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We consider a quantum system continuously monitored in time which in turn is coupled to an arbitrary
dissipative classical system (diagonal reduced density matrix). The quantum and classical dynamics can modify
each other, being described by an arbitrary time-irreversible hybrid Lindblad equation. Given a measurement
trajectory, a conditional bipartite stochastic state can be inferred by taking into account all previous recording
information (filtering). Here, we demonstrate that the joint quantum-classical state can also be inferred by taking
into account both past and future measurement results (smoothing). The smoothed hybrid state is estimated
without involving information from unobserved measurement channels. Its average over recording realizations
recovers the joint time-irreversible behavior. As an application we consider a fluorescent system monitored by an
inefficient photon detector. This feature is taken into account through a fictitious classical two-level system. The
average purity of the smoothed quantum state increases over that of the (mixed) state obtained from the standard
quantum jump approach.
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I. INTRODUCTION

In quantum mechanics the state of a system is described by
a state vector, or more generally by a density-matrix operator
in the case of open systems [1]. The environmental influence
renders the system dynamics irreversible in time. In addition,
the environment may be continuously monitored in time by
some measuring device. A fundamental problem solved by the
quantum jump approach [1–4] is the estimation of the system
state conditioned on a given (single) measurement signal
(trajectory). Given the stochastic nature of the measurement
process, the system state inherits this property, while its
average over measurement trajectories recovers the irreversible
system dynamics.

The quantum jump approach delivers a stochastic system
state that depends on all previous measurement results. The
estimation is possible after knowing the system initial condi-
tion and its dynamics. Different refinements of this technique
were known in a classical context (classical estimation theory)
[5,6]. Filtering is a Bayesian estimation technique where the
system state is conditioned on earlier measurements while
smoothing means that both earlier and later measurements are
considered. Hence, the standard quantum jump approach can
be considered as a quantum extension of classical filtering.
Different formulations of a “quantum version” of smoothing
have been achieved recently [7–17].

The estimation of a classical parameter that affects the
evolution of a quantum system using the results of (both
earlier and later) measurements on that system was performed
by Tsang in Ref. [7]. Specific physical applications of this
approach have been analyzed [8]. Estimation of the result of
a quantum measurement using past and future information
was characterized by Gammelmark, Julsgaard, and Mølmer in
Ref. [9]. A past quantum state, consisting of a pair of matrices,
a density matrix, and an “effect operator,” allows us to achieve
a better estimation of a nonselective measurement performed
over the system in the past. Extra analysis and specific
implementations were posteriorly characterized [10–16]. In

contrast with the previous results, a smoothed quantum state
(positive density operator) consistent with past and future
measurement information was introduced by Guevara and
Wiseman in Ref. [17]. They considered a partially monitored
optical quantum system. The smoothed quantum state can be
estimated after knowing a pure state conditioned on both the
observed (homodyne photocurrent) and unobserved (photon
count) records. A significant recovering of the purity lost due
to the unobserved signal is achieved.

Following the previous research lines, in this paper we
demonstrate that a smoothed quantum-classical state can be
consistently defined. It describes the estimated joint state
of a dissipative (time-irreversible) hybrid quantum-classical
arrangement when past and future measurement signals
performed on the quantum subsystem are taken into account.

In contrast with previous analysis [7,9], a joint smoothed
state is explicitly defined. In addition, here the quantum
and classical dynamics are intrinsically correlated. Each one
may modify the other. Their evolution is described by an
arbitrary time-irreversible (hybrid) Lindblad rate equation
[18,19], which corresponds to the more general bipartite
evolution restricted by the requirements of Markovianicity and
classicality (one of the reduced density matrices is diagonal
in a fixed basis at all times). The smoothed joint state can be
estimated after knowing a measurement trajectory, the initials
conditions, and the characteristic parameters of the dynamics.
By partial trace the bipartite smoothed state provides the partial
(smoothed) states of the quantum system and the classical
counterpart. As in the standard quantum jump approach, by
averaging over realizations (past and futures ones) the joint
irreversible dynamics is recovered.

As an application we consider a single fluorescent system
monitored by an inefficient photon detector. By introducing a
fictitious classical degree of freedom associated to the detector,
the formalism applies to this situation. The purity of the
smoothed state increases with respect to that obtained from the
standard quantum jump approach. In contrast with previous
approaches [17], for estimating the smoothed state it is not
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necessary to determine the (past) unobserved signal trajectory.
This is a general feature of the present formalism.

The paper is outlined as follows. In Sec. II we intro-
duce the underlying formalism that describes the hybrid
quantum-classical evolution [18]. The corresponding filtered
state, equivalent to the quantum jump approach [20], is also
reviewed. Over this basis, the smoothed quantum-classical
state is developed in Sec. III. As an example, in Sec. IV the
formalism is applied to a fluorescent system monitored by an
inefficient detector. The conclusions are provided in Sec. IV.
Calculus details that support the main results are provided in
the Appendices.

