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A solution to the second measurement problem, determining what prior microscopic properties can be inferred
from measurement outcomes (“pointer positions”), is worked out for projective and generalized (POVM)
measurements, using consistent histories. The result supports the idea that equipment properly designed and
calibrated reveals the properties it was designed to measure. Applications include Einstein’s hemisphere and
Wheeler’s delayed choice paradoxes, and a method for analyzing weak measurements without recourse to
weak values. Quantum measurements are noncontextual in the original sense employed by Bell and Mermin: if
[A,B] = [A,C] = 0, [B,C] �= 0, the outcome of an A measurement does not depend on whether it is measured
with B or with C. An application to Bohm’s model of the Einstein-Podolsky-Rosen situation suggests that a
faulty understanding of quantum measurements is at the root of this paradox.

DOI: 10.1103/PhysRevA.96.032110

I. INTRODUCTION

A. The second measurement problem

The measurement problem is a central issue in quantum
foundations, because textbook quantum mechanics uses the
idea of a measurement to give a physical interpretation
to probabilities generated from a quantum wave function,
but never explains the measurement process itself in terms
of more fundamental quantum principles. If, as is widely
believed, quantum mechanics applies to macroscopic as well
as microscopic phenomena, then it should be possible, at least
in principle, to describe actual laboratory measurements in
terms of basic quantum properties and processes, rather than
employing “measurement” as an unanalyzed primitive.

It is convenient to divide the measurement problem into
two parts. The first measurement problem, which is at the
center of most discussions in the literature, is to understand
how the measurement process can result in a well-defined
macroscopic outcome or pointer position, to use the archaic
but picturesque language of the foundations community, rather
than some strange quantum superposition of the pointer in
different positions, as results in many cases from a straightfor-
ward application of unitary time development: Schrödinger’s
equation leads to Schrödinger’s cat. But even if the first
measurement problem is solved, so that the pointer comes
to rest at a single position, the second measurement problem
remains: what can one infer from the pointer position regarding
the microscopic situation that existed before the measurement
took place, which the apparatus was designed to measure?
Experimental physicists talk all the time about gamma rays
triggering a detector, neutrinos arriving from the sun, and other
microscopic objects or events which are invisible, and whose
existence can only be inferred from the macroscopic outcomes
of suitable measurements. Should we take this talk seriously?
Maybe we do, but why, if the second measurement problem
remains unresolved? Would we have any confidence in the
stories told us by cosmologists if they did not understand the
operation of their telescopes well enough to interpret the data
these instruments provide?

*rgrif@cmu.edu

A recent (and at the time of writing continuing) controversy
[1,2] about the path followed by a photon passing through an
interferometer on its way to a detector shows how difficult
it is to analyze, using the tools of textbook quantum theory,
with perhaps some additional ad hoc principles, a microscopic
situation that is really not very complicated. This problem
is, in turn, related to a hotly contested claim, published in a
reputable journal, that information can be sent between two
parties by means of a photon that is actually never—or at
least hardly ever—present in the optical fiber that connects
them [3–5]. What this suggests is that the failure of quantum
physicists to solve the measurement problem(s) is not only an
intellectual embarrassment—surely it is that, as pointed out
by some leading physicists (see [6] and Sec. 3.7 of [7])—but
also a serious impediment to ongoing research in areas such
as quantum information, where understanding microscopic
quantum properties and how they depend on time is central to
the enterprise. In addition, a fuzzy understanding of quantum
principles makes the subject hard to teach as well as to learn.
Students confused by unfamiliar mathematics are not helped
by the absence of a clear physical interpretation of what the
mathematics means, something which neither textbooks nor
instructors seem able to provide.

In this paper the second (and, incidentally, the first)
measurement problem is addressed using the consistent
histories, also known as decoherent histories, interpretation
of quantum mechanics. While this approach is controversial
(as is everything else in quantum foundations) it possesses
specific principles and clear rules for applying and interpreting
quantum theory at the microscopic level. These principles
are comparatively few in number, include no reference to
measurements, and apply universally to all quantum processes,
whether microscopic or macroscopic, “from the quarks to the
quasars.” They are, so far as is known at present, consistent
in the sense that when properly applied they do not lead
to contradictions, and they have resolved (perhaps “tamed”
would be a better term) various quantum paradoxes; see
Chaps. 21 to 25 of [8] for a number of examples.

