν (− sin z0) (48)

for z > z0 (otherwise z and z0 are interchanged) with prefactor

Kκ
ν = −�(κ − ν)�(κ + ν + 1)

4π
(49)

in terms of the � functions [40]. Note that g̃ is real, as it
must by definition, Eq. (11), even if the index ν of Eq. (47) is
complex (for u > 1/2). In this case κ + ν + 1 is the complex
conjugate of κ − ν, and so the prefactor Kκ

ν is proportional to
|�(κ − ν)|2, which is real. One obtains from Eqs. 2.8(1) and
2.8(2) of Ref. [40] that also P −κ

ν is real.
We found in Sec. II G that for planar media establishing

exact geometries, Eq. (41), only the profiles of maximally
symmetric spaces are scatteringless. These are Beltrami spaces
with the 1/z profile of Eq. (46) scaled and shifted, not our
case of the secant profile, Eq. (44). Therefore our profile
scatters electromagnetic waves [41]; it generates Casimir stress
(Fig. 5).

C. Geodesic length

The renormalizer of the stress is made by the outgoing wave
in geometrical optics that depends on the geodesic distance s

from the point of emission. For the secant profile we can
calculate s analytically for arbitrary distances, not only in the
infinitesimal environment of the emitter, as follows. First we

FIG. 5. Numerical example. Casimir stress σzz in units of h̄c/a4

in the secant profile (Fig. 4) as a function of z, where z is given in units
of an arbitrary length scale a. The stress generates a repulsive force,
Eq. (3); the stress rises significantly where n(z) grows. Dispersion was
included in the model by using n = sec(z/a) with a = √

1 + (κ/κ0)2

and κ0 = 3.0. The stress was computed numerically (dots) using
the Green’s function of Eqs. (47)–(49) and our renormalization
procedure, Eq. (69), requiring subtractions with 50-digit precision,
30-digit accuracy, and 500-digit maximal extra precision.

note that s does not depend on the angle φ due to cylindrical
symmetry (the emitter sits at r = 0). The geodesics lie on the
radial {r,z} planes with metric

ds2 = n2(dr2 + dz2). (50)

One can find the geodesics using conformal mapping with
the exponential map and Möbius transformations [25,36]; the
details are not important here—one verifies by elementary
calculation that the coordinates ξ and η defined as

ξ = sin z − cosh r sin z0

cosh r + cos(z + z0)
,

η = sinh r cos z

cosh r + cos(z + z0)
(51)

express the line element of Eq. (50) as ds2 = n2
p(dξ 2 + dη2)

where

np = 2

1 − ξ 2 − η2
. (52)

This is the refractive-index profile of the Poincaré disk [36].
We obtain from Eq. (51) for the radius σ on the disk

σ =
√

ξ 2 + η2 = c−
c+

(53)

with the abbreviations

c± =
√

cosh r ± cos(z ± z0). (54)

We see that σ vanishes at the point of emission where r = 0
and z = z0. With the transformation of Eq. (51) we have thus
managed to put the emitter in the center of the Poincaré disk.
The geodesics from the center are simply the radial lines.
Hence we obtain for the geodesic length:

s =
∫

np dσ = 2 artanh σ. (55)
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One verifies that s agrees with the quadratic expansion in
Eq. (36), which supports our general method by way of
example.

D. Wave amplitude

Next we calculate the wave amplitude A0 in geometrical
optics. Unlike the rays of geodesics, waves experience the
dimensionality of space, and so we need to use the full three-
dimensional metric here,

ds2 = n2(dr2 + r2dφ2 + dz2), (56)

and not only slices with dφ = 0. In terms of the Poincaré disk
we have

ds2 = n2
p(dσ 2 + σ 2dθ2) + n2r2dφ2 (57)

where θ denotes the angle on the disk. In {σ,θ,φ} coordinates
the equation of continuity for the amplitude A0 takes the
form

∂σ

(
nσrA2

0 ∂σ s
) = 0, (58)

where we used the standard expression for the vector
divergence in curved space [25] and the convenient fact
that s depends only on σ . Additionally, ∂σ s = np, and
so

npnσrA2
0 = f (θ ) (59)

with some function f . Note that f must be periodic, f (θ +
2π ) = f (θ ), because θ is an angle. Being a periodic function,
we can express f as a power series in

eiθ = ξ + iη

σ
. (60)