II. QUANTUM-CLASSICAL DYNAMICS

We consider a quantum system S interacting with classical
(time-irreversible) degrees of freedom, denoted by C. The
bipartite arrangement can be described by a hybrid quantum-
classical density operator |ρt ). It is written as

|ρt ) ≡
∑
R

(R|ρt )|R). (1)

Here, the index R labels each state of C, which in turn has
assigned a (column) vector |R) = (0, . . . 1, . . . 0)T. The (real)
vectorial base {|R)} satisfies (R|R′) = δRR′ . Each (conditional)
density operator (R|ρt ) is defined in the Hilbert space
of S. Introducing the vector (1| ≡ ∑

R(R| = (1, . . . ,1), the
unconditional density operator ρt of S follows from the hybrid
(vectorial) operator as [18]

ρt = (1|ρt ) =
∑
R

(R|ρt ). (2)

The vector |Pt ) of classical probabilities {Pt [R]} for the set of
states {|R)} can be written as

|Pt ) =
∑
R

Pt [R]|R) =
∑
R

Tr[(R|ρt )]|R). (3)

Tr[•] denotes trace operation in the Hilbert space of S. With
the previous definitions, the vectorial hybrid operator can be
rewritten as

|ρt ) =
∑
R

Pt [R]
(R|ρt )

Tr[(R|ρt )]
|R). (4)

Hence, (R|ρt )/Tr[(R|ρt )] is the quantum state of S given that
C is in the state |R).

The more general time-irreversible (Markovian) evolution
equation describing the interaction between S and C is given
by a (hybrid) Lindblad rate equation [18],

d|ρt )

dt
= L̂|ρt ), (5)

where (separable) initial conditions are assumed, |ρ0) =
ρ0|P0).

The evolution generator L̂ is a matrix of superoperators.
This property is denoted by the upper hat symbol. From now
on, superoperators of this kind are named as vectorial superop-
erators. L̂ may adopt very different structures [18,19], which
may be used, for example, for describing radiation patterns
in fluorescent systems coupled to classically fluctuating reser-
voirs [20,21] [see also Eq. (31) below]. The following analysis
and results are valid for arbitrary L̂ structures, even beyond
those associated to Lindblad rate equations. The specific

hybrid nature of the quantum-classical arrangement becomes
a fundamental ingredient in the results developed in Sec. III.

Filtered state

The quantum system S (or equivalently its environment) is
continuously monitored in time. We assume that, up to time
t, each recorded measurement realization consists of a set of
random times ←−

t ≡ {t1,t2, . . . tn}, with 0 � ti � t. Each time
ti can be associated to the time at which S suffers a given
transition. A filtered state is an estimation |ρst

t ) of the bipartite
state conditioned on a given (past) measurement trajectory. In
addition to the times ←−

t , the initial bipartite state |ρ0) and its
dynamics [Eq. (5)] are known. The quantum jump approach
allows us to define a filtered state |ρst

t ), which relies on the
closure condition

←−−|ρst
t ) = |ρt ), (6)

that is, the average of |ρst
t ) over measurement trajectories

(denoted with the over arrow ←) recovers the dynamics
dictated by Eq. (5).

The filtered state can be written as (see Appendix A)

∣∣ρst
t

) = Û[t,0,
←−
t ]|ρ0)

Tr[(1|Û[t,0,
←−
t ]|ρ0)]

. (7)

Here, the (unconditional) vectorial propagator Û is defined as

Û[t,t ′,{τi}n1] ≡ eD̂(t−τn)

{
n∏

i=2

Ĵ eD̂(τi−τi−1)

}
Ĵ eD̂(τ1−t ′). (8)

The vectorial superoperators D̂ and Ĵ recover the bipartite
dynamics generator

L̂ = D̂ + Ĵ . (9)

The vectorial superoperator Ĵ [see, for example, explicit
expressions (29) (unidimensional case) and (33) (vectorial
case)] is chosen such that the transformation |ρ) → M̂|ρ),
where

M̂|ρ) = Ĵ |ρ)

Tr[(1|Ĵ |ρ)]
(10)

corresponds to the measurement transformation of the bipartite
state given that a measurement record occurred. Similarly,
a propagator T̂ (t,τ ) associated to the superoperator D̂ =
L̂ − Ĵ ,

T̂ (t,τ )|ρ) ≡ eD̂(t−τ )|ρ)

Tr[(1|eD̂(t−τ )|ρ)]
, (11)

can be read as the (normalized) transformation of the condi-
tional state between recording events happening successively
at times τ and t.

Given the property defined by Eq. (6) one can associate
a probability density Pt [

←−
t ] for the occurrence of a given

trajectory (defined by the set of times ←−
t ). It reads

Pt [
←−
t ] = Tr[(1|Û[t,0,

←−
t ]|ρ0)]. (12)

This weight, jointly with the definition (7), allows us to
demonstrate that the requirement (6) is in fact fulfilled
(Appendix A).
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The joint filtered state |ρst
t ), Eq. (7), through the relations

[see Eqs. (2) and (3)]

ρst
t = (

1|ρst
t

)
,

∣∣P st
t

) =
∑
R

Tr
[(

R
∣∣ρst

t

)]|R), (13)

also allows us to estimate the partial states of S and C.

III. QUANTUM-CLASSICAL SMOOTHED STATE

The state estimation (7) is conditioned on measurement
results previous to the time t, that is, the set ←−

t . It is also
possible to take into account posterior (future of t) recording
events up to a given time T > t. The events between t and T are
denoted by −→

t ≡ {tn+1,tn+2, . . . tN }, which satisfy t � ti � T .

The task now is to find the new estimation for the joint state
(smoothed state) taking into account this extra information.