B. Article overview

The remainder of the paper is structured as follows.
Section II explores the second measurement problem from a
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phenomenological perspective using two paradoxes, the first
by Einstein and the second by Wheeler, that show why the
problem is both difficult and confusing. Section II C is a brief
discussion of how a measurement apparatus can be calibrated
to ensure its reliability. Next a brief summary of the consistent
histories approach, along with references to literature that
provides further details, constitutes Sec. III; readers already
familiar with consistent histories ideas can skip it.

Section IV is the heart of the paper, and contains the key
ideas needed to address the second measurement problem
both for projective measurements, Sec. IV A, and for gen-
eralized measurements (positive operator-valued measures, or
POVMs), Sec. IV B. The emphasis is on simple cases of single
measurements; situations where there are several successive
measurement on the same system are not discussed, though the
histories methodology can also be extended to such situations.
A useful conceptual tool, which so far as we know has not
been pointed out previously, is the backwards map from output
(pointer) states to earlier microscopic properties. It is very
helpful in identifying the microscopic properties which have
been measured in the case of a generalized measurement.
A separate Sec. IV C discusses nondestructive measurements
and preparations, both closely related to von Neumann’s mea-
surement model. This may assist the reader in connecting the
approach followed in this paper to ideas, such as wave function
collapse, frequently encountered in textbook treatments and
quantum foundations literature. The final section, Sec. IV D,
has a few comments about density operators.

Next in Sec. V the tools developed in Sec. IV are applied to
six different situations, where the first two, Secs. V A and V B,
are closely related to the examples discussed earlier in Sec. II.
The third, Sec. V C, is an elementary but not entirely trivial
example of a POVM that is not a projective measurement. A
fairly elementary, but again nontrivial, example in Sec. V D
shows how a weak measurement can be interpreted in terms of
quantum properties instead of the widely used “weak values.”
The last two applications address topics which often come up
in the quantum foundations literature, and are hence somewhat
controversial. It is argued in Sec. V E, using a less formal
and more physical approach than [9], that if one uses Bell’s
original definition of “contextual,” quantum mechanics is in
fact noncontextual, despite confusing claims to the contrary.
Finally, the Bohm (spin singlet) model of the famous Einstein-
Podolsky-Rosen paradox is discussed in Sec. V F from the
perspective of what one can infer from measurements on one

(a) (b) (c)

FIG. 1. Einstein paradox. (a) Spherical wave. (b) Particle moving
on straight line through collimator. (c) Quantum wave packet passing
through collimator.

of the spin-half particles about its prior properties and those of
the other spin-half particle.

The final section, Sec. VI, is an attempt to summarize the
most important conclusions about what it is that quantum mea-
surements measure, while summarizing the principles which
make it possible for the consistent histories interpretation to
arrive at a satisfactory resolution of the second (as well as the
first) measurement problem.

II. MEASUREMENT PHENOMENOLOGY

A. Einstein’s paradox

Figure 1(a) shows Einstein’s paradox (pp. 115–117 in
Ref. [10], pp. 440–442 in Ref. [11]). A particle emerges
from a small hole at the left and propagates as a spherical
wave towards a curved fluorescent screen where its arrival is
signaled by a flash of light at a particular point on the screen,
a point which varies randomly on successive repetitions of the
experiment. It seems as if the quantum wave collapses instantly
when the particle reaches the screen, a result which bothered
Einstein as it would mean a superluminal effect if every point
on the screen is equidistant from the hole. An experimental
physicist, on the other hand, might say that the particle travels
on a straight line from the source to the screen, and could
support that explanation by placing a collimator, a thick plate
with a hole in it, between the source and the screen, and noting
that now flashes are detected only at places on the screen which
are connected to the source by a straight line passing through
the hole, Fig. 1(b).

But isn’t this second perspective classical, not quantum
mechanical? No, for there is a good quantum mechanical
description in which the particle is a small wave packet
traveling from the source to the screen, Fig. 1(c); one only
has to assume that the particle emerging from the source is
described by such a wave packet whose initial direction of
propagation is random from one run to the next. (And this gets
around another problem with wave function collapse. If the
particle reaches the screen, does this mean that its failing to
interact with the collimator has collapsed the spherical wave
enough so that it can fit through the hole?)

