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Simulating superluminal physics with superconducting circuit technology
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We provide tools for the quantum simulation of superluminal motion with superconducting circuits. We show
that it is possible to simulate the motion of a superconducting qubit at constant velocities that exceed the speed
of light in the electromagnetic medium and the subsequent emission of Ginzburg radiation. We also consider
possible setups for simulating the superluminal motion of a mirror, finding a link with the super-radiant phase
transition of the Dicke model.
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I. INTRODUCTION

The fact that physical signals containing energy or in-
formation are not allowed to travel faster than the speed of
light in vacuum is one of the best established facts in modern
physics, and the cornerstone of one of its deepest principles,
namely, causality. However, this does not prevent one from
considering interesting features of the considered model at
superluminal speeds. On the one hand, not all velocities are
physical, in the sense that they do not need to carry any content
of information. A related example can be found in Ref. [1].
On the other hand, experiments do not typically take place in
vacuum, but in some medium, in which light moves at slower
speeds. Therefore, it may be possible to consider physical
motion at velocities exceeding those of light in the medium but
not in vacuum. Classically, this gives rise to the well-known
Cerenkov effect, where a moving electric charge generates
classical electromagnetic radiation. In the quantum realm, the
counterpart of the Cerenkov effect involves a neutral body or
any sort of perturbation moving at superluminal speeds, i.e.,
so-called Ginzburg radiation [2–5].

Quantum simulators are controllable quantum platforms
aiming at reproducing the properties of complex quantum
systems. They will soon be able to outperform classical
computers and reach quantum supremacy. Quantum simulators
can also be conceived as helpful tools which enhance our
understanding of modern theoretical physics by allowing us to
go beyond its fundamental laws. Along this vein, phenomena
and effects which are not amenable to experiments due to
technical or fundamental reasons are now within reach of
the burgeoning field of quantum simulations, ranging from
magnetic monopoles [6] to traversable wormholes [7] and
tachyons [8].

Superconducting circuits are one of the most promising
quantum platforms for the development of scalable quantum
technology and could be among the first in demonstrating
quantum supremacy [9,10]. In parallel, they are also a natural
test bed for relativistic physics in quantum mechanics and
quantum field theory, either in direct or simulated observations.
For instance, the generation of photons out of the vacuum due
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to motion of mirror-like boundary conditions at relativistic
speeds, namely, the dynamical Casimir effect (DCE), has
been demonstrated in superconducting circuit architectures
[11]. Along the same lines, a quantum simulation of the
generation of acceleration radiation by means of relativistic
motion of a superconducting qubit has been proposed [12], i.e.,
cavity-enhanced Unruh effect. While the ultrafast variation
of magnetic fluxes allows us to achieve highly relativistic
effective velocities, exploring both DCE and Unruh physics,
breaking the light barrier with superconducting circuits, either
in a medium or a quantum simulation, remains unexplored.
Indeed, DCE experiments are restricted to velocities well
below this threshold.

In this paper, we provide tools for quantum simulation
of superluminal motion with superconducting circuits. By
superluminal we mean both exceeding the velocity of light
in the medium—which is in principle possible as a real
effect—and in vacuum—which can be only conceived in a
simulator. We show that it is possible to simulate with current
platforms the motion of a superconducting qubit at constant
speeds exceeding the speed of light, even in vacuum, in the
electromagnetic environment provided by a transmission line
resonator. Remarkably, this effective superluminal motion can
trigger the emission of Ginzburg radiation. We discuss as well
the possibility of achieving superluminal constant velocities
in the simulation of mirror-like boundary motion. We find that
a setup similar to the one required for testing the Dicke model
in the thermodynamic limit can be used for the simulation
of the Hamiltonian of a mirror moving at superluminal
speeds. Moreover, we find a link to Dicke super-radiant phase
transition. Notice that the emission of radiation by means
of superluminal motion has two key differences with Unruh
and DCE physics, namely that it only appears above the
threshold of the speed of light in the medium and that it does
not require accelerations. Moreover, it is worth highlighting
that previous proposals for simulating relativistic motion with
superconducting circuits were fundamentally constrained to
the subluminal regime. Therefore we develop here a set of
ideas, both from the conceptual and the theoretical side. Note
also that we are considering the superluminal motion of a
superconducting qubit and a mirror, which is different from
superluminal propagation of the microwave radiation itself in
superconducting circuits [13].
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II. GINZBURG RADIATION