The joint probability density PT [←→t ] for a trajectory
in (0,T ) with detection times ←→

t ≡ ←−
t ∪ −→

t = {ti}N1 , from
Eq. (12), can be written as

PT [←→t ] = Tr[(1|Û[T ,t,
−→
t ]Û[t,0,

←−
t ]|ρ0)]. (14)

This object can also be expressed as

PT [←→t ] =
∑
Rt

PT [←→t ,Rt ]. (15)

Here, PT [←→t ,Rt ] is the joint probability density of the random
variables ←→

t and Rt . The last one labels the state of the
classical degrees of freedom at time t. From Eq. (14) we write

PT [←→t ,Rt ] = Tr[(1|Û[T ,t,
−→
t ]|Rt )(Rt |Û[t,0,

←−
t ]|ρ0)]. (16)

This expression can be interpreted in terms of a (classical)
measurement performed over C at time t. Using that∑

Rt
|Rt )(Rt | is the identity matrix in the vectorial space of

C, it follows that the normalization (15) is satisfied trivially.
By introducing the conditional probability PT [Rt |←→t ] of

Rt given the set ←→
t , Bayes’s rule gives the relation

PT [←→t ,Rt ] = PT [Rt |←→t ]PT [←→t ]. (17)

Hence, from Eqs. (15) and (16) we get

PT [Rt |←→t ] = Tr[(1|Û[T ,t,
−→
t ]|Rt )(Rt |Û[t,0,

←−
t ]|ρ0)]∑

R Tr[(1|Û[T ,t,
−→
t ]|R)(R|Û[t,0,

←−
t ]|ρ0)]

.

(18)

This expression allows us to estimate the state of the classical
degrees of freedom C at time t given that we know both past
and future measurement results (←→t = ←−

t ∪ −→
t ) performed

on the quantum system S in the time interval (0,T ).
Now, we introduce the un-normalized joint filtered state∣∣ρ̃st

t

) ≡ Û[t,0,
←−
t ]|ρ0), (19)

and the “effect vectorial-operator”∣∣Est
t

) ≡ Û#[T ,t,
−→
t ]|I). (20)

Here |I) ≡ I|1), where I is the identity matrix in the Hilbert
space of S. Furthermore, Û# is the dual propagator of Û . It is

defined by the relation [19]

Tr[(A|Û |ρ)] = Tr[(ρ|Û#|A)], (21)

where |ρ) and |A) are arbitrary vectorial states and operators,
respectively. Using that Tr[(A|Û V̂|ρ)] = Tr[(ρ|V̂#Û#|A)],
from Eq. (8) it follows that

Û#
[
t,t ′,{τi}n1

] = eD̂
#(τ1−t ′)Ĵ #

{
n∏

i=2

eD̂
#(τi−τi−1)Ĵ #

}
eD̂

#(t−τn),

(22)

where D̂# and Ĵ # are the dual operators to D̂ and Ĵ ,
respectively (see Ref. [19]).

Given that

Tr[(1|Û[T ,t,
−→
t ]|ρ)] = Tr[(ρ|Û#[T ,t,

−→
t ]|I)], (23)

the probability (18) can be written in terms of |ρ̃st
t ) and |Est

t )
as

PT [Rt |←→t ] = Tr
[(

ρ̃st
t

∣∣Rt

)(
Rt

∣∣Est
t

)
]∑

R Tr
[(

ρ̃st
t

∣∣R)(
R

∣∣Est
t

)] . (24)

The structure of this equation is similar to that obtained in
Refs. [7,9], where the pair {|ρ̃st

t ),|Est
t )} can be named as a

“vectorial past quantum state”. Trivially, under the replace-
ment |ρ̃st

t ) → |ρst
t ), the smoothed probability PT [Rt |←→t ] can

also be written in terms of the normalized filtered state (7).
Furthermore, for T → t (filtering), Eq. (13) is recovered,
limT →t PT [Rt |←→t ] = Pt [Rt |←−t ] = Tr[(ρst

t |Rt )].
From PT [Rt |←→t ] it is possible to define a smoothed

quantum-classical state |ρst
t,T ), that is, an estimation of the

quantum-classical joint state taking into account both past and
future measurement results. From Eq. (4), we write

∣∣ρst
t,T

) =
∑
R

PT [R|←→t ]

(
R

∣∣ρst
t

)
Tr

[(
R

∣∣ρst
t

)] ∣∣R)
, (25)

where |ρst
t ) is the filtered state defined in Eq. (7) while

PT [R|←→t ] follows from Eq. (24). This is the main result
of this section. Notice that |ρst

t,T ) can be obtained after
knowing the measurement results, the joint initial state, and
the quantum-classical dynamics [see Eqs. (8) and (22)].

The previous result relies on the fact that the state of
S given that C is in the state |R) at time t is given
by (R|ρst

t )/Tr[(R|ρst
t )]. Hence, the smoothed probability

PT [R|←→t ] is the correct weight of each contribution given
that we know both past and future measurement results.

Similarly to the filtering case [Eq. (13)], the relations

ρst
t,T = (

1
∣∣ρst

t,T

)
,

∣∣P st
t,T

) =
∑
R

Tr
[(

R
∣∣ρst

t,T

)] |R) (26)

correspond to the smoothed estimations of the partial states of
S and C, respectively.

