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Thermal production, protection, and heat exchange of quantum coherences
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We consider finite-sized atomic systems with varying number of particles which have dipolar interactions
among them and are also under the collective driving and dissipative effect of a thermal photon environment.
Focusing on the simple case of two atoms, we investigate the impact of different parameters of the model on
the coherence contained in the system. We observe that, even though the system is initialized in a completely
incoherent state, it evolves to a state with a finite amount of coherence and preserves that coherence in the
long-time limit in the presence of thermal photons. We propose a scheme to utilize the created coherence in order
to change the thermal state of a single two-level atom by having it repeatedly interact with a coherent atomic
beam. Finally, we discuss the scaling of coherence as a function of the number of particles in our system up to
N = 7.
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I. INTRODUCTION

The vast majority of actual quantum systems are not isolated
and are in direct or indirect contact with their surrounding
environments. The field of the theory of open quantum systems
deals with the problem of understanding the physics behind
this mechanism and is a well-established topic [1–3]. In
general, interaction with the environment results in the loss
of all quantum properties of the system, but most important of
all is coherence.

Many peculiarities of quantum mechanics can be traced
back to the wave-particle duality property of quantum
particles. This dual behavior allows us to describe these
particles as waves and put them in a coherent superposition
of two (or more) possible states that they are allowed to
occupy. The presence of such coherent superposition states
actually is one of the main differences between quantum
mechanics and classical mechanics. Despite its importance
and many different manifestations, the genuine framework of
characterization and quantification of coherence in an arbitrary
quantum system was introduced only very recently [4–7].
The framework is formalized in [4] by introducing a set
of physically motivated conditions for a proper measure of
coherence. Quantification of quantum coherence has attracted
a lot of attention both at the fundamental level and about
its applications in quantum critical, open, and biological
systems [8–29].

Quantum coherence is typically considered to be a resource
for quantum information devices [17–25]. More recently, it
was understood that it can also be used as a “fuel” for
quantum heat engines (QHEs) [25,30–36]. Such a profound
QHE, which can convert quantum coherence to useful work,
can be practically appealing only if the abundant coherence is
produced and protected either naturally or by energetically
cheap artificial methods. Moreover, it is necessary to be
able to have a scheme that can harvest stored coherences
as heat to produce work in a genuine heat engine cycle.
Early studies, focusing on entanglement of a pair of two-level
atoms, suggested that a promising route towards natural and
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long-lived quantum coherence could be achieved by simply
using a thermal environment [37–42]. However, such schemes
yield too-small quantum coherence. How to scale them up
and how to convert them back to heat for the realization of
profound QHEs remain as open questions.

In this paper, we propose that an ensemble of two-level
atoms can produce a large amount of many-body quantum
coherence by collective coupling to a thermal environment. We
find that the coherence exhibits a superlinear scaling with the
number of ensemble atoms. In addition, we propose a scheme
to harvest such thermally generated quantum coherence back
as heat. We find that a single two-level atom can be used as
the working medium to harvest the coherences by randomly
and repeatedly making it interact with similarly prepared
coherent atomic clusters (pairs). The working atom reaches
a steady state that can be described by a thermal equilibrium
state whose temperature depends on the coherence. This is in
fact a generalization of a well-known route to thermalization
by collision models [43,44], as well as the photo-Carnot
engine in which the working fluid is the micromaser cavity
field [30]. The intriguing point is that only certain coherences
can be produced by collective heating and only those that
can be converted back to heat. These coherences share the
characteristic property of belonging to the energy degenerate
subspaces (Dicke-type states or Wigner-j matrix blocks in
the computational basis) which was recently classified as
heat-exchange coherence [32]. Collective heating can “charge”
such “flammable” coherences even if they are not present
initially and preserve them in steady state so that they can
be “discharged” back to heat by the initiation of a harvesting
scheme (cf. Fig. 1).

The organization of the paper is as follows. We first describe
our model system in Sec. II. We then focus on the case of a
pair of two-level atoms and present key results on the quantum
coherence generation and protection in a thermal environment
in Sec. III. Sections III A and III B focus on the effects
of the environment temperature and the dipolar coupling
between the atoms, respectively. Section III C introduces our
proposed scheme to harvest the thermally produced and stored
coherences back as heat using a single two-level atom. We
generalize our results to the case of multiple atoms in Sec. IV.
We conclude in Sec. V.
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(a)

(b)

FIG. 1. Schematic view of (a) creation and (b) harvesting of
coherences in our model. A pair of two-level atoms initially in a
state with coherence CL can be transformed into another state with
higher coherence CH > CL by collective interaction with a thermal
bath. The energetic cost of the generation of coherences is paid by the
“natural” heat �Q withdrawn from the thermal bath. Some amount
of this energy can be harvested back by a repeated interaction method
where a single two-level atom is coupled sequentially with a pair of
atoms with coherence CH . The coupling happens at random times and
the atom reaches a steady state eventually that can be described by a
thermal state with an effective temperature Teff that can be controlled
by the CH of the subenvironment atomic pairs. (a) Heat is used to
produce (“charge”) coherences. (b) Coherences are harvested back
(“discharged”) as heat.