Furthermore, we know that for r → 0 but z �= z0 the amplitude
is finite (it only diverges at the point of emission where z = z0).
From this, and Eq. (59), follows that f ∝ r for r → 0,z �=
z0. One sees from Eq. (51) that the only power series in
exp(iθ ) with this property is proportional to η/σ . Hence we
obtain

A2
0 ∝ η

σ 2npnr
= 1 − σ 2

2σ 2r

sinh r cos z cos z0

cosh r + cos(z + z0)
. (61)

As an additional bonus, we see that A0 is reciprocal:

A0(z,z0) = A0(z0,z). (62)

The prefactor of A0 we obtain from the required asymptotics
around the point of emission, Eq. (29), which completes the
calculation:

A0 = − 1

4πσ

√
η

npnr
= −cos z cos z0

4πc+c−

√
sinh r

r
, (63)

where the c± are defined in Eq. (54). One verifies again that
this result agrees with Eq. (37) in quadratic expansion.

E. Geometric dispersion

Finally, we calculate the amplitude b for the geometric
dispersion in the secant profile. We obtain from Eq. (32) with

Rz
z = −2 and the amplitude A0 of Eq. (63):

2β1 = 1

n2A0

(
∂rr ∂rA0

r
+ ∂zn ∂zA0

n

)
+ 1

= 1

4n2

(
1 + 1

r2
− 1

sinh2 r

)
. (64)

One verifies that

(∂rs)(∂rβ) + (∂zs)(∂zβ) = n2β1 (65)

for the geodesic length s given by Eq. (53)–(55) and

β = c+c−
8r sinh r

(r2 + r coth r − 1). (66)

According to Eq. (32), this β is exactly the one needed for
calculating the geometric dispersion b = A0β. We obtain from
our result for A0, Eq. (63), and Eq. (44), the formula:

b = − 1

n0n

√
r

sinh r

r2 + r coth r − 1

32πr2
(67)

= − 1

24πn2
0

for r → 0, (68)

which agrees with our general result, Eq. (40), for exact geome-
tries, Eq. (41). We also see that the amplitude b described by
Eq. (67) is finite and exponentially localized around the z axis.
There the mismatch between the two-dimensional geometry of
the geodesics, Eq. (50), and the three-dimensional geometry
of the waves, Eq. (56), is strongest, as all the radial planes go
through the z axis. In 2D the underlying geometry is maximally
symmetric [37]. If this would also hold in 3D, no scattering
could occur. However, the dimensional mismatch the wave
experiences near the z axis causes geometric dispersion and
hence reflection inside the material that proliferates to multiple
scattering [41], as the Casimir stress shows (Fig. 5).

IV. CONCLUSIONS

We have derived a renormalization procedure for the Lif-
shitz theory [3,4] of the Casimir force in inhomogeneous planar
media with electric permittivity ε and magnetic permeability
μ as functions of Cartesian coordinate z and frequency ω. Our
procedure amounts to the following recipe: subtract from the
spectral stress density W , defined in Eq. (9), the renormalizer

W0 = −2w + n2(∂zZ)2w4 + (∂zn)2Z2u4

42Z2w5
(69)

with n being the refractive index
√

εμ, Z the impedance
√

μ/ε,

and w =
√

εμκ2 + u2, while κ denotes the wave number to
the imaginary frequency ω = icκ and u the magnitude of the
spatial Fourier component.

We have proved mathematically (Appendices A and B)
that this simple procedure removes all infinities in the stress,
apart from a logarithmic divergence that removes itself due to
dispersion (the frequency dependence of ε and μ). More im-
portantly, we have given a physical justification and a physical
picture for the renormalization procedure: the Casimir effect
is brought about by quantum-fluctuating sources in dielectric
media [Fig. 1(b)]; our procedure removes the unphysical direct
interaction of the sources with themselves [Fig. 2(b)]. For
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this, we have clarified the concept of the outgoing wave
in inhomogeneous media, using geometrical optics (Fig. 3)
in quadratic expansion (Fig. 4). Our theory justifies both
mathematically and physically a previous conjecture [14] that,
as we have shown, amounts to the same procedure. The theory
may become the starting point of predicting internal Casimir
forces and their experimental consequences [18].