Let us start by showing how a qubit interacting with a
single resonator mode via a quantum Rabi Hamiltonian emits
radiation when moving at superluminal speeds—a particular
case of Ginzburg radiation. This model is described by the
Hamiltonian

H = ω0a
†a + ωq

2
σz + HI (xq), (1)

where ωq is the qubit energy spacing, σz and σx are the usual
Pauli operators acting on the qubit Hilbert space, and h̄ = 1.
We assume that the system dynamics effectively involves a
single resonator mode, described by annihilation and creation
operators a and a†, respectively, of frequency ω0 = ck and
wave vector k = π/L. Here, L is the resonator length and c

is the speed of light, which in the case of a superconducting
resonator takes a typical value c0/3, where c0 is the speed of
light in vacuum.

The interaction Hamiltonian is

HI (xq) = g cos (kxq)σx(a† + a), (2)

where g is the coupling strength and xq is the qubit position
[14]. This model is the standard cavity quantum electro-
dynamics approximation to the full quantum field theory
matter-radiation interaction Hamiltonian, and has been used
in the literature to describe the emission of radiation by an
atom moving at relativistic speeds [15–18].

Within perturbation theory, the probability of photon
emission of a qubit starting in the ground state, with the field
starting in the ground state as well, reads

Pe = g2

∣∣∣∣
∫ T

0
dt ei(ωq+ω0) t cos k xq(t)

∣∣∣∣
2

, (3)

where xq(t) is possibly time dependent. If the qubit is static,
this non-RWA probability is eventually negligible. However,
if the qubit moves at constant velocity

xq(t) = x0 + v t (4)

and assuming for simplicity x0 = 0, we find

Pe = g2

∣∣∣∣
∫ T

0
dt ei(ωq+ω0) t cos k vt

∣∣∣∣
2

. (5)

Therefore, if the velocity is

v = ωq + ω0

ω0
c, (6)

the probability of photon emission is resonantly enhanced.
Notice that this activation of the counter-rotating terms of
the Hamiltonian resembles the cavity-enhanced Unruh effect
[15–18], a similarity first noted by Ginzburg in a more general
context [3]. However, in this case there is no acceleration, and
the effect comes from the superluminality of the qubit motion.

Let us highlight further analogies between the acceler-
ation radiation scenario and the current constant-velocity
one. If we consider an oscillatory motion starting at the
center of the cavity and oscillating with frequency ω along
the full resonator length [12] xq(t) = L/2 + L/2 cos ω t ,

then we have kxq(t) = π/2 + π/2 cos ω t and cos kxq(t) =
−2

∑∞
0 (−1)kJ2k+1(π/2) cos (2k + 1)ωt , where the J2k+1’s

are Bessel functions of the first kind. Since J1(π/2) �
J3(π/2), we can finally write

cos k xq(t) � −2J1(π/2) cos ω t, (7)

where J1(π/2) is the value of the Bessel function of the first
kind evaluated at π/2. Using Eqs. (2) and (7), we find that the
interaction Hamiltonian of this oscillatory motion would be

HI (xq) � −2gJ1(π/2) cos (ω t)σx(a† + a), (8)

which would be, as seen in Eq. (4), the same as the interaction
Hamiltonian in the case of a trajectory with constant velocity
ω
ω0

c starting at x = 0 with a coupling strength −2gJ1(π/2).
Therefore, we conclude that we can approximate a motion
with constant velocity along the resonator by an oscillatory
motion which starts at the center of the resonator and spans
from mirror to mirror.