II. MODEL

The internal Hamiltonian of the atoms is given by Hs =
(h̄ω0/2)

∑N
i=1 σ z

i , where σ z
i = |ei〉〈ei | − |gi〉〈gi | is the Pauli z

matrix for the ith atom and ω0 is the transition frequency of
the atom. For simplicity, we assume that all of the atoms in
our sample act like point dipoles and are polarized such that
they all have the same dipole moment di

eg = deg = 〈e|d|g〉. In
the interaction picture associated with Hs , the master equation
governing the dynamics of the atomic system is given by

dρ

dt
= − i

h̄
[Hd,ρ] + D−(ρ) + D+(ρ) = L(ρ), (1)

where the first term accounts for the unitary dipole-dipole in-
teraction. The second and third terms describe the spontaneous
and thermally induced emission (dissipation) and thermally
induced absorption (driving) processes, respectively, whose

explicit forms are as follows:

D−(ρ) =
N∑

i,j=1

γij (n̄ + 1)

(
σ−

j ρσ+
i − 1

2
{σ+

i σ−
j ,ρ}

)
(2)

and

D+(ρ) =
N∑

i,j=1

γij n̄

(
σ+

j ρσ−
i − 1

2
{σ−

i σ+
j ,ρ}

)
. (3)

In the equations above, σ+
i = |ei〉〈gi | and σ−

i = |gi〉〈ei | are the
raising and lowering operators, respectively, for the ith atom,
and n̄ = (exp(βh̄ω0) − 1)−1 is the mean number of thermal
photons at the transition frequency of the atom at an inverse
temperature β. Hd = h̄

∑
i �=j fijσ

+
i σ−

j is the dipole-dipole
coupling Hamiltonian between the atoms in the considered
system. The dipolar interaction strength fij and the dissipation
and driving rates γij are given as [45–47]

fij = 3γ0

4

[
(1 − 3 cos2 αij )

(
sin ξij

ξ 2
ij

+ cos ξij

ξ 3
ij

)

− (1 − cos2 αij )
cos ξij

ξij

]

and

γij = 3γ0

2

[
(1 − 3 cos2 αij )

(
cos ξij

ξ 2
ij

− sin ξij

ξ 3
ij

)

+ (1 − cos2 αij )
sin ξij

ξij

]
.

Here, γ0 = (ω3
0d

2
eg)/(3πh̄ε0c

3) is the single-atom spontaneous
emission rate, ξij = k0rij is a dimensionless parameter char-
acterizing the distance between the particles with k0 = ω0/c,
and rij = |rij| = |ri − rj| gives the relative positions of the ith
and j th atoms. Finally, αij is the angle between rij and deg.

The model admits two different regimes depending on
the spatial distance of the atoms inside the ensemble. On
one hand, we have the ξij � 1 limit describing that every
atom is significantly distant from each other, which results
in the approximate model parameters f ≈ 0 and γij ≈ γ0δij

for all i, j . In this regime we have no collective effects;
every particle behaves independently. On the other hand, in
the complete opposite limit of ξij � 1 where fij ≈ (3γ0(1 −
3 cos2 αij ))/4ξ 3

ij and γij ≈ γ0 for all i, j , we are in the regime
where collective effects play an important role.

III. DYNAMICS OF COHERENCE

To begin with, we introduce the coherence measure that we
are going to utilize to determine the amount of coherence in
our system. It is called the l1 norm of coherence and is just
given by the sum of the absolute values of the off-diagonal
elements in the density matrix of a given quantum system [4]

Cl1 (t) =
∑
i �=j

|ρi,j (t)|. (4)

Cl1 is meaningful only if a reference basis for the density
matrix is set and, in what follows, we fix our reference basis to
be {|e1e2 · · · en−1en〉,|e1e2 · · · en−1gn〉,|e1e2 · · · gn−1en〉, . . . ,
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|g1g2 · · · gn−1gn〉}, namely, a excitation or computational
basis.

We may now proceed to analyze the time evolution of the
l1 norm under the dynamics dictated by the master equation
of our physical model, Eq. (1), for two atoms. We specifically
concentrate on the case of N = 2, since it is the simplest
ground in order to analyze the impact of different parameters
in the model on the time evolution of the atoms.

As previously mentioned, the dynamical model we consider
here has two different regimes depending on the separation
between the atoms. In the limit of ξij � 1 for which the atoms
are far apart from each other, we do not observe any interesting
phenomena in the course of dynamics. Initial states that have
no coherence do not accumulate any and the ones that have
coherence lose it monotonically in finite time. In other words,
individual coupling of atoms to the environment generates no
coherence and destroys the initially present amount. Therefore,
we assume that the atoms in our system are spatially very close,
corresponding to the ξij � 1 limit where the collective effects
are pronounced. Throughout this paper we only consider
identical dipole-dipole interactions between the atoms: fij =
f0. Furthermore, we make an implicit assumption that the
mean number of photons, n̄, appearing in Eq. (1) is actually
the mean number of photons that are at the transition frequency
of the atoms, ω0, at a given temperature.