In Appendix B we demonstrate that by averaging the
smoothed joint state |ρst

t,T ) over future measurement results,

|ρst
t,T ) → −−→|ρst

t,T ), the filtered state |ρst
t ) is recovered:

−−−→∣∣ρst
t,T

) = ∣∣ρst
t

) ⇒ ←−→∣∣ρst
t,T

) = |ρt ). (27)
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In addition, the second equality follows straightforwardly
from the former one and Eq. (6). The overarrow ↔ means
average over both past and future measurement results. Thus,
the average of both the joint smoothed and filtered states
recovers the irreversible dynamics of the quantum-classical
arrangement, Eq. (5).

IV. INEFFICIENT PHOTON DETECTION

The formalism developed in the previous section may have
applications in different contexts. For example, the dynamics
of fluorescent systems coupled to classically self-fluctuating
reservoirs [20,21] can be described through different Lindblad
rate equations. The classical degrees of freedom correspond to
different configurational states of the environment. In addition,
as the formalism can be applied independently of the physical
origin of the classical counterpart, here we apply the previous
results to a different physical situation.

We consider a single fluorescent two-level system (with
states |±〉) coupled to a resonant laser field. The system-laser
(time-reversible) coupling is proportional to Rabi frequency
�, while its natural (time-irreversible) decay rate is γ. The
evolution of its density matrix ρt is [1,4]

dρt

dt
= − i�

2
[σx,ρt ]− + γ (σρtσ

† − {σ †σ,ρt }+), (28)

where σx is the x-Pauli matrix, while σ = |−〉〈+|, and σ † =
|−〉〈+|. Furthermore, [p,q]− ≡ pq − qp, while {p,q}+ ≡
(pq + qp)/2 denotes an anticommutator.

The scattered radiation field is measured by an inefficient
photon detector the efficiency of which is η. The standard
quantum jump approach covers this situation [4]. Its descrip-
tion can be recovered from Sec. II in the limit in which the
classical system C has only one state (becoming irrelevant),
while the quantum one is the two-level system described
previously. The splitting defined by Eq. (9) is performed by
introducing the (unidimensional) superoperators [4]

J [ρ] = γ ησρσ †, D = L − J , (29)

where L follows from Eq. (28), dρt/dt = L[ρ]. Given that

M[ρ] = J [ρ]

Tr[J ρ]
= |−〉〈−|, (30)

the system resets to its ground state in each detection event.
In consequence the emission process is a renewal one. A
waiting-time distribution [2] gives the probability density of
the time interval between consecutive events (see Appendix C).
The filtered state ρst

t [Eq. (7)] is not pure, 1/2 � Tr[(ρst
t )2] � 1.

Nevertheless, for η = 1 (perfect detector), a pure state is
obtained, Tr[(ρst

t )2] = 1 (strictly, this equality is valid in
general after the first detection event). Our goal here is to
get a new estimation of the system state using the smoothing
technique described previously.

A. Quantum-classical representation

The measurement trajectory is given by the detection times
obtained from the inefficient detector. Clearly, the system
[Eq. (28)] does not include any classical degree of freedom.
Nevertheless, one can introduce a fictitious classical system

FIG. 1. Scheme levels corresponding to the evolution (31). The
quantum system is characterized by the states |±〉, while the classical
one is characterized by the states |d) and |u). The transition rates are
γ η (blue full lines) and γ (1 − η) (red dashed lines). The quantum
system is coupled to an external laser field with Rabi frequency �.

that takes into account the imperfection of the detector
while the (quantum) system dynamics remains the same. It
is described by two (classical) states denoted by |a), with
a = d (detected) and a = u (undetected) (Fig. 1). The joint
vectorial state |ρt ) is defined by the matrices (a|ρt ) = ρa

t .

Their evolution is given by the Lindblad rate equation

dρa
t

dt
= − i�

2

[
σx,ρ

a
t

]
− + γa

(
σρa

t σ † − {
σ †σ,ρa

t

}
+
)

− γb

{
σ †σ,ρa

t

}
+ + γaσρb

t σ
†, (31)

where the indices are a = d,u while b = u,d. The decay and
coupling rates are

γd ≡ γ η, γu ≡ γ (1 − η). (32)

The initial conditions are taken as ρd
0 = |−〉〈−|, and ρu

0 = 0.

The evolution (31) can be read as follows (see Fig. 1). The
quantum system can suffers the transition |+〉 → |−〉 with
rates γ η and γ (1 − η) when the classical system is in the
states |d) and |u), respectively. In addition, the transitions
|+〉|d) → |−〉|u) and |+〉|u) → |−〉|d) happen with rates
γ (1 − η) and γ η, respectively. Therefore, transitions with
rate γ η (detected events) collapse C to the state |d), while
transitions with rate γ (1 − η) (undetected events) collapse C

to the state |u). Independently of the state of the classical
system, the fluorescent one is coupled to the external laser
with Rabi frequency �.

Given the hybrid evolution (31), the system dynamics
follows from Eq. (2), ρt = ρd

t + ρu
t . It is simple to check that

(d/dt)ρt obtained in this way obeys the Lindblad evolution
(28), while the previous initial conditions imply that ρ0 =
ρd

0 + ρu
0 = |−〉〈−|. Therefore, the fictitious classical degrees

of freedom C associated to the Lindblad rate equation (31) do
not affect the dynamics of the quantum system S defined by
Eq. (28). We remark that this property is valid for any value of
the characteristic parameters �, γ, and η.