Putting all this together, we find that it is possible to simulate
superluminal constant velocities using existing experimental
techniques. In the circuit QED architecture proposed in
Ref. [12], the interaction Hamiltonian has the following
dependence on the external magnetic flux:

HI (f ) = g0 cos (f )σx(a† + a). (9)

Here, f = φ/φ0 is the magnetic frustration, where φ and φ0

are the magnetic flux and flux quantum, respectively. If we
identify the flux as

f = k xq, (10)

the Hamiltonians in Eqs. (2) and (9) are equivalent. Therefore,
the modulation of the effective coupling constant mimics the
motion of the qubit xq(t) inside the transmission-line resonator
(TLR). In the case described above, this means that

f = π

2
+ π

2
cos (ωq + ω0)t (11)

implements an oscillatory motion around the center of res-
onator with frequency ωq + ω0, which would be equivalent to
a motion with constant superluminal velocity, as shown above.

In the resonant case ωq = ω0, we will have an effective
velocity v = 2c, which for typical circuit QED architectures
would still be below c0. Adding a large detuning would enable
the simulation of velocities that go even beyond c0.

In Fig. 1, we plot the results of numerical simulations.
The dynamics is governed by a master equation where
we introduce a cavity decay rate κ , a decay parameter �

accounting for dissipative processes, as well as a decay �ϕ

for the dephasing of the qubits. The energy relaxation time
and phase coherence time are denoted with T1 = 1/� and
T2 = 1/�ϕ , respectively. We consider typical parameters in
current experiments [19], �/ω = 10−3, �ϕ/ω = 5 × 10−4. We
see the excellent accuracy of the approximation in Eq. (7) and
the neat resonance for the velocity (ωq + ω0)/ω0. In Fig. 1(a),
the decay rate of the cavity is small and thus we observe perfect
Rabi oscillations as expected from anti-Jaynes-Cummings
dynamics [12]. In Fig. 1(b), the decay rate is much larger,
entering into the bad-cavity limit [20]. In this case, the
oscillations are washed out and the qubit is projected onto
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FIG. 1. Probability of excitation for a qubit which is initially in the
ground state and follows trajectories xq (t) = π

2 + π

2 cos ω t (crosses)
and xq (t) = ω

ω0
c t (dashed curves), with g = 0.02 for the dotted

curves and g = −2 J1(π/2)0.02 for the dashed ones. The curves
always superpose, showing the excellent accuracy of the approxima-
tion in Eq. (7). The frequencies are ω = 2ω0 and ωq = ω0/2 (green),
ωq = 0.9ω0 (red), and ωq = ω0 (blue). Therefore, in all cases v = 2 c,
but only the blue curves represent the resonance ω = ωq + ω0. The
qubit decay parameters are � = 0.002 and T2/T1 = 0.67, and we
consider two cavity decay rates: (a) κ = 0.001 and (b) κ = 0.1
(bad-cavity limit), in units of ω.

its excited state [21]. To retrieve the qubit states, one may
use auxiliary resonators with dispersive microwave drivings
to perform projective measurements of the qubits in the
computational basis [22].

III. A MIRROR MOVING AT SUPERLUMINAL SPEEDS

Now we will consider a different scenario, where a mirror
moves at superluminal speeds. It has been shown that the
motion of optical boundaries [23,24] or the perturbation of
the refractive index [5] at constant and superluminal speeds
generates photons out of the vacuum. This phenomenon
somehow resembles the DCE, but it is radically different:
There is no acceleration and it only appears at superluminal

speeds. Moreover, it is also different from the Cerenkov effect,
which requires the presence of a charge and is classical.

Although the DCE with oscillating motion is the most
conspicuous example, other instances of boundary motion
have been considered in the literature [25–28]. However,
the case of a mirror moving at superluminal speeds remains
unexplored.