Before moving on to the multiatom cases, we first consider
the dynamics of coherence for a cluster constituted by two
atoms in order to demonstrate interplay between the two main
parameters in the system: the mean number of photons in the
environment, n, and the dipole-dipole interaction constant f0.
The conclusions we draw about the effect of these parameters
also apply to larger atomic clusters.

A. Impact of mean number of thermal photons

The discussion on the effect of the mean number of photons
in the environment surrounding the atoms is a bit more
complicated to treat, even partially, for the most general initial
state of two atoms. Therefore, we need to choose an initial
state and we have decided that initiating the dynamics from
the ground state would generate the most suitable scenario to
demonstrate the effect of thermal photons on coherence. If we
take the initial state of the ensemble as the ground state of
both atoms, ρ(t = 0) = |g1g2〉〈g1g2|, and evolve it according
to Eq. (1), we can calculate ρ(t). We find that it is always
in the form of a symmetric X-type (Dicke-type) state with
only two nonzero coherences lying in the central block. The
coherences are always positive. Cl1 as defined in Eq. (4) can be
evaluated analytically (see Fig. 2). The result is independent
of the dipolar interactions and given by

Cl1 (t) = n̄(n̄ + 1)

3n̄(n̄ + 1) + 1

− n̄e−at [(n̄ + 1)
√

n̄(n̄ + 1) cosh(bt) − n̄2 sinh(bt)]

[3n̄(n̄ + 1) + 1]
√

n̄(n̄ + 1)
,

(5)

where a = 2γ0(2n̄ + 1) and b = 2γ0
√

n̄(n̄ + 1). We now
analyze the results of different limits admitted by the above
equation.
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FIG. 2. Cl1 as a function of scaled time γ0t for different mean
number of photons, n̄, in the environment for the two atoms initially
in the ground state.

To begin with, when there are no thermally induced
processes, i.e., n̄ = 0, Cl1 remains zero, independent of time.
Since in the absence of thermal environmental photons only a
spontaneous decay mechanism is present, an atomic system
initiated in its ground state does not change during such
dynamics. However, as soon as we have a finite-temperature
environment embodied by thermal photons, n̄ �= 0, we begin
to have nonzero coherence in the state of the system. As
t → ∞, the second term on the right-hand side of Eq. (5)
goes to zero, leaving the first term unaffected, which implies a
time-invariant coherence in the system. In addition, in the case
of high-temperature environments where the mean number of
photons is high, n � 1, Cl1 converges to the value 1/3.

The mechanism behind the creation of coherence in the
atomic ensemble is the thermal drive term in our physical
model and this term is present only when we have n �= 0.
The very presence of thermal photons in the environment
surrounding our system makes it possible for an atom to absorb
that photon and make a transition to the excited state. Since
we assume that the atoms in the ensemble are very close, they
can be treated as though they are indistinguishable. Therefore,
it is not possible to identify the atom that absorbed the photon
and ended up in the excited state, which puts our system in a
superposition state in the single (or more) excitation Hilbert
space. However, the dissipation in the system, partially caused
also by the same environment of thermal photons, opens up
a channel that causes decays to the ground state, leading to
loss of some of these created excitations. Nevertheless, in the
long-time limit, we see that our atomic ensemble comes to an
equilibrium state, due to the trade-off between the loss and
drive mechanisms, with a finite amount of coherence.

B. Impact of dipolar interactions

In order to investigate the impact of dipole-dipole inter-
actions, we first determine the initial states whose evolution
is influenced by Hd . For that aim, we have assumed that
the system is disconnected from the outside environment,
i.e., γij = 0, and it only evolves unitarily as determined by
the first term in Eq. (1). The evolution of elements of the
density matrix are presented in Eq. (A1), in Appendix A. By
inspection one can conclude that there are some initial states
which are indifferent to the presence of dipolar interactions
during the time evolution. These initial density matrices have
ρ11, ρ14 (and naturally ρ41), and/or ρ44 as their only nonzero
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FIG. 3. Dynamics of Cl1 for the initial state (a) |ψ(0)〉 = (|ge〉 +
i|eg〉)/√2 and (b) |ψ(0)〉 = (

√
3|ge〉 + |eg〉)/2. Solid and dashed

lines represent f0/γ0 = 102 and f0/γ0 = 1 cases, respectively, with
n̄ = 10. Time is dimensionless and scaled with γ0.

elements, or satisfying the condition ρ22 = ρ33 together with
ρ23 ∈ Re. Initial states lying outside the mentioned cases are
affected by dipolar interactions and the effect is reflected to
the dynamics of coherence as sinusoidal oscillations. Since
the system evolution is unitary under Hd , such a behavior is
natural. It is important to note that, when we consider the
interactions with the environment, Eq. (A1) describing the
evolution of the density matrix elements will surely change and
the effect of coherent dipole interactions will be suppressed due
to open system dynamics. However, the dipolar interactions
will affect the same density matrix elements apart from the
cases outlined above; thus our conclusions above still hold
true in the presence of interaction with the environment.