Our regularizing Green’s function is not reciprocal between
emitter and receiver—it distinguishes the emitter, because it
depends on the quadratic expansion of ε and μ around the
emission point, whereas the equivalent Green’s function [14]
is reciprocal, g0(z,z0) = g0(z0,z). This feature suggests an
important corollary: there is no trace anomaly for quantum
electromagnetism in planar media. Trace anomalies have
been discussed in connection with Casimir forces in curved
space [27]. There the renormalizing Green’s function was
nonreciprocal, which caused a violation of the energy-
momentum conservation, unless a correcting term was in-
troduced: the anomaly [27]. The energy-momentum tensor
of electromagnetic fields is traceless, but not the correction;
hence the name trace anomaly. In the language of macroscopic
electromagnetism, the conservation of the energy-momentum
tensor in general relativity corresponds to the well-known
relation [19]:

∇ · σ + ∇ε

2ε
〈D · E〉 + ∇μ

2μ
〈B · H〉 = 0 (70)

for the Maxwell stress σ of fields with stationary average
〈〉. Renormalization may introduce an additional pressure, the
anomaly, but apparently not in planar media.

Another interesting aspect of our theory is the role of
dispersion. The principal singularities of the Casimir stress
are caused by the evanescent waves around the source, not
by waves of arbitrarily high frequencies that, in physical
materials, cease to have an effect, as ε → μ → 1 in the limit
ω → ∞ for all real materials. The logarithmic singularity of
the stress disappears due to dispersion; the divergence only
remains for dispersionless models, apart from exceptional
cases, such as the piecewise homogeneous materials where
both Casimir’s [1] and Lifshitz’s [3] original theory had
worked. The test case for Lifshitz’s complicated theory
of vacuum forces in realistic media was Casimir’s simple
formula [1] for the force between two perfect, dispersionless
mirrors. Had the stress not converged in this exceptional case,
Lifshitz’s theory [3] would have hardly been trusted in the
early days. Casimir theory came into existence thanks to a
lucky exception.
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APPENDIX A: ASYMPTOTIC EXPANSION

The divergence of the electromagnetic stress in the vacuum
state appears in the high-frequency limit of the integrals

σzz = − h̄c

(2π )2
lim

�→∞

∫ �

0

∫ �

0
W u du dκ (A1)

with W given by Eq. (9). In order to analyze this limit we
mentally replace u → u/q and κ → κ/q and consider the limit
q → 0. First we construct the Green’s functions as asymptotic
series in q using the Wronskian method. For this we need two
appropriate solutions of the homogeneous wave equation,

∂z

1

ν
∂z h̃ = u2 + n2κ2

νq2
h̃, (A2)

and their Wronskian. We write h̃ with the ansatz

h̃ = exp

(
− 1

q

∞∑
m=0

qmsm

)
(A3)

and obtain

h̃−1 ∂z

1

ν
∂z h̃ = 1

q2

∞∑
m=0

qm

m∑
k=0

s ′
ks

′
m−k

ν

+ 1

q

∞∑
m=0

qm

(
− s ′′

ν
+ ν ′s ′

m

ν2

)
, (A4)

where the primes denote derivatives with respect to z. The
lowest-order contribution to this series is q−2s ′2

0 /ν, which must
compensate the right-hand side of Eq. (A2). Therefore we have

s ′
0 = ±

√
u2 + n2κ2. (A5)

For the higher coefficients the right-hand side of Eq. (A2) is
zero, and we get for qm−2, m > 0:

0 =
m∑

k=0

s ′
ks

′
m−k − s ′′

m−1 + ν ′

ν
s ′
m−1

= 2s0s
′
m +

m−1∑
k=1

s ′
ks

′
m−k − s ′′

m−1 + ν ′

ν
s ′
m−1 (A6)

and hence

s ′
m = 1

2s ′
0

(
s ′′
m−1 − ν ′

ν
s ′
m−1 −

m−1∑
k=1

s ′
ks

′
m−k

)
. (A7)

This recurrence relation generates all the s ′
m from the initial s ′

0
of Eq. (A5). The two sign choices for s ′

0 define two linearly
independent homogeneous solutions h̃±. Note that the s ′

m with
even m changes sign if s ′

0 does, whereas the s ′
m with odd m are

independent of the sign of s ′
m. We thus write the two solutions

as

h̃± = e±sE esO , (A8)

where we define the even and odd series

sE ≡ 1

q

∞∑
m=0

q2ms2n, sO ≡
∞∑

m=0

q2ms2m+1 (A9)
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and adopt the positive sign for s ′
0. The generalized Wronskian

for the two solutions, defined as

W (a) = 1

ν
[̃h′

+(a) h̃−(a) − h̃+(a) h̃′
−(a)], (A10)

is a constant, ∂aW (a) = 0, as a consequence of Eq. (A2).
The Green’s functions, the solutions of the inhomogeneous
Eq. (11), can be expressed in terms of the homogeneous
solutions and the Wronskian as

g(z,z0) = 1

W

{
h̃+(z)̃h−(z0) : z > z0

h̃+(z0)̃h−(z) : z < z0.
(A11)