The dynamics of C is strongly correlated with the behavior
of S. It starts in the state |d). Transitions between its states
|d) ↔ |u) only may happen when S is in the upper state
|+〉. For η = 1 it remains in the initial condition, that is, the
state |d).
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B. Quantum-classical filtered state

The filtered joint state |ρst
t ) [Eq. (7)] can be obtained

after defining the splitting (9). We choose the vectorial
superoperator Ĵ such that M̂ represents the measurement
transformation corresponding to the detected photons, that
is, the transitions with rate γ η in Fig. 1. Therefore, [|ρ) =
ρd |d) + ρu|u)]

Ĵ |ρ) = γd [σρdσ † + σρuσ †]|d), (33)

which in explicit form reads Ĵ |ρ) = γd (〈+|ρd |+〉 +
〈+|ρu|+〉)|−〉〈−||d). The measurement transformation
[Eq. (10)] becomes

M̂|ρ) = |−〉〈−||d). (34)

Hence, S and C are reset to the states |−〉〈−| and |d),
respectively. On the other hand, the conditional evolution
(11) is defined with D̂ = L̂ − Ĵ , where L̂ follows from the
Lindblad rate equation (31). With these definitions (Ĵ and D̂),
the joint filtered state |ρst

t ) [Eq. (7)] can be determined after
knowing the times of the detection events.

In a realistic experimental situation, the measurement
trajectory is provided by the (inefficient) photon detector.
Here, they are numerically implemented from a waiting-time
distribution [2] that gives the probability density for the time
intervals between consecutive events (Appendix C).

In Fig. 2 we show a realization of the S and C filtered
states (dotted blue lines) [Eq. (13)] through the upper sys-
tem population 〈+|ρst

t |+〉 and the population (d|P st
t ). The

disruptive changes in the states are associated to the detection
times. Furthermore, the corresponding purities are also shown,
Tr[(ρst

t )2] and purity(d,u) = (d|P st
t )2 + (u|P st

t )2. For a perfect
detector η = 1, at any time these last two objects are equal to
one.

A fundamental property of the quantum system realizations
shown in Fig. 2 is that they are exactly the same as those
obtained from the standard quantum jump approach applied
to the Lindblad evolution (28). In fact, it is straightforward to
demonstrate that

(1|D̂|ρ) = D(1|ρ) = D(ρd + ρu), (35)

where |ρ) = ρd |d) + ρu|u) andD is defined by Eq. (29). Given
that ρd + ρu gives the state of S, and given that (1|M̂|ρ) =
|−〉〈−| [Eq. (34)] it follows that the realizations of (1|ρst

t ) =
ρst

t coincide with the realizations of the standard quantum
jump approach defined from the measurement superoperator
(29) and (30). The measurement statistics is also the same
(Appendix C). Thus, not only the irreversible evolution of the
S but also the filtered state obtained from the Lindblad rate
equation (31) are the same as those obtained from Eq. (28).
This is the main property that sustains the ansatz given by
Eq. (31).

C. Quantum-classical smoothed state

The representation of the fluorescent system monitored by
an inefficient detector in terms of a Lindblad rate equation
allows us to define a joint smoothed state. In fact, given the
detection times, it follows from Eq. (25), while the partial
states follow from Eq. (26).

t;T

t;T
d|
P

tΓ tΓ

tΓ tΓ

d,
u

Ρ
t;TΡ

FIG. 2. Realizations for filtered (dotted blue lines) and smooth
(full red lines) states associated to Eq. (31). (a) Upper system
population 〈+|ρst

t,T |+〉. (b) System purity Tr[(ρst
t,T )2]. (c) Classical

population (d|P st
t,T ). (d) purity(d,u) ≡ (d|P st

t,T )2 + (u|P st
t,t )

2. The fil-
tered states correspond to T = t. In all cases, the parameters are
�/γ = 1 and η = 0.8. For the smoothed realizations, T is chosen
such that γ (T − t) = 30. The vertical dashed lines are the times of
the undetected events.

In Fig. 2, for the same realization of measurement events,
we also plot the smoothed states (full red lines) through
the upper system population 〈+|ρst

t,T |+〉 and the population
(d|P st

t,T ). The plotted purities are Tr[(ρst
t,T )2] and purity(d,u) =

(d|P st
t,T )2 + (u|P st

t,T )2.

The filtered and smoothed realizations develop disruptive
events at the same (detection) times. Nevertheless, for both
S and C, the smoothed purities are higher than the filtered
purities. The increment of the smoothed purities is a con-
sequence of the general result (27), that is, averaging the
smoothed states over future measurements events one recovers
the filtered states.

In an experimental situation it is impossible to determine
when the detector fails. Nevertheless, given that here we are
determining the measurement events in a numerical way (see
Appendix C), it is possible to know when the undetected events
happen. In Fig. 2 they are indicated by the vertical dashed
lines. These times are not necessary for defining the joint
smoothed state (25). Nevertheless, they allow us to understand
some features of the smoothed states. While 〈+|ρst

t,T |+〉 does
not develop any special characteristic, around γ t � 20 the
smoothed realization of (d|P st

t,T ) anticipates the behavior of
the filtered population (d|P st

t ). This signature is also observed
in other quantum optical arrangements [17]. In addition, here
the smoothed realization almost vanishes, property consistent
with the fact that undetected measurement events lead to the
(unobserved) transition |P ) → |u) (see Fig. 1).