Figure 3 exemplifies the effect of dipole-dipole interactions
for two different initial states for which the interaction does
have an impact. It is possible to conclude that, in the presence of
dissipation and drive, dipole interactions only have appreciable
effects on the dynamics of coherence in short times: the value
of coherence in the long-time limit does not depend on it.
Moreover, to be able to see the effects in short times, the
system must be in the regime f0/γ0 > 1 with n̄ = 10, which
are two competing energy scales in the dynamics. Even having
f0/γ0 ≈ 1 is not enough to see an observable difference in the
behavior of coherence.

C. Harvesting the coherences

In the previous sections we have seen that collective
coupling of a pair of two-level atoms to a heat bath allows
for generation of certain coherences in the two-atom density
matrix. In this section we explore a scheme to harvest these
coherences back as heat. For that aim, we consider a beam of
atomic pairs carrying such coherences and assume that they in-
teract with a two-level atom at random time intervals. The total
Hamiltonian describing the system can be written as follows:

H = Hq + Hb + Hint, (6)

where the single atom, an atom pair in the beam, and the
interaction Hamiltonians are respectively given by

Hq = h̄ω0

2
σ z

0 , (7)

Hb = h̄ω0

2

2∑
i=1

σ z
i , (8)

Hint = h̄g

2∑
i=1

(σ+
i σ−

0 + σ−
i σ+

0 ). (9)

Here ω0 is the transition frequency of the atoms, which are
taken to be identical. The interaction coefficient is denoted
by g.

The atomic pairs arrive randomly at a rate p, and the
interaction time τ is assumed to be short such that the condition
gτ � 1 is satisfied. In the interaction picture, the time-
evolution operator is given by U (τ ) = exp(−iHintτ ) whose
exact expression, up to second order in (gτ )2, is given in
Appendix B. The total density matrix of the system before each
interaction is the product of the constituent density matrices:
ρ(t) = ρb(t) ⊗ ρq(t). Then, the master equation of the qubit
can be written as

ρ̇q(t) = p

⎡
⎣ N∑

i,j=1

aij

N∑
n=1

Uni(τ )ρq(t)[Unj (τ )]† − ρq(t)

⎤
⎦,

(10)

where aij are the density matrix elements of an atomic pair
in the beam ρb(t). Uni(j ) are the matrix elements of the
time-evolution operator U (τ ). It is important to note that
these matrix elements are actually operators in the single-qubit
Hilbert space. Expanding Uni and Unj , we obtain the master
equation in the Lindblad form:

ρ̇q = −i[Heff,ρq] + Lsρq + Lρq. (11)

The Hamiltonian Heff describes a coherent-drive term on the
atom:

Heff = pgτ (λσ+ + λ∗σ−). (12)

The Lindbladian Ls describes a squeezed reservoir effect on
the atom and is expressed as

Lsρq = 2μ(εσ+ρqσ
+ + ε∗σ−ρqσ

−)

= 2μ(εLe
sρq + ε∗Ld

s ρq), (13)

where μ = p(gτ )2. The Lindbladian Lρq is expressed by

Lρq = μ
( re

2
Leρq + rd

2
Ldρq

)
, (14)

where excitation and deexcitation of the atom are described by

Leρq = 2σ+ρqσ
− − σ−σ+ρq − ρqσ

−σ+, (15)

Ldρq = 2σ−ρqσ
+ − σ+σ−ρq − ρqσ

+σ−. (16)

Table I shows that coherences in the density matrix of
the atomic pair disjointly determine the contributions of the

TABLE I. The coefficients of the Lindbladians in the master
equation.

re 2a11 + a22 + a23 + a32 + a33

rd 2a44 + a22 + a23 + a32 + a33

λ a12 + a13 + a24 + a34

ε a14
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processes in the master equation. If the state of the atomic
pairs is set so that λ = 0, the master equation becomes

ρ̇q = Lsρq + Lρq. (17)

By expressing N = re/(rd − re), γ = μ(rd − re), and Meiφ =
−2εμ/γ , we can rewrite the equation as follows:

ρ̇q = 1

2
γ (N + 1)(2σ−ρqσ

+ − σ+σ−ρq − ρqσ
+σ−)

+ 1

2
γN (2σ+ρqσ

− − σ−σ+ρq − ρqσ
−σ+)

− γMeiφσ+ρqσ
+ − γMe−iφσ−ρqσ

−. (18)

The master equation is the same as that of the two-level
atom subjected to the squeezed thermal bath, with the Bloch
equations [48]

˙〈σx〉 = −γ

2
(2N + M + M∗ + 1)〈σx〉

− iγ

2
(M − M∗)〈σy〉 + 1

2
ipgτ (λ − λ∗)〈σz〉,

˙〈σy〉 = −γ

2
(2N + M + M∗ + 1)〈σy〉

− iγ

2
(M − M∗)〈σx〉 − 1

2
pgτ (λ + λ∗)〈σz〉,

˙〈σz〉 = −γ [(2N + 1)〈σz〉 + 1]

− 2ipgτ [(λ − λ∗)〈σx〉 + i(λ + λ∗)〈σy〉], (19)

where γ corresponds to the vacuum spontaneous emission rate.
The nonunitary part of the master equation in fact could

be transformed into a sum of two L1 and L2 dissipators in
Lindblad form. We can transform them into two dissipators
using R1 and R2 [49]:

ρ̇q = −i[Htot,ρq] + L1 + L2

= − i[Htot,ρq] +
2∑

i=1

(2RiρqR
†
i − R

†
i Riρq − ρqR

†
i Ri),

(20)

where

R1 =
√

γ (Nth + 1)

2
R,

R2 =
√

γNth

2
R†,

R = σ− cosh(r) + eiφσ+ sinh(r). (21)

The master equation is in the Lindblad form, which is going
to be of great use in the calculation of the heat current and work
flux (power) in and out of our single-qubit system due to the
interaction with the atomic beam. As given in [50] the heat
current and power are defined using the coherent evolution
Hamiltonian and the dissipators as

Ji = 〈L∗
i (Htot)〉 = Tr

[
ρqL∗

i (Htot)
]
, (22)

P =
〈
∂Htot

∂t

〉
= Tr

[
ρq

∂Htot

∂t

]
. (23)

Here they are defined in the laboratory frame; however, we
calculate them in the interaction picture for convenience. Using
U = eiωqσzt/2,

Ji = Tr
[
ρqL∗

i (Htot)
] = Tr

[
UρqL∗

i (Htot)U
†]

= Tr
[
UρqU

†UL∗
i (Htot)U

†] = Tr
[
ρ̃qL̃∗

i (UHtotU
†)

]
, (24)

where the tilde denotes interaction picture terms. Since the
Hamiltonian in the interaction picture [Eq. (7)] is given as

Heff = UHtotU
† − iU

∂U †

∂t
, (25)

the heat current is obtained as

Ji = Tr

[
ρ̃qL̃∗

i

(
Heff + 1

2
ωqσz

)]
. (26)

Dropping the tilde for convenience and denoting 〈σz〉 = ρee −
ρgg , 〈σ+〉 = ρge, we calculate the heat current by directly using
the definition of Eq. (17) as

Jq = J1 + J2

= γ

4
ωq(1 − (2N + 1)〈σz〉)

− γ

2
pgτ

[
λ∗

(
2N + 1

2
〈σ−〉 + 〈σ+〉M

)

+ λ

(
〈σ−〉M∗ + 2N + 1

2
〈σ+〉

)]
. (27)

We can see from the above equation that M can contribute heat
flow only when λ �= 0, which leads to a nonthermal working
qubit state. In other words, if λ = 0, M cannot influence
the working qubit populations. Accordingly, M consists of
ineffective coherence that cannot be regarded as heat-exchange
coherences. Only those coherences in N can contribute to heat
flow and temperature of the work qubit under the condition
that the qubit is described by the canonical thermal state in
equilibrium.

Let us now calculate the power. Using Eq. (14) in the
interaction picture, similar to heat current, we calculate the
power to be

P = 1

2
h̄ω̇q〈σz〉 + pgτ (λ̇〈σ+〉 + λ̇∗〈σ−〉). (28)

In order to find the explicit forms of the heat current and
power, we need to solve the Bloch equations. Their steady-
state solutions are presented in Appendix C. However, one can
reach quick conclusions by looking at the above expressions
for heat current and power. The most important one is that
when there is no coherent drive in the system there is no
power received by the system qubit from the external source.
Heat-exchange coherences, the ones that are generated by the
collective interaction of the atomic pairs with a heat bath, only
contribute to the heat flux into the qubit system through the
interactions with the atomic beam. As we see next, this heat
flux eventually leads to a change in the thermal state of the
single qubit.

The coherences that can be generated by the collective
coupling of the atomic pair to the heat reservoirs lead to λ = 0
and ε = 0. Specifically, only a23 and a32 can be generated
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FIG. 4. Scaling of l1 norm of coherence in the long-time limit
with the number of atoms with an initial state where all the atoms
are in their initial state. The dots represent the actual value of the
coherence measure while the solid line is the cubic fit to these points.
Model parameters are set to f0/γ0 = 1 and n = 10.

(assuming initially the pair has no other coherence or no
coherence at all). The master equation then becomes

ρ̇q = μ
( re

2
Leρq + rd

2
Ldρq

)
. (29)

This equation can be solved exactly and the steady-state
solution of the density matrix is given by

ρss =
( re

rd+re
0

0 rd

rd+re

)
. (30)

We can assign an effective temperature for the atom as
T = −(h̄ω0/kb) ln(re/rd ). Depending on re and rd or the
populations and coherences a23, a32 of the atomic pairs,
the effective temperature can be negative or positive. At
negative temperature, population inversion occurs. For re < rd

a well-defined temperature exists and depends on coherences
of the atomic pairs. In such a case, we conclude that thermally
produced coherences are harvested back again as heat. The
combination of collective heating and collisional harvesting
schemes allows for exchange between quantum coherences
and heat energy.