Substituting Eqs. (A8) and (A9) into Eq. (A10) we may get
an expression for the Wronskian—we see that it is negative,
but it is wiser to utilize the constancy of W and write it as
W = −√

W (z)W (z0), which gives

W = −2

√
s ′
E (z)s ′

E (z0)

ν(z)ν(z0)
esO(z)+sO(z0) (A12)

that we use in Eq. (A11) with Eq. (A8) for the h̃±. We thus
obtain for the Green’s function the asymptotic formula

g(z,z0) = −1

2

√
ν(z)ν(z0)

s ′
E (z)s ′

E (z0)
exp

(
−

∣∣∣∣∫ z

z0

s ′
Edz

∣∣∣∣). (A13)

We see that the Green’s function does only depend on the even
series in Eq. (A9). Note also that the ad hoc renormalizer [14],
Eq. (16), is the zeroth-order expansion in q of the asymptotic
Green’s function.

For working out the asymptotics of the stress, we use the
asymptotic form of the Green’s function, Eq. (A13), with the
recurrence relation of Eq. (A7) and the initial value of Eq. (A5)
in the calculation of the stress, Eq. (A1), with W given by
Eq. (9). Note that in the integrals of Eq. (A1) du → du/q and
dκ → dκ/q. After lengthy calculations we find three terms
diverging with the cutoff � = 1/q:

σzz = α4�
4 + α2�

2 + α log � + finite, (A14)

α4�
4 = h̄c

(2π )2

∫ � ∫ �

2w udu dκ, (A15)

α2�
2 = − h̄c

(2π )2

∫ � ∫ � n2Z′2w4 + n′2Z2u4

4n2Z2w5
u du dκ, (A16)

α log � = h̄c

(2π )2

∫ � ∫ � 1

16w11n4Z4
[−20u8Z4n′4 + u2w6nZ{2Z2(5nn′2Z′′ + 19n′3Z′

+ n2(n(3)Z′ − 2n′′Z′′) + nn′(nZ(3) − 12n′′Z′)) + 5n2n′Z′3 + nZZ′(nn′′Z′ − 10nn′Z′′ + 6n′2Z′)}
+ u6w2Z3n′2{35nn′Z′ + 9Z(4n′2 − nn′′)} + u4w4Z3{−5nn′(−4nn′′Z′ + nn′Z′′ + 15n′2Z′)

− 2Z(−n2n′′2 + 8n′4 + n2n(3)n′ − 5nn′2n′′)} + w8n2{3nZZ′2(nZ′′ − n′Z′) − 2n2Z′4

+ 2Z2(n(n′′Z′2 + nZ′′2 − nZ(3)Z′) − 2n′2Z′2 + nn′Z′Z′′)}] u du dκ. (A17)

The logarithmic divergence originates from integrations of the

type ∫ � ∫ � f (n(m),Z(m))

w3

( u

w

)l

u du dκ, l � 0. (A18)

Due to dispersion both impedance and refractive index tend to
unity for high frequencies:

n ∼ 1 + n∞
κ

, Z ∼ 1 + Z∞
κ

. (A19)

All terms in α log � depend on derivatives of n or Z, hence in
dispersive media α log � behaves at high frequencies as∫ � ∫ � f (n(m)

∞ ,Z
(m)
∞ )

κw3

( u

w

)l

u du dκ, l � 0, (A20)

which does not diverge.
If one considers a standard Lorentzian dispersion n ∼ 1 +

κ−2 for κ → ∞, the term α4�
4 is unaffected, and α2�

2 turns
into a linear divergence; the infinity does remain, requiring
theoretical aid in its removal.

APPENDIX B: STRESS OF THE OUTGOING WAVE

It is straightforward to calculate the stress of the outgoing
wave in real space. However, in planar media it is advantageous
to calculate the stress in Fourier space with respect to the
transverse coordinates x and y. The divergences of the stress
then appear through integration to infinity rather than in
the limit r → r0, and are subtracted from the full Fourier-
transformed stress. In this Appendix we calculate the required
renormalizer in Fourier space.