Continuing on, if the collimator has two holes, Fig. 2(a), one
will observe flashes on the screen due to particles which have
passed through one hole or the other, but never simultaneous

(a) (b)

FIG. 2. (a) Collimator with two holes. (b) Fluorescent screen
a large distance to the right of the collimator. Due to constructive
interference of waves coming from the two holes a particle can
sometimes be observed in a region which is classically forbidden.
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FIG. 3. Mach-Zehnder interferometer (a) with a source S1, two
beam splitters BS1 and BS2, and detectors D+ and D−; (b) with the
second beam splitter removed.

flashes behind both holes. Again, easy to understand using
the picture of little wave packets. But consider the situation
in Fig. 2(b) where, if the two holes are formed very carefully
and the fluorescent screen placed a long distance away, the
result will be an interference pattern with the distance between
fringes determined by, among other things, the distance
between the two holes and the de Broglie wavelength of the
quantum particle. The particle must, in this case, be thought
of as a wave passing simultaneously through both holes and
emerging behind them with a well-defined phase. We have
arrived at the double-slit or two-hole paradox so well described
by Feynman [12].

Everyone knows that quantum particles are waves, and
quantum waves are particles. The gedanken experiments just
discussed, especially the contrast between Figs. 2(a) and
2(b), illustrate the fact that sometimes a particle (fairly well
localized wave packet) and sometimes a wave (coherence
in phase over a macroscopic distance) description is needed
in order to understand what is going on. The need to use
different, and seemingly incompatible, descriptions is one
of the fundamental difficulties behind the second measuring
problem. One aim of the present article is to show how it
can be addressed without invoking retrocausation: a future
measurement influencing past behavior.

B. Mach-Zehnder with removable beam splitter

Einstein’s paradox becomes easier to analyze if we consider
the case of a Mach-Zehnder interferometer, Fig. 3(a), with
an upper and lower arm connecting two beam splitters BS1

and BS2, and the phases adjusted so that a photon—hereafter
referred to as a “particle”—from the source S1 on the left is
always detected by the lower detector D+ on the right. That
the particle is, in some sense at least, in both the upper and
the lower arm while inside the interferometer can be checked
by inserting two phase shifters, one in each arm. One then
finds that, depending on the choice of phases, the particle will
sometimes be detected in D+ and sometimes in D−. However,
if both phases are identical, the particle will always be detected
in D+. Additional checks can be made by blocking either
the upper arm or the lower arm, and noting that when one
arm is blocked the particle will sometimes arrive in D+ and
sometimes in D−.

If, on the other hand, the second beam splitter is absent,
Fig. 3(b), the experimentalist will say that a particle detected
in D+ was originally in the upper arm of the interferometer,
and if detected in D− it was in the lower arm, as these are the
direct paths from the first beam splitter to the detectors. This
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(b)

FIG. 4. Mach-Zehnder interferometer with two inputs (a) ar-
ranged to determine relative phase between the two arms; (b) arranged
to measure which path (which arm).

can be checked by placing barriers in the upper or lower arms
of the interferometer and noting that a barrier in the upper arm
will prevent the particle arriving at D+, and one in the lower
arm suppresses counts in D−. Similarly, if a nondestructive
measuring device, something which will register the particle’s
presence without seriously perturbing its motion, is placed in
one of the arms, its outcome will show the expected correlation
with the final detectors.

Wheeler’s delayed choice paradox [13] comes from asking
what will occur if just before the particle arrives at BS2, when
it has already passed BS1 and is inside the interferometer,
the second beam splitter is removed. Alternatively, suppose
that the second beam splitter is absent while the particle is
traversing the interferometer, but is suddenly inserted just
before the particle arrives at the crossing point. One can
imagine either of these experiments repeated many times,
and the result will be that the presence or absence of BS2