IV. LONG-TIME BEHAVIOR FOR
DIFFERENT-SIZED ENSEMBLES

We consider the case of initiating all atoms in
our ensemble in their ground state, i.e., ρ(t = 0) =
|g1g2 · · · gN 〉〈|g1g2 · · · gN |. Such a state has no coherence in
our reference basis. However, looking at the dynamics of
Cl1 we observe that it increases monotonically with time and
settles to a finite value in the long-time limit, C lt

l1
. The amount

of coherence that is accumulated in the system increases with
the increasing number of atoms in the ensemble; to be specific
it shows a cubic best-fit behavior, as presented in Fig. 4. The
values of f0 and γ0 have a negligible effect on the value that
the coherence settles; however, they can affect the time it takes
to reach this particular value. C lt

l1
is only controlled by n̄. It

grows from zero with increasing n̄ up to a certain value and
than saturates.

The off-diagonal density matrix elements that contribute to
the nonzero value of Cl1 are the ones in the block diagonals
adjacent to the main diagonal. To be more specific, if we group
our reference basis according to the number of excitations,
only matrix elements that are inside the symmetric subspaces
of these groups have a finite value. These blocks are also
known as the Jordan-Wigner blocks of a density matrix with
a given basis. The smallest system of a pair of atoms has a
state in the form of a symmetric X-type state structure with
real positive coherences. Larger ensembles still possess only
real positive coherences in the blocks along the main diagonal.
In [32], it was shown that the ρij ’s inside these blocks have
a caloric value and are called heat-exchange coherences. This
implies that, for example, when the atomic cluster is injected
in a cavity, these coherences will change the temperature of
the cavity and thermalize it to a different finite value. Their
contribution to the thermalization temperature is given by
the addition of the coherences in Dicke-type blocks. For real
positive coherences the coherence measure Cl1 then directly
characterizes the caloric value of harvesting such coherences
in micromaser-type photonic quantum heat engines.

The initial state of the system that we consider in this section
has no energy cost in the state-preparation stage since all atoms
are initiated in their ground state. The energy cost of generating
coherences is paid by the thermal drive. If this stage can be
done by utilizing natural thermal resources, that can lead to
reduced operational cost and hence increased efficiency of a
quantum thermal machine.

V. CONCLUSION

We have investigated the dynamics and the long-time
behavior of coherence in an atomic cluster that has dipolar
interactions between the atoms, and is also subject to dissipa-
tion and driving by the thermal photons in the environment.
We began our discussion by trying to understand the effects
of dipole-dipole interaction strength and the mean number of
environmental photons on the dynamics of coherence. In order
to present the explicit results analytically, we first consider a
pair of atoms, then explore larger clusters, up to seven atoms,
numerically.

In the absence of thermal photons, n̄, there is only dis-
sipation on the atoms due to spontaneous emission processes
whose rate is given by γ0. Therefore, no coherence is generated
nor does the present coherence survive in the joint state of
the atoms over the course of the dynamics. In the case of a
finite-temperature environment, where n̄ �= 0, the system is
driven by the photons, making it possible to generate and/or
preserve the coherence. However, the very presence of photons
also induces thermal emission processes, which creates a
trade-off between dissipation and drive mechanisms. As a
result the generated coherence cannot increase indefinitely and
is not affected by increasing n̄ after a certain number.

The dipolar interactions have an impact on some of the
initial states, but not all. When the time evolution is started
from one of these states, coherence showed an oscillator
behavior in short times and it settled to the value determined by
the dissipation and drive terms. In other words, the long-time
value of coherence is indifferent to the dipole interactions.
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Moreover, the interaction strength f0 must be greater than the
n̄γ0 to be able to have this effect on the system in short times.

Furthermore, we have calculated the scaling behavior of
coherence in the long-time limit for atomic clusters up to
N = 7. We chose to initiate all atoms in their ground state, for
which there is no coherence present in the system. However,
during the dynamics a certain amount of coherence builds up
in the cluster, saturates, and becomes time invariant for the
rest of the evolution. Coherence is created in the ensemble
due to the fact that atoms are considered to be very close to
each other. An excitation created by absorption of a photon,
which is made possible by the drive mechanism, delocalizes
throughout the system and puts it in a superposition state of
all single-excitation subspace. Keeping in mind the losses in
the system, coherence cannot grow to its maximum, but gain
and loss balance each other to leave the system in a state with
finite coherence.

We would like to emphasize that the creation and preser-
vation of coherence in the model considered here has its ex-
planation in the collective quantum effects taking place in our
atomic cluster due to their proximity. Other explanations of en-
hanced coherence lifetime such as non-Markovianity [13–16]
or decoherence-free subspaces [51] are not the case for our
model. The former requires negative decay rates, γij < 0, to be
present and the latter shows up in the pure dephasing dynamics
of the subject system; both are features that our system does
not possess.