Our starting point is the Green’s function, Eq. (18), of the
outgoing wave, Eq. (26), in real space. In quadratic expansion,
the amplitude A0 is given by Eq. (37) and the geodesic length
s by Eq. (36). Note that the r2 term in s would make the
Fourier–transform of the Green’s function divergent if we take
it literally for large r and not regard it as what it is: an expansion
around the point of emission. We thus expand this contribution
in exp(−κs), and get

g0 ∼ νν0A0

(
1 + κρ

n′2
0 r2

24n0

)
e−κρχ ∼

3∑
m=1

gm (B1)
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with the abbreviations

χ = n0 + n′
0

2
(z − z0) + n′′

0

6
(z − z0)2,

g1 = −
√

νν0

4πρ
e−κρχ ,

g2 = −
√

νν0

4π
ρ

n2
0R

48
e−κρχ ,

g3 = −
√

νν0

4π
κ

n′2
0 r2

24n0
e−κρχ , (B2)

where ρ =
√

r2 + (z − z0)2 and R is the curvature scalar given
by Eq. (38); primes denote differentiations. The first term g1

of the Green’s function we Fourier transform,

g̃ = 2π

∫ ∞

0
gJ0(ur) r dr, (B3)

and obtain from Eq. 2.12.10.10 of Ref. [42]

g̃1 = −
√

νν0

2W
exp (−W |z − z0|) (B4)

with

W =
√

u2 + χ2κ2. (B5)

We then calculate its spectral stress density W1 according to
Eq. (9) and get

W1 = −2w + Z′2

4wZ2
+ w4n−2 − 3u2κ2

4w5
n′2 − κ2nn′′

6w3
,

(B6)

where w abbreviates w =
√

u2 + n2κ2 and Z denotes the
impedance Z = √

μ/ε, as in Eqs. (2) and (10). The first term
in Eq. (B6) gives the �4 divergence of the stress, while the
other terms make contributions to the �2 divergence.

The other two contributions W2 and W3 to the spectral
stress density we calculate in real space first and then Fourier
transform them. We get for g2:

∑
P

1

ν
(w2 − ∂z∂z0 )g2

∣∣∣∣∣
z0→z

∼ −κ(n′2 − 2nn′′)
12πn

e−κnr (B7)

where we used w2 = n2κ2 − r−1∂rr∂r (expressed in cylindri-
cal coordinates) and took the limit r → 0 in the prefactor of
e−κnr . We need to keep this exponential factor for getting a
finite Fourier transform. We perform the Fourier transforma-
tion of the result according to the Bessel-Fourier formula of
Eq. (B3). For this we use Eq. 2.12.8.4 of Ref. [42]∫ ∞

0
e−κnr rα−1J0(ur) dr = w−α �(α)Pα−1

(κn

w

)
(B8)

for α > 0 where Pn are the Legendre polynomials [40], � the
Gamma function [40] and w =

√
u2 + n2κ2. In particular, we

have for α = 2: ∫ ∞

0
e−κnrJ0(ur) r dr = κn

w3
. (B9)

In this way we obtain

W2 = κ2(2nn′′ − n′2)

12w3
, (B10)

which contributes to the �2 divergence in the stress.
For calculating the spectral stress density of g3 we follow

the same procedure, except that we take into account also the
linear term in the prefactor of e−κnr :

∑
P

1

ν
(w2 − ∂z∂z0 )g3

∣∣∣∣∣
z0→z

∼ n′2(κ − κ2nr)

12πn
e−κnr (B11)

because this term is proportional to κ2 and hence also con-
tributes to the �2 divergence if we Bessel–Fourier transform
it with ∫ ∞

0
e−κnrJ0(ur) r2 dr = 3κ2n2 − w2

w5
(B12)

according to Eq. (B8). We obtain

W3 = κ2n′2(3u2 − w2)

6w3
. (B13)

Finally, combining all three contributions,

W0 = W1 + W2 + W3, (B14)

we arrive at Eq. (69) that describes in Fourier space the real-
space divergence of the stress due to the outgoing wave. Note
that there is no nonzero finite contribution that needs to be
accounted for (in the order of limits required for the Fourier
method).

APPENDIX C: LINEAR EXPANSION

The principal divergences of the stress, Eqs. (A15)
and (A16), only depend on the values and first derivatives of
the refractive index n and impedance Z. One might therefore
be inclined to expand the outgoing wave up to linear order only.
In this Appendix we show, however, that this linear expansion
produces a second derivative of the refractive index in the
stress (and disagrees with the divergencies).