at the crossing point at the instant the particle arrives there
determines whether the particle is always detected in D+ or
randomly detected in D+ and D−. And experimental checks
can be carried out with phase shifters or barriers placed on
the paths inside the interferometer. The paradox is perhaps
most telling if one starts off with a series in which BS2 is
absent, and the particle arrives randomly in D+ or D−, so
about half the time it is detected in D−, and hence, plausibly,
it has been following the lower path through the interferometer.
Now undertake a series of runs in which BS2 is initially absent,
but is inserted in its proper place at the very last moment. In
all of these runs the particle is detected by D+. But in roughly
half of these cases, assuming there is no retrocausal effect
from the later insertion of BS2, the particle must have been
traveling through the lower arm, and were it traveling through
the lower arm it would, upon passing through BS2, arrive with
equal probability in either of the detectors. Thus it might seem
that sometimes the particle when traveling through the lower
arm of the interferometer senses that at a future moment BS2

will be present and decides to split itself into a pair of wave
packets, one in each arm, with an appropriate phase, so that it
will arrive with certainty at D+. That seems very strange. Is
there not some other way of understanding what is going on
without invoking magic or retrocausation?

Adding a second source S2 to Wheeler’s paradox, Fig. 4,
makes it somewhat analogous to our previous discussion of
Einstein’s paradox. In any given run, only one source emits
a photon, and the phases have been chosen so that with
the second beam splitter present a particle (photon) which
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originates in source S1 will later arrive in D+, and one emitted
by S2 will arrive at D−. In both cases the particle while inside
the interferometer is a superposition of a state |z+〉 in the
upper arm and a state |z−〉 in the lower arm; in particular let
us assume the phases are such that

S1 → (|z+〉 + |z−〉)/
√

2 → D+,

S2 → (|z+〉 − |z−〉)/
√

2 → D−. (1)

One can then regard the second beam splitter and the two
detectors as forming a single measurement apparatus that
measures “which phase?”—the difference between the two
possible relative phases, + vs − in Eq. (1)—when BS2 is
in place; or “which arm?” if BS2 has been removed. Note
the analogy with the situation depicted in Fig. 2 [with (a)
and (b) interchanged]. The fact that in any particular run the
experimenter, by leaving BS2 in place or removing it, can
measure which phase or which path but cannot determine both,
is a fundamental fact of quantum mechanics. Taking it into
account is essential if one is to make progress in resolving the
second measurement problem.

C. Calibration

Competent experimenters check their apparatus in various
ways to make sure it is operating as designed and gives reliable
results. There are varieties of tests, some suggested earlier:
placing collimators in various places, removing beam splitters
from a Mach-Zehnder interferometer, placing absorbers in
its arms, etc. If the apparatus is designed to measure the
value of some quantity (observable) A associated with a
particle, the simplest form of calibration means preparing
many particles with known values of A, thus having the
property corresponding to some particular eigenvalue, and
seeing whether the measurement outcome (pointer position)
corresponds in each case to the known property. Once the
calibration has been carried out the experimenter can be
confident that when a particle of this type is measured by the
apparatus, the outcome will indicate the value of A possessed
by the particle just before it reached the apparatus, even
when the particle’s prior history is unknown. Experimenters
frequently make assumptions of this kind, and without it a
significant part of experimental physics would be impossible.
A proper quantum mechanical theory of measurement must
be able to justify this practice. In reality things are not always
so simple, since the apparatus is never perfect and one may
have to account for possible errors; however, for the present
discussion we shall focus on the ideal case in order to get to
the essentials of quantum measurements.

III. PROPERTIES, PROBABILITIES, AND HISTORIES

This section contains a rapid review of material found
elsewhere; readers familiar with consistent histories can skip
ahead to Sec. IV. See [14] for an introduction to consistent
histories, [8] for a detailed treatment, and [15] for extended
comments on some conceptual difficulties.

A. Quantum properties

We use the term physical property for something like “the
energy is less than 2 joules” or “the particle is in a region
R in space,” something which can be true or false, and thus
distinct from a physical variable such as the energy or position,
represented by a real number in suitable units. Von Neumann,
Sec. III.5 of [16], proposed that a quantum property should
correspond to a subspace of the quantum Hilbert space, or,
equivalently, the projector (orthogonal projection operator)
onto this subspace. (We are only concerned here with finite-
dimensional Hilbert spaces for which all subspaces are closed.)
What one finds in textbooks is consistent with von Neumann’s
prescription, though this is not always clearly stated.