Fundamentally we presented the heat equivalent of certain
quantum coherences in atomic clusters by identifying means
of mutual exchange between heat and quantum coherences.
Accordingly the motive power of quantum coherence can
be defined for the operation of quantum machines between
quantum reservoirs with a coherence gradient. Our results can
also be practically significant for reducing operational costs of
quantum heat engines by utilizing natural quantum coherence
resources and for designing multiqubit quantum machines
where both the resource and working fluid parts consists
of qubits, reducing the interfacing challenges. Searching for
the existence of such mechanisms in biological systems or
utilizing them for photovoltaic applications can be envisioned.
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APPENDIX A: EFFECT OF DIPOLAR INTERACTIONS

When only coherent dipole-dipole interaction is present,
i.e., in the absence of drive and dissipation which corresponds
to the γ0 = 0 case, the elements of the density matrix of a
two-atom ensemble evolves as follows:

ρ11(t) = ρ11(0),

ρ12(t) = ρ12(0) cos(f t) + iρ13(0) sin(f t),

ρ13(t) = ρ13(0) cos(f t) + iρ12(0) sin(f t),

ρ14(t) = ρ14(0),

ρ22(t) = [(ρ22(0) + ρ33(0)) + (ρ22(0) − ρ33(0)) cos(2f t)

+ 2iIm[ρ23] sin(2f t)]/2,

ρ23(t) = [Re[ρ23(0)] + i(2Im[ρ23(0)] cos(2f t) + (ρ22(0)

− ρ33(0)) sin(2f t))]/2,

ρ24(t) = ρ24(0) cos(f t) − iρ34(0) sin(f t),

ρ33(t) = [(ρ22(0) + ρ33(0)) − (ρ22(0) − ρ33(0)) cos(2f t)

− 2iIm[ρ23(0)] sin(2f t)]/2,

ρ34(t) = ρ34(0) cos(f t) − iρ24(0) sin(f t),

ρ44(t) = ρ44(0), (A1)

where ρij (0)’s are their initial values. By looking at the above
equations, we can determine which initial states will not be
affected by the dipolar interactions over the course of time.
One can immediately see that states residing in the ρ11, ρ14

(and naturally ρ41 which is ρ∗
14), and ρ44 subspace initially do

not feel the presence of dipole-dipole interaction. Moreover,
states having ρ22(0) = ρ33(0) and ρ23(0) ∈ Re will also be
indifferent to the dipolar interactions.

APPENDIX B: TIME-EVOLUTION OPERATOR

The time-evolution operator is given as follows:

U (τ ) = exp(−iHintτ ) = exp

(
−igτ

2∑
i=1

(σ+
i σ−

0 + σ−
i σ+

0 )

)
,

(B1)

where we took h̄ = 1. We need to evaluate this operator up to

second order in (gτ )2. Thus if we set S =
2∑

i=1
(σ+

i σ−
0 + σ−

i σ+
0 ),

the evolution operator to second order in (gτ )2 is

U (τ ) ≈ 1 − igτS − (gτ )2

2
S2. (B2)

The collective raising and lowering operators are given as

2∑
i=1

σ+
i =

⎛
⎜⎜⎜⎝

0 1 1 0
0 0 0 1
0 0 0 1
0 0 0 0

⎞
⎟⎟⎟⎠,

2∑
i=1

σ−
i =

⎛
⎜⎝

0 0 0 0
1 0 0 0
1 0 0 0
0 1 1 0

⎞
⎟⎠, (B3)

which give us the S operator in the following form:

S =

⎛
⎜⎜⎝

0 σ−
0 σ−

0 0
σ+

0 0 0 σ−
0

σ+
0 0 0 σ−

0
0 σ+

0 σ+
0 0

⎞
⎟⎟⎠. (B4)
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Finally the time-evolution operator is evaluated as

U (τ ) =

⎛
⎜⎜⎜⎝

1 − (gτ )2σ−
0 σ+

0 −igτσ−
0 −igτσ−

0 0
−igτσ+

0 1 − (gτ )2/2 −(gτ )2/2 −igτσ−
0

−igτσ+
0 −(gτ )2/2 1 − (gτ )2/2 −igτσ−

0
0 −igτσ+

0 −igτσ+
0 1 − (gτ )2σ+

0 σ−
0

⎞
⎟⎟⎟⎠. (B5)

APPENDIX C: STEADY-STATE SOLUTIONS OF THE BLOCH EQUATIONS

The steady-state solutions of Eqs. (19) are found as follows:

〈σx〉ss =
iγpgτ

4 [(2N + M + M∗ + 1)(λ − λ∗) + (M − M∗)(λ + λ∗)]

d
,

〈σy〉ss =
−γpgτ

4 [(2N + M + M∗ + 1)(λ + λ∗) − (M − M∗)(λ − λ∗)]

d
,

〈σz〉ss =
γ 2

4 [(2N + M + M∗ + 1)2 + (M − M∗)2]

d
,

(C1)

where d is given as

d =
[

(pgτ )2((M − M∗)(λ2 − λ∗2) − 2|λ|2(2N + M + M∗ + 1)) − γ 2(2N + 1)

4
((2N + M + M∗ + 1)2 + (M − M∗)2)

]
.

(C2)
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012145 (2016).