In linear expansion, the Green’s function, Eq. (18), of the
outgoing wave, Eq. (26), is simply:

g0 ∼ −
√

νν0

4πρ
e−κρχ , χ = n0 + n′

0

2
(z − z0), (C1)

where we considered both the geodesic distance, Eq. (36), and
the amplitude, Eq. (37), in linear expansion. We follow the
same procedure as in Appendix B and Fourier transform g0

with the same result as in Eqs. (B4) and (B5). However, as χ

is truncated to linear order, we obtain a different result for the
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spectral stress density:

W0 = −2w + Z′2

4wZ2
+ w4n−2 − 3u2κ2

4w5
n′2 − κ2nn′′

2w3
.

(C2)

Moreover, the curvature term from the quadratic expansion
of the amplitude, Eq. (37) is missing, which compensates for
the second derivative in the stress, and so is the contribution

from the r2 term of the geodesic length, Eq. (36). The
result, Eq. (C2), takes care of the �4 divergence of the
stress, Eq. (A15), but fails to compensate for the �2 diver-
gence, Eq. (A16).

Alternatively, one could linearly expand ε and μ only, while
using a quadratic expansion for the outgoing wave; this does
not work either. In either case, a linear expansion of ε and μ is
not sufficient to capture the divergencies of the Casimir stress.

[1] H. B. G. Casimir, Koninkl. Ned. Akad. Wetenschap. 51, 793
(1948).

[2] The van der Waals force shares the same root with the Casimir
force, see Refs. [3,9].

[3] E. M. Lifshitz, Sov. Phys. JETP 2, 73 (1956); I. E. Dzyaloshinskii
and L. P. Pitaevskii, ibid. 9, 1282 (1959); I. E. Dzyaloshinskii,
E. M. Lifshitz, and L. P. Pitaevskii, Adv. Phys. 10, 165 (1961);
L. D. Landau and E. M. Lifshitz, Statistical Physics, Part 2
(Pergamon, Oxford, 1980).

[4] J. Schwinger, L. L. DeRaad Jr., and K. A. Milton, Ann. Phys.
(NY) 115, 1 (1978).

[5] P. Milonni, The Quantum Vacuum: An Introduction
to Quantum Electrodynamics (Academic Press, Boston,
1994).

[6] K. A. Milton, The Casmir Effect (World Scientific, Singapore,
2001).

[7] M. Bordag, G. L. Klimchitskaya, U. Mohideen, and V. M.
Mostepanenko, Advances in the Casimir Effect (Oxford Uni-
versity Press, Oxford, 2009).

[8] U. Leonhardt, Essential Quantum Optics: From Quantum
Measurements to Black Holes (Cambridge University Press,
Cambridge, 2010).

[9] A. W. Rodriguez, F. Capasso, and S. G. Johnson, Nat. Photon.
5, 211 (2011).

[10] S. Scheel, The Casimir stress in real materials, in Ref. [11].
[11] Forces of the Quantum Vacuum, edited by W. M. R. Simpson

and U. Leonhardt (World Scientific, Singapore, 2015).
[12] S. K. Lamoreaux, Phys. Rev. Lett. 78, 5 (1997).
[13] W. M. R. Simpson, Surprises in Theoretical Casimir Physics

(Springer, Berlin, 2014).
[14] T. G. Philbin, C. Xiong, and U. Leonhardt, Ann. Phys. (NY)

325, 579 (2010).
[15] L. P. Pitaevskii, Phys. Rev. A 73, 047801 (2006).
[16] Apart from this heuristic argument, we prove mathematically in

Sec. IV that the Casimir force density vanishes in homogeneous
regions. One sees from Eq. (70) that the force density ∇ · σ

disappears in regions where ∇ε = ∇μ = 0, which proves our
statement.

[17] The interatomic forces in solids are electrostatic forces that are
proportional to the electric field squared. The field goes with the
inverse square of the interatomic distance a, hence the energy
goes with the inverse fourth power. The energy density of the
Casimir force is proportional to h̄c, which has the dimensions
of an energy times a length. Therefore, it must go with the
inverse fourth power of some length scale. This is typically the
scale b over which ε or μ vary; b is thousands of times larger
than a. The fourth power gives a ratio of 1012 between the two

energies. Hence the Casimir forces inside solids is negligible in
comparison with the interatomic forces.