A projector, a Hermitian operator equal to its square, is the
quantum analog of an indicator function P (γ ) on a classical
phase space �, a function that takes the value 1 if at the point
γ the corresponding physical property is true, or 0 if it is
false. For example, the property that the energy of a harmonic
oscillator is less than 2 joules corresponds to an indicator
P (γ ) equal to 1 for γ inside, and 0 for γ outside, an ellipse
centered at the origin of the (x,p) phase plane. A quantum
projector’s eigenvalues are 1 or 0, which supports the analogy
with a classical indicator. One can make a plausible case that
any “classical” property of a macroscopic physical object,
when viewed in quantum terms, is represented by a quantum
projector on a very high-dimensional subspace of an enormous
Hilbert space.

The smallest nontrivial quantum subspace is one-
dimensional, consisting of all complex multiples of a normal-
ized ket |ψ〉, and the projector is given by the corresponding
Dirac dyad

[ψ] = |ψ〉〈ψ |. (2)

We will often make use of this convenient square bracket
notation. A projector on a two-dimensional subspace can be
written in the form [ψ0] + [ψ1], where |ψ0〉 and |ψ1〉 form
an orthonormal basis for the subspace, and similarly for larger
subspaces.

The analogy between quantum projectors and classical in-
dicators also works for negation. The projector corresponding
to the property “NOT P ” is I − P , where I is the identity
operator, and the same holds for a classical indicator when I

is understood as the function taking the value 1 everywhere on
the phase space. Given two indicator functions representing
properties P and Q, their product, which is obviously the
same written in either order, P (γ )Q(γ ) = Q(γ )P (γ ), is the
indicator for the property P AND Q. (Think of “energy less
than one joule” AND “momentum is positive”). But in the
quantum world the product of two projectors P and Q is itself
a projector if and only if they commute: PQ = QP , and in this
case the product can be associated with the property P AND Q.

But suppose that P and Q do not commute; what then?
Consider a specific example, that of a spin-half particle, where
the Hilbert space is two-dimensional, and spanned by two
orthonormal kets |z+〉 and |z−〉, eigenvectors of Sz, the z

component of spin angular momentum, with eigenvalues +1/2
and −1/2 in units of h̄. The projectors

P + = [z+], P − = [z−], (3)
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in the notation used in Eq. (2), represent these two physical
properties; they commute and their product is 0. Similarly,

|x+〉 = ( |z+〉 + |z−〉 )/
√

2, |x−〉 = ( |z+〉 − |z−〉 )/
√

2

(4)

are eigenvectors corresponding to the eigenvalues +1/2 and
−1/2 of the x component of spin angular momentum Sx . The
corresponding projectors

Q+ = [x+], Q− = [x−] (5)

commute, and their product is zero. However, neither Q+ nor
Q− commutes with either P + or P −. Because the projectors
do not commute there is, in the consistent histories approach,
no way to make sense of a statement like “Sz = +1/2 AND
Sx = −1/2.” And there is no nontrivial subspace of the Hilbert
space which can be associated with such a combination. (In
quantum logic [17,18] one would associate the trivial subspace
containing only the 0 ket with such a conjunction, but quantum
logic has its own set of conceptual difficulties; see [15].) This
is an instance of the single-framework rule discussed in more
detail in Sec. III C.

From time to time the claim has been made that the con-
sistent histories approach is logically inconsistent. However,
none of these claims when scrutinized has turned out to be
correct. What typically happens is that the author has either
overlooked the single-framework rule or has not taken it
seriously. Arguments that show that consistent histories is
internally consistent will be found in Chap. 16 of [8], Sec.
4.1 of [15], and Sec. 8.1 of [19].

B. Quantum probabilities

Ordinary (Kolmogorov) probability theory employs a sam-
ple space of mutually exclusive items or situations which
together exhaust all possibilities, and an event algebra which in
simple situations consists of all subsets (including the empty
set) of items from the sample space. In classical statistical
mechanics the sample space can consist of all the distinct
points γ that make up the phase space �, but one could also
cut up the phase space into nonoverlapping regions, “cells,”
and use these for the sample space. The quantum analog of
a sample space is a projective decomposition of the identity
(PDI): a collection of projectors {P j } (the superscripts are
labels, not exponents) satisfying

I =
∑

j

P j , P j = (P j )†, P jP k = δjkP
j . (6)

Obviously, each projector commutes with every other projector
in the PDI. The simplest choice for a corresponding event
algebra, one which will suffice for our purposes, consists of
the 0 projector, all projectors belonging to the PDI, and in
addition all sums of two or more distinct projectors from the
PDI.