The DCE was observed in an open microwave coplanar
waveguide interrupted by a single superconducting quantum
interference device (SQUID) operated well below its plasma
frequency [11]. Under the latter condition, the SQUID im-
plements an effective mirror-like boundary condition for the
superconducting flux field, which can be described by a
standard quantum one-dimensional (1D) bosonic field. The
effective position of the boundary condition depends on the
particular value of the magnetic flux threading the SQUID and
thus its ultrafast variation amounts to motion of the mirror
at relativistic speeds, which generates a two-mode squeezing
operation on the field propagating along the transmission line.
The DCE can be produced as well for different boundary
conditions, such as the ones of a superconducting resonator
interrupted by one [29] or two SQUIDs [30]. In general, it
will appear in a cavity with time-dependent length, where the
variation of the length takes place at relativistic speeds.

We consider now a 1D cavity of time-dependent length. In
particular, let us assume that the cavity has a fixed length L

until t = 0 and then the length changes in time, L(t). The
effective Hamiltonian for this system has been derived in
Refs. [31,32]:

Heff =
∑

n

ωn(t)

(
a†

nan + 1

2

)
+ L̇(t)

L(t)

∑
n

∑
j �=n

× (−1)n+j jn

j 2 − n2

√
n

j
(a†

na
†
j + a†

naj − ana
†
j − anaj ),

(12)

where

ωn(t) = πcn

L(t)
, (13)

and L̇(t) is the time derivative of L(t).
In the DCE implementation, a constant dc flux field is

modulated through a small harmonic ac field of frequency
ωd . This results in an effective harmonic motion of the mirror
characterized by a small oscillation amplitude. Considering
L(t) = L(1 + δ sin ωdt) with δ � 1, it is straightforward
to realize that L̇(t)

L(t) � vmax cos ωdt , which in the interaction
picture leads to two-mode squeezing proportional to vmax if
ωd = ωk + ωj . Therefore, the DCE is a particular case of the
model embodied by Eq. (12).

However, the achievable mirror velocities in the celebrated
circuit quantum electrodynamics (circuit QED) implementa-
tion of the DCE are severely limited [11]. In particular, the
maximum velocity of the harmonic motion is vmax = δLeff ωd ,
where δLeff is the amplitude of the oscillation. ωd needs to
be well below the SQUID plasma frequency, which typically
means ωd < 20 GHz—it was 10 GHz in Ref. [11]. Moreover,
the SQUID-mirror equivalence only works if kω Leff � 1,
namely Leff must be smaller than the relevant wavelengths.
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When we put everything together, it turns out that vmax � 2 c.

Therefore, it is not possible to achieve the superluminal regime
with the setup of Ref. [11].

Now, let us consider L(t) = L−v t . Note that even if v<c,
this trajectory is unphysical, since it predicts an infinite
acceleration at t = 0. Of course, this is not a concern in a
simulated scenario. Using Eq. (12), we see that we have both
two-mode squeezing and mode mixing proportional to

L̇(t)

L(t)
= − v

L − vt
. (14)

Note the obvious restriction vt < L; i.e., L(t) > 0. We can
consider that this is a restriction on time, not on velocity,
and thus nothing prevents us from considering superluminal
simulated velocities v > c. We can even restrict ourselves to
shorter simulated times vt � L where

L̇(t)

L(t)
= − v

L
. (15)

Under this approximation, the Hamiltonian becomes time
independent. Note that c/L is the characteristic frequency
scale of the system, so if we want velocities around c, the
aim is to generate an interaction between the modes with a
strength comparable to their frequencies, namely ultrastrong
coupling among bosonic modes.

More specifically, let us restrict the Hamiltonian in Eq. (12)
to the pair of lowest modes of a resonator, with frequencies ω1,
ω2 where ω2 = 2ω1 = 2πc/L. What we obtain is a model of
two coupled bosonic modes, with an interaction that depends
on the effective velocity. Therefore, we propose to use a model
of two coupled bosonic modes in order to simulate mirror
motion at constant speeds, where the interaction strength 


codifies the simualated velocity. In particular, the coupling
strength of the squeezing part of the Hamiltonian is


 =
√

2

3

v

L
. (16)

Thus, for v = c we find 
/ω1 � 0.15. Achieving this coupling
strength and higher values in order to explore the superluminal
region seems extremely challenging in a coupled-cavity setup,
although it might be within reach in the case of SQUID-
mediated coupling [33,34].