[18] I. Griniasty and U. Leonhardt, arXiv:1704.03078.
[19] L. D. Landau and E. M. Lifshitz, Electrodynamics of Continuous

Media (Pergamon, Oxford, 1984).
[20] J. Schwinger, Particles, Sources, and Fields (Addison-Wesley,

Reading, 1998).
[21] J. S. Dowker and R. Critchley, Phys. Rev. D 13, 3224 (1976);

S. W. Hawking, Commun. Math. Phys. 55, 133 (1977).
[22] J. D. Jackson, Classical Electrodynamics (Wiley, New York,

1999).
[23] W. M. R. Simpson, S. A. R. Horsley, and U. Leonhardt,

Phys. Rev. A 87, 043806 (2013).
[24] A similar theory is fluid mechanics where each point of the fluid

represents a thermodynamically large sample of molecules, see
the introductions in L. D. Landau and E. M. Lifshitz, Fluid
Mechanics (Pergamon, Oxford, 1987) and also G. Falkovich,
Fluid Mechanics (Cambridge University Press, Cambridge,
2011).

[25] U. Leonhardt and T. G. Philbin, Geometry and Light: The
Science of Invisibility (Dover, Mineola, 2010).

[26] S. L. Adler, J. Lieberman, and Y. J. Ng, Ann. Phys. (NY) 106,
279 (1977).

[27] R. M. Wald, Phys. Rev. D 17, 1477 (1978).
[28] N. D. Birrell and P. C. W. Davies, Quantum Field in Curved

Space (Cambridge University Press, Cambridge, 1984).
[29] L. D. Landau and E. M. Lifshitz, The Classical Theory of Fields

(Butterworth-Heinemann, Amsterdam, 2003).
[30] S. Goto, R. W. Tucker, and T. J. Walton, Proc. SPIE 8072,

80720O (2011); arXiv:1402.6582.
[31] F. Bao, B. Luo, and S. He, Phys. Rev. A 91, 063810 (2015); F.

Bao, J. S. Evans, M. Fang, and S. He, ibid. 93, 013824 (2016).
[32] K. A. Milton, S. A. Fulling, P. Parashar, P. Kalauni, and T.

Murphy, Phys. Rev. D 93, 085017 (2016).
[33] R. J. Churchill and T. G. Philbin, Phys. Rev. B 94, 235422

(2016).
[34] M. Bordag and D. V. Vassilevic, J. Phys. A 32, 8247 (1999);

Phys. Rev. D 70, 045003 (2004); M. Bordag, K. Kirsten, and D.
Vassilevich, ibid. 59, 085011 (1999).

[35] M. Born and E. Wolf, Principles of Optics (Cambridge Univer-
sity Press, Cambridge, 1999).

[36] T. Needham, Visual Complex Analysis (Clarendon Press, Ox-
ford, 2002).

[37] A. Zee, Einstein Gravity in a Nutshell (Princeton University
Press, Princeton, 2013).

[38] J. C. Maxwell, Cambridge and Dublin Math. J. 8, 188
(1854).