032117-8

https://doi.org/10.1103/PhysRevLett.113.140401
https://doi.org/10.1103/PhysRevLett.113.140401
https://doi.org/10.1103/PhysRevLett.113.140401
https://doi.org/10.1103/PhysRevLett.113.140401
https://doi.org/10.1088/1367-2630/16/3/033007
https://doi.org/10.1088/1367-2630/16/3/033007
https://doi.org/10.1088/1367-2630/16/3/033007
https://doi.org/10.1088/1367-2630/16/3/033007
https://doi.org/10.1103/PhysRevLett.113.170401
https://doi.org/10.1103/PhysRevLett.113.170401
https://doi.org/10.1103/PhysRevLett.113.170401
https://doi.org/10.1103/PhysRevLett.113.170401
https://doi.org/10.1103/PhysRevA.94.052324
https://doi.org/10.1103/PhysRevA.94.052324
https://doi.org/10.1103/PhysRevA.94.052324
https://doi.org/10.1103/PhysRevA.94.052324
https://doi.org/10.1103/PhysRevB.90.104431
https://doi.org/10.1103/PhysRevB.90.104431
https://doi.org/10.1103/PhysRevB.90.104431
https://doi.org/10.1103/PhysRevB.90.104431
https://doi.org/10.1103/PhysRevB.93.184428
https://doi.org/10.1103/PhysRevB.93.184428
https://doi.org/10.1103/PhysRevB.93.184428
https://doi.org/10.1103/PhysRevB.93.184428
https://doi.org/10.1103/PhysRevLett.114.210401
https://doi.org/10.1103/PhysRevLett.114.210401
https://doi.org/10.1103/PhysRevLett.114.210401
https://doi.org/10.1103/PhysRevLett.114.210401
http://arxiv.org/abs/arXiv:1601.04742
https://doi.org/10.1088/0953-4075/49/22/225501
https://doi.org/10.1088/0953-4075/49/22/225501
https://doi.org/10.1088/0953-4075/49/22/225501
https://doi.org/10.1088/0953-4075/49/22/225501
http://arxiv.org/abs/arXiv:1612.08791
https://doi.org/10.1103/PhysRevA.89.024101
https://doi.org/10.1103/PhysRevA.89.024101
https://doi.org/10.1103/PhysRevA.89.024101
https://doi.org/10.1103/PhysRevA.89.024101
https://doi.org/10.1038/srep13359
https://doi.org/10.1038/srep13359
https://doi.org/10.1038/srep13359
https://doi.org/10.1038/srep13359
http://arxiv.org/abs/arXiv:1607.06507
http://arxiv.org/abs/arXiv:1609.02439
https://doi.org/10.1088/1751-8121/50/4/045301
https://doi.org/10.1088/1751-8121/50/4/045301
https://doi.org/10.1088/1751-8121/50/4/045301
https://doi.org/10.1088/1751-8121/50/4/045301
http://arxiv.org/abs/arXiv:1612.07570
http://arxiv.org/abs/arXiv:1612.09234
https://doi.org/10.1103/PhysRevA.92.022112
https://doi.org/10.1103/PhysRevA.92.022112
https://doi.org/10.1103/PhysRevA.92.022112
https://doi.org/10.1103/PhysRevA.92.022112
https://doi.org/10.1103/PhysRevLett.115.020403
https://doi.org/10.1103/PhysRevLett.115.020403
https://doi.org/10.1103/PhysRevLett.115.020403
https://doi.org/10.1103/PhysRevLett.115.020403
https://doi.org/10.1103/PhysRevE.93.062134
https://doi.org/10.1103/PhysRevE.93.062134
https://doi.org/10.1103/PhysRevE.93.062134
https://doi.org/10.1103/PhysRevE.93.062134
http://arxiv.org/abs/arXiv:1703.02464
https://doi.org/10.1103/PhysRevApplied.6.024004
https://doi.org/10.1103/PhysRevApplied.6.024004
https://doi.org/10.1103/PhysRevApplied.6.024004
https://doi.org/10.1103/PhysRevApplied.6.024004
https://doi.org/10.1080/00405000.2013.829687
https://doi.org/10.1080/00405000.2013.829687
https://doi.org/10.1080/00405000.2013.829687
https://doi.org/10.1080/00405000.2013.829687
https://doi.org/10.1038/nphys2474
https://doi.org/10.1038/nphys2474
https://doi.org/10.1038/nphys2474
https://doi.org/10.1038/nphys2474
https://doi.org/10.1038/nchem.1145
https://doi.org/10.1038/nchem.1145
https://doi.org/10.1038/nchem.1145
https://doi.org/10.1038/nchem.1145
https://doi.org/10.1103/PhysRevE.89.042147
https://doi.org/10.1103/PhysRevE.89.042147
https://doi.org/10.1103/PhysRevE.89.042147
https://doi.org/10.1103/PhysRevE.89.042147
https://doi.org/10.1126/science.1078955
https://doi.org/10.1126/science.1078955
https://doi.org/10.1126/science.1078955
https://doi.org/10.1126/science.1078955
http://arxiv.org/abs/arXiv:1308.1245
https://doi.org/10.3390/e18070244
https://doi.org/10.3390/e18070244
https://doi.org/10.3390/e18070244
https://doi.org/10.3390/e18070244
https://doi.org/10.1103/PhysRevE.93.012145
https://doi.org/10.1103/PhysRevE.93.012145
https://doi.org/10.1103/PhysRevE.93.012145
https://doi.org/10.1103/PhysRevE.93.012145


THERMAL PRODUCTION, PROTECTION, AND HEAT . . . PHYSICAL REVIEW A 96, 032117 (2017)
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