Alternatively, we can also simulate one of the modes with
an array of N qubits which are coupled to a single resonator
mode. This is the Dicke model [35], which is well known in
quantum optics and has also been studied both theoretically
and experimentally in circuit QED. The interest in the Dicke
model comes chiefly from the appearance of a so-called
super-radiant phase transition, where spontaneous emission
of the atoms is strongly enhanced as a result of collective
quantum effects [35]. The actual existence and implications
of this phase transition has been the subject of intense debate,
both in cavity QED and circuit QED [36,37]. It will only
take place if the physical Hamitonian is the actual Dicke
Hamiltonian, namely two coupled bosonic modes with no
influence of extra terms, like the so-called diamagnetic term
accounting for self-interaction—which is familiar in quantum
optics. In the Dicke model in the thermodynamic limit N � 1,
the qubits are represented as well by a single collective bosonic
mode, and the coupling between this effective mode and the

FIG. 2. Total number of photons generated in the modes of
frequencies ω1 and ω2 for a squeezing strength 
 given by Eq. (16)
and v/c = 0.1 (dark blue, crosses), 1 (green, dashed), 2 (red,
dotted), and 3π/2 (light blue, solid). The latter corresponds to the
critical value of the analog super-radiant phase transition. Note that

/ω1 � 0.15 v/c. We consider a decay rate κ = 0.001.

resonator mode is proportional to the number of qubits. In
this way, we can take advantage of the enhancement of the
intermodal coupling 
 ∝ √

N [36,38]. Indeed, the celebrated
super-radiant phase transition would take place at a critical
value of the coupling 
c = √

ω1ω2/2 = π c/(
√

2L). This
would correspond to a superluminal velocity v = 3c/2π . Note
that we are assuming that the Hamiltonian is just the one
of two ultrastrongly coupled bosonic modes; that is, we can
neglect the diamagnetic term and any other extra terms [36,39],
which seems possible in some (e.g., Ref. [40]) but not all (e.g.,
Refs. [37,41]) superconducting circuit architectures. In this
way, we find a remarkable analogy between the Dicke super-
radiant phase transition and the physics of a mirror moving
at relativistic speeds, which can be seen as an additional
motivation for an experimental test of the Dicke model in the
N � 1 limit with superconducting circuit technology. Notice
that increasing the number N of qubits amounts to increasing
the square of the simulated mirror velocity v2. So far, an array
of 20 flux qubits coupled to a single resonator mode has been
implemented in the laboratory, and the

√
N enhancement of

the coupling has been proved up to 8 qubits [42].
In Fig. 2, we plot numerical simulations of the dynamics of

the two-mode model described above, including a decay rate
κ . Starting from an initial vacuum, we observe generation of
photons for simulated superluminal velocities, well above the
average number of thermal photons at the 10–100 mK relevant
regime of temperatures. To measure the number of photons in
an implementation with superconducting circuits, one may
employ standard circuit quantum electrodynamics techniques,
e.g., dual path techniques [43].

IV. CONCLUSIONS

We have provided tools for the quantum simulation of
superluminal motion with state-of-the-art superconducting
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quantum technology. We have shown that the achievement
of simulated velocities exceeding the speed of light in the
electromagnetic environment, and possibly in vacuum, can be
related to Unruh and DCE physics and, more surprisingly, to
the super-radiant phase transition of the Dicke model. Our
results do not only open a new front in quantum simulations
with superconducting circuit technology, but also establish a
natural arena for the analysis of phenomena such as Casimir
forces or quantum friction induced by Ginzburg radiation [4].
Instead of using an analog quasiparticle field [4], our setup
comprises a full-blown relativistic quantum field. In this way,
we give an example of how quantum technologies can help not

only to expand the frontiers of our technical abilities but also
to explore the frontiers of theoretical physics.
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