032123-13

https://doi.org/10.1080/00018736100101281
https://doi.org/10.1080/00018736100101281
https://doi.org/10.1080/00018736100101281
https://doi.org/10.1080/00018736100101281
https://doi.org/10.1016/0003-4916(78)90172-0
https://doi.org/10.1016/0003-4916(78)90172-0
https://doi.org/10.1016/0003-4916(78)90172-0
https://doi.org/10.1016/0003-4916(78)90172-0
https://doi.org/10.1038/nphoton.2011.39
https://doi.org/10.1038/nphoton.2011.39
https://doi.org/10.1038/nphoton.2011.39
https://doi.org/10.1038/nphoton.2011.39
https://doi.org/10.1103/PhysRevLett.78.5
https://doi.org/10.1103/PhysRevLett.78.5
https://doi.org/10.1103/PhysRevLett.78.5
https://doi.org/10.1103/PhysRevLett.78.5
https://doi.org/10.1016/j.aop.2009.11.006
https://doi.org/10.1016/j.aop.2009.11.006
https://doi.org/10.1016/j.aop.2009.11.006
https://doi.org/10.1016/j.aop.2009.11.006
https://doi.org/10.1103/PhysRevA.73.047801
https://doi.org/10.1103/PhysRevA.73.047801
https://doi.org/10.1103/PhysRevA.73.047801
https://doi.org/10.1103/PhysRevA.73.047801
http://arxiv.org/abs/arXiv:1704.03078
https://doi.org/10.1103/PhysRevD.13.3224
https://doi.org/10.1103/PhysRevD.13.3224
https://doi.org/10.1103/PhysRevD.13.3224
https://doi.org/10.1103/PhysRevD.13.3224
https://doi.org/10.1007/BF01626516
https://doi.org/10.1007/BF01626516
https://doi.org/10.1007/BF01626516
https://doi.org/10.1007/BF01626516
https://doi.org/10.1103/PhysRevA.87.043806
https://doi.org/10.1103/PhysRevA.87.043806
https://doi.org/10.1103/PhysRevA.87.043806
https://doi.org/10.1103/PhysRevA.87.043806
https://doi.org/10.1016/0003-4916(77)90313-X
https://doi.org/10.1016/0003-4916(77)90313-X
https://doi.org/10.1016/0003-4916(77)90313-X
https://doi.org/10.1016/0003-4916(77)90313-X
https://doi.org/10.1103/PhysRevD.17.1477
https://doi.org/10.1103/PhysRevD.17.1477
https://doi.org/10.1103/PhysRevD.17.1477
https://doi.org/10.1103/PhysRevD.17.1477
https://doi.org/10.1117/12.886255
https://doi.org/10.1117/12.886255
https://doi.org/10.1117/12.886255
https://doi.org/10.1117/12.886255
http://arxiv.org/abs/arXiv:1402.6582
https://doi.org/10.1103/PhysRevA.91.063810
https://doi.org/10.1103/PhysRevA.91.063810
https://doi.org/10.1103/PhysRevA.91.063810
https://doi.org/10.1103/PhysRevA.91.063810
https://doi.org/10.1103/PhysRevA.93.013824
https://doi.org/10.1103/PhysRevA.93.013824
https://doi.org/10.1103/PhysRevA.93.013824
https://doi.org/10.1103/PhysRevA.93.013824
https://doi.org/10.1103/PhysRevD.93.085017
https://doi.org/10.1103/PhysRevD.93.085017
https://doi.org/10.1103/PhysRevD.93.085017
https://doi.org/10.1103/PhysRevD.93.085017
https://doi.org/10.1103/PhysRevB.94.235422
https://doi.org/10.1103/PhysRevB.94.235422
https://doi.org/10.1103/PhysRevB.94.235422
https://doi.org/10.1103/PhysRevB.94.235422
https://doi.org/10.1088/0305-4470/32/47/304
https://doi.org/10.1088/0305-4470/32/47/304
https://doi.org/10.1088/0305-4470/32/47/304
https://doi.org/10.1088/0305-4470/32/47/304
https://doi.org/10.1103/PhysRevD.70.045003
https://doi.org/10.1103/PhysRevD.70.045003
https://doi.org/10.1103/PhysRevD.70.045003
https://doi.org/10.1103/PhysRevD.70.045003
https://doi.org/10.1103/PhysRevD.59.085011
https://doi.org/10.1103/PhysRevD.59.085011
https://doi.org/10.1103/PhysRevD.59.085011
https://doi.org/10.1103/PhysRevD.59.085011


ITAY GRINIASTY AND ULF LEONHARDT PHYSICAL REVIEW A 96, 032123 (2017)

[39] A. L. Mikaelian and A. M. Prokhorov, Prog. Opt. 17, 279 (1980);
a Mikaelian lens is made in X. Wang, H. Chen, H. Liu, L. Xu,
C. Sheng, and S. Zhu, Phys. Rev. Lett. 119, 033902 (2017).

[40] A. Erdélyi, W. Magnus, F. Oberhettinger, and F. G. Tricomi,
Higher Transcendental Functions (McGraw-Hill, New York,
1981).

[41] Here is another argument: one can transform the homoge-
neous wave equation, Eq. (11) without the δ function, to

the one-dimensional Schrödinger equation by defining ζ =∫
ndz = artanh(sin z) for Eq. (44). In this case one gets

the potential (usechζ )2 that causes scattering, see Sec. 25,
exercise 4 of L. D. Landau and E. M. Lifshitz, Quan-
tum Mechanics: Non–Relativistic Theory (Pergamon, Oxford,
1991).

[42] A. P. Prudnikov, Yu. A. Brychkov, and O. I. Marichev, Integrals
and Series, Vol. II (Gordon and Breach, New York, 1992).

032123-14

https://doi.org/10.1016/S0079-6638(08)70241-5
https://doi.org/10.1016/S0079-6638(08)70241-5
https://doi.org/10.1016/S0079-6638(08)70241-5
https://doi.org/10.1016/S0079-6638(08)70241-5
https://doi.org/10.1103/PhysRevLett.119.033902
https://doi.org/10.1103/PhysRevLett.119.033902
https://doi.org/10.1103/PhysRevLett.119.033902
https://doi.org/10.1103/PhysRevLett.119.033902