The recovering of the purity lost due to the inefficient
detector can be quantified by averaging over an ensemble
of measurement events. In Fig. 3 we plot the smoothed and

filtered averaged purities of S,
←−−−−−→
Tr[(ρst

t,T )2] and
←−−−−−
Tr[(ρst

t )2],
respectively. The plots were obtained by averaging 5 × 103
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FIG. 3. Purities of the smoothed and filtered partial states when
averaged over 5 × 103 realizations (see Fig. 2). (a) and (b) correspond

to
←−−−−→
Tr[(ρst

t,T )2] (smoothed) and
←−−−−−
Tr[(ρst

t )2] (filtered). (c) and (d) cor-

respond to
←−−−−−−−−−−−−→
(d|ρst

t,T )2 + (u|ρst
t,T )2 (smoothed) and

←−−−−−−−−−−−−
(d|ρst

t )2 + (u|ρst
t )2

(filtered), both objects being denoted as purity(d,u). The parameters
are �/γ = 1, while η is indicated in each plot.

realizations. Under smoothing, with η = 0.8, about 10% of
the purity lost is recovered when compared with the filtered
purity. For η = 0.9 the recovering is around 15%. These
results are similar to that obtained in Ref. [17] with a different
measurement arrangement.

In Fig. 3 the filtered and smoothed purities of C are also
shown. While these objects refer to the fictitious classical
system associated to the imperfection of the detector, the
graphics consistently show similar properties to that of the
quantum counterpart S.

D. Ensemble behavior

When averaged over an ensemble of realizations [Eqs. (6)
and (27)] both the joint filtered and smoothed states must
recover the dynamics given by the Lindblad rate equation (31).
For the quantum subsystem, the evolution is exactly the same
as that obtained from the standard Lindblad equation (28).

In order to check these properties, in Fig. 4 we plot the

averaged smoothed
←−−−−−→〈+|ρst

t,T |+〉 and filtered
←−−−−−−〈+|ρst

t |+〉 system
populations. Consistently, both averages recover the analytical
solution 〈+|ρt |+〉 that follows from Eq. (28) [or Eq. (31)],
which is independent of η. The curves are indistinguishable
in the scale of the plots. The same property is valid for

the smoothed
←−−−→
(d|P st

t,T ) and filtered
←−−−−
(d|P st

t ) averaged classical
populations. The analytical solution of these objects follows
from Eq. (31).

From Eq. (31), it is simple to check that limt→∞(d|ρt ) =
ηρ∞ and limt→∞(u|ρt ) = (1 − η)ρ∞ where ρ∞ = limt→∞ ρt

is the stationary solution of Eq. (28), ρ∞ = {{�2,

− iγ�},{iγ�,γ 2 + �2}}/(γ 2 + 2�2). In Fig. 4, the (analyt-
ical) stationary values limt→∞〈+|ρt |+〉 = �2/(γ 2 + 2�2) =
1/3 and limt→∞(d|Pt ) = η = 0.8 are also correctly achieved.

tΓ tΓ

d|
Pt

t

Ρ

FIG. 4. Analytical solutions and average over realizations of
the filtered and smoothed states. (a) Upper system population,

〈+|ρt |+〉 analytical solution, jointly with the smoothed
←−−−−−→〈+|ρst

t,T |+〉
and filtered

←−−−−−−〈+|ρst
t |+〉 averaged populations. (b) Classical population,

(d|Pt ) analytical solution, jointly with the smoothed
←−−→
(dP st

t,T ) and

filtered
←−−−−
(d|P st

t ) averaged populations. In all cases the averages were
performed with 5 × 105 realizations. The parameters are �/γ = 1
and η = 0.8.

V. SUMMARY AND CONCLUSIONS

An extra class of smoothed quantum state was introduced. It
describes a hybrid quantum-classical arrangement conditioned
not only on earlier (filtering) but also on later measurements
results (smoothing). The joint evolution is given by an arbi-
trary hybrid Lindblad rate equation. Hence, mutual influence
between the quantum and classical subsystems is allowed. The
measurement process is performed on the quantum system.

The results relies on a Bayesian analysis, which provides
a better estimation of the classical system state [Eq. (24)],
which in turn leads to an improved estimation of the joint state
[Eq. (25)]. Partial smoothed states follow by tracing the partner
system information [Eq. (26)]. The hybrid smoothed state can
be determined after knowing the initial joint state, the hybrid
evolution, and the measurement results. The estimation does
not rely on unobserved information such as, for example, that
provided by measurement processes performed on the classical
subsystem.

By averaging the smoothed state over future measurement
results the filtered state is recovered [Eq. (27)]. This property
guarantees that a purer estimation of the joint state is always
obtained. Furthermore, and similarly to the standard quantum
jump approach, here the time-irreversible joint dynamics is re-
covered after averaging over both past and future measurement
results.

The formalism was applied to a standard fluorescent system
monitored by an inefficient photon detector. This situation was
covered by introducing fictitious classical degrees of freedom
(Fig. 1) associated to the imperfect photon detector. The joint
quantum-classical dynamics [Eq. (31)] leads to the same quan-
tum system dynamics. A significant recovering of the purity
lost due to the inefficient recording process is achieved by
taking into account future measurement results (Figs. 2 and 3).
Consistently, the ensemble averages of both the filtered and
smoothed realizations recover the quantum irreversible system
dynamics (Fig. 4).

The present results can be extended and applied in different
physical situations. For example, many hybrid measure-
ment channels as well as application in single-molecule
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spectroscopy [20,21] can be straightforwardly handled by
using the developed theoretical formalism. How different
classical dynamics influences the smoothed state can also be
studied in this context.
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APPENDIX A: VECTORIAL QUANTUM JUMP APPROACH

Here, we review the quantum jump approach formulated for
quantum-classical hybrid dynamics [20] described through a
Lindblad rate equation, Eq. (5).

Given the relation (9), the evolution of the joint state can
be rewritten as

d|ρt )

dt
= (D̂ + Ĵ )|ρt ). (A1)

This evolution can be “unraveled” in terms of measurements
trajectories. By solving the previous Markovian evolution
as |ρt ) = eD̂t |ρ0) + ∫ t

0 eD̂(t−τ )Ĵ |ρτ )dτ, after successive iter-
ations, it follows that

|ρt ) = Ĝ(t)|ρ0) =
∞∑

n=0

Ĝn(t)|ρ0). (A2)

Here, Ĝ0(t) = eD̂t , while

Ĝn(t) =
∫ t

0

←−
dtnÛ[t,0,

←−
tn ], (A3)

where the propagator Û is defined by Eq. (8). Furthermore,←−
tn = {ti}i=n

i=1 are the integration variables corresponding to the

nested integrals
∫ t

0

←−
dtn ≡ ∫ t

0 dtn . . .
∫ t3

0 dt2
∫ t2

0 dt1.

Each contribution in Eq. (A2) can be rewritten as

Ĝn(t)|ρ0) =
∫ t

0

←−
dtnPt [

←−
tn ]

Û[t,0,
←−
tn ]|ρ0)

Tr[(1|Û[t,0,
←−
tn ]|ρ0)]

, (A4)

where Pt [
←−
tn ], similarly to Eq. (12), is defined as

Pt [
←−
tn ] = Tr[(1|Û[t,0,

←−
tn ]|ρ0)]. (A5)

This object can be read as the n-joint probability density of a
measurement trajectory with n events, each one happening at
times ←−

tn . Hence, from Eq. (A4), the corresponding conditional
stochastic joint state |ρst

t ) (associated to the set ←−
tn ) is

∣∣ρst
t

) = Û[t,0,
←−
tn ]|ρ0)

Tr[(1|Û[t,0,
←−
tn ]|ρ0)]

, (A6)

which recovers Eq. (7). In this way, Eq. (A2) can be read as an
addition over all possible trajectories with n events happening
at the arbitrary times ←−

tn . By construction, the fulfillment of
condition (6) is guaranteed. Notice that Pt [

←−
tn ] satisfies the

normalization
∞∑

n=0

∫ t

0

←−
dtnPt [

←−
tn ] = 1. (A7)

The previous associations are consistent with the definitions
of the measurement transformation Eq. (10) and conditional
evolution Eq. (11). In fact, by using the mathematical principle
of induction, it is possible to rewrite Eq. (A6) as∣∣ρst

t

) = T̂ (t,tn)M̂ · · · T̂ (t2,t1)M̂T̂ (t1,0)|ρ0). (A8)

Therefore, the conditional state can in fact be written as
successive applications of the measurement transformation
M̂, while T̂ gives the normalized conditional propagation
between measurement events.

Interestingly, by using the mathematical principle of induc-
tion it is also possible to prove that the n-joint probability,
Eq. (A5), can be rewritten as

Pt [
←−
tn ] = P0

[
t,tn;M̂

∣∣ρst
tn

)]
w

[
tn,tn−1;M̂

∣∣ρst
tn−1

)]
× · · · w[

t2,t1;M̂
∣∣ρst

t1

)]
w[t1,0; |ρ0)]. (A9)

In this expression, for i � 1∣∣ρst
ti+1

) = T̂ (ti+1,ti)M̂
∣∣ρst

ti

)
, (A10)

while |ρst
t1

) = T̂ (t1,0)|ρ0). The function w[t,τ ; |ρ)] can be read
as a waiting-time distribution [2], that is, given that at time τ the
joint state is |ρ), it gives the probability density for an interval
t − τ between consecutive measurement events. It reads

w[t,τ ; |ρ)] ≡ Tr[(1|Ĵ eD̂(t−τ )|ρ)]. (A11)

On the other hand, P0[t,τ ; |ρ)] is the associated survival
probability

P0[t,τ ; |ρ)] = 1 −
∫ t

τ

w[t ′,τ ; |ρ)]dt ′, (A12)

being defined as

P0[t,τ ; |ρ)] ≡ Tr[(1|eD̂(t−τ )|ρ)]. (A13)

Given an initial condition |ρ0), the dynamics defined by
Eq. (A8) can be numerically implemented by getting the
random measurement times from the survival probability [20].
As in the standard quantum jump approach it is also possible
to write an explicit stochastic differential equation for the
state |ρst

t ), the average of which over realizations recovers
the deterministic evolution (A1).

APPENDIX B: AVERAGING OVER FUTURE
MEASUREMENTS RESULTS

Here, we demonstrate that the average of the joint smoothed

state over future realizations recovers the filtered state,
−−→|ρst

t,T ) =
|ρst

t ), Eq. (27). Given the expression (25), this is equivalent
to demonstrate that the average of the smoothed condi-
tional probability PT [Rt |←→t ] over measurements performed
in the future recovers the filtered conditional probability
Pt [Rt |←−t ] = Tr[(Rt |ρst

t )]. In an explicit way, the previous
condition can be written as

Pt [Rt |←−t ] =
∫ −→

dt PT [Rt |←−t −→
t ]PT [−→t |←−t ]. (B1)

For clarity PT [Rt |←→t ] was denoted as PT [Rt |←−t −→
t ]. Further-

more, the integral
∫ −→

dt [see Eq. (B5) below] is an addition
over all possible measurement trajectories in (t,T ) given that
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we know one trajectory in (0,t), which is defined by the set
of times ←−

t . In what follows we demonstrate the validity of
Eq. (B1).

The conditional probability density PT [−→t |←−t ] for the times−→
t of future measurements given the past measurement times←−
t fulfills the Bayes relation

PT [←→t ] = PT [−→t |←−t ]Pt [
←−
t ]. (B2)

Here, Pt [
←−
t ] is defined by Eq. (12) while PT [←→t ] is defined

by Eq. (14), which leads to

PT [−→t |←−t ] = Tr[(1|Û[T ,t,
−→
t ]Û[t,0,

←−
t ]|ρ0)]

Tr[(1|Û[t,0,
←−
t ]|ρ0)]

. (B3)

By using this result and Eq. (18) for PT [Rt |←−t −→
t ], Eq. (B1)

becomes

Pt [Rt |←−t ] =
∫ −→

dt
Tr[(1|Û[T ,t,

−→
t ]|Rt )(Rt |Û[t,0,

←−
t ]|ρ0)]

Tr[(1|Û[t,0,
←−
t ]|ρ0)]

.

(B4)
The integral

∫ −→
dt is an addition over all possible measurement

trajectories in (t,T ). Hence, it is given by∫ −→
dt =

∞∑
N=0

∫ T

t

−→
dtN =

∞∑
N=0

∫ T

t

dtN · · ·
∫ t3

t

dt2

∫ t2

t

dt1,

(B5)

where the addition takes into account an arbitrary number of
detection events in the time interval (t,T ). By working in a
Laplace domain, it is possible to demonstrate that∫ −→

dt Û[T ,t,
−→
t ] = exp[(T − t)L̂], (B6)

where Û is the propagator (8) and L̂ defines the Lindblad
rate equation (5). Using this result and the trace conservation
property

Tr[(1| exp[tL̂]|ρ)] = Tr[(1|ρ)], (B7)

Eq. (B4) becomes

Pt [Rt |←−t ] = Tr[(Rt |Û[t,0,
←−
t ]|ρ0)]

Tr[(1|Û[t,0,
←−
t ]|ρ0)]

, (B8)

= Tr[(Rt

∣∣ρst
t

)
], (B9)

where the expression (7) was used. The last equality demon-
strates the validity of Eq. (B1) and in consequence also the
validity of Eq. (27).

APPENDIX C: DETECTION TIMES

In an experimental situation, the detection times are deter-
mined from the photon detector. Instead, here they are obtained
from the quantum jump approach. In fact, this formalism not
only allows us to defining the filtered state, but also allows us
to determine the measurement statistics. A (state-dependent)
waiting-time distribution [2] gives the probability density for
the time interval between consecutive events, Eq. (A11).

For a fluorescent system monitored with an inefficient
detector η < 1 [Eqs. (28)–(30)], by working Eq. (A11) in a
Laplace domain [f (u) = ∫ ∞

0 dtf (t)e−ut ] we get [(t − τ ) →
u, w[t,τ ; |ρ)] → wη(u)]

wη(u) = γ η�2

u(u + γ )(2u + γ ) + (2u + γ η)�2
. (C1)

Given that the reset state (30) does not depend on the (previous)
state of the system, wη(u) inherits this property, leading to
a renewal point process. Exactly the same expression and
property follow from Eq. (A11) calculated over the basis of
the Lindblad rate equation (31) and the vectorial superoperator
(33). This feature also demonstrates that the quantum-classical
representation leads to the same quantum system dynamics.

Interestingly, the previous expression can be written as

wη(u) = ηw1(u)

1 − (1 − η)w1(u)
, (C2)

where w1(u) = wη(u)|η=1, that is, the waiting-time distribu-
tion for perfect detection, η = 1. By using the geometric series
it follows that

wη(u) = ηw1(u)
∞∑

n=0

[(1 − η)w1(u)]n. (C3)

In this way, wη(u) is determined from successive convolution
terms, each one representing a time interval where n-fails
detection events happen with probability (1 − η)n and a detec-
tion event happen with probability η. Consequently, one can
determine the random events from wη(u). Equivalently, each
event is chosen in agreement with w1(u) (perfect detection)
and each event is accepted or rejected with probabilities η and
(1 − η), respectively. This last algorithm recovers the expected
definition of an inefficient photon detector.
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