Given a physical variable A represented by a Hermitian
operator A (there is no harm in using the same symbol for
both) there is an associated PDI employed for the spectral
decomposition of A,

A =
∑

j

αjP
j , (7)

where the eigenvalues αj are the possible values which A can
take on, and P j identifies the subspace where A takes on the
value αj . [We assume that αj �= αk if j �= k in Eq. (7); thus
for degenerate eigenvalues the corresponding P j may project
onto a space of dimension greater than 1.]

In classical physics it is usually the case that only a single
sample space need be considered when discussing a particular
physical problem, and so its choice needs no emphasis, and
it may not even be mentioned. In quantum physics this is
no longer the case: many mistakes and numerous paradoxes,
e.g., the Kochen-Specker paradox (see Sec. V E), are based
on not paying sufficient attention to the sample space in
circumstances in which several distinct and incompatible
sample spaces may seem like reasonable choices. For this
reason it is convenient to use a special term, framework, to
indicate the sample space or the corresponding event algebra
which is under discussion.

A central feature of consistent histories is the single-
framework rule, which states that probabilistic reasoning in the
quantum context must always be carried out using a specific
and well-defined framework. This rule does not prevent
the physicist from using many different frameworks when
analyzing a particular physical problem; instead it prohibits
combining results from incompatible frameworks. Two PDIs
{P j } and {Qk} and the corresponding event algebras are
compatible provided that all the projectors in one commute
with all the projectors in the other: P jQk = QkP j for every
j and k. In this case there is a common refinement, a
PDI consisting of all nonzero products of the form P jQk .
Otherwise the frameworks are incompatible, and the single-
framework rule prohibits combining a (probabilistic) inference
made using one framework with another that employs a
different framework. If the two frameworks are compatible,
then inferences in one can be combined with those in the other
using the common refinement, which contains both of the event
algebras, so again only a single framework is required. (An ad-
ditional requirement—consistency conditions—for combining
frameworks arises in the case of quantum histories; Sec. III C.)

A PDI can be assigned a probability distribution pj =
Pr(P j ), where the pj are nonnegative real numbers that sum
to 1, and this distribution will generate the probabilities for
all the elements in the corresponding event algebra, just as
in ordinary probability theory; e.g., the property P 1 + P 3 is
assigned the probability p1 + p3. In quantum mechanics there
are various schemes for assigning probabilities. One method
starts with a wave function or pure quantum state |ψ〉, and
assigns to the elements of a PDI {P j } probabilities

pj = 〈ψ |P j |ψ〉 = Tr([ψ]P j ). (8)

In this situation it is helpful to refer to |ψ〉 as a pre-probability;
i.e., it is used to construct a probability distribution. Since
probability distributions are generally not considered part of
physical reality, at least not in the same sense as physical
properties, a ket or wave function used in this way need not
be interpreted as something physical; instead it is simply a
tool used to compute probabilities. But in some other context
|ψ〉 may be a way of referring to the property represented
by the projector [ψ]. Carelessly combining these two usages
can cause a great deal of confusion. Note in particular that
as long as two of the pj in Eq. (8) are nonzero, the property
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[ψ], or to be more precise the minimal PDI {[ψ],I − [ψ]}
that contains it, is incompatible with the PDI {P j }. Hence the
single-framework rule prevents using |ψ〉 as a pre-probability,
as in Eq. (8), while at the same time regarding it as a physical
property of the quantum system.

Since the consistent histories interpretation of quantum
theory allows many distinct but incompatible frameworks, a
natural question is, Which is the right framework to use in
describing some situation of physical interest? In thinking
about this it is helpful to remember that a fundamental
difference between classical and quantum mechanics is that
the former employs a phase space and the latter a Hilbert
space for describing a physical system. At a single time a
single point in the phase space represents the “actual” state
of a classical system: all properties (subsets of points in the
phase space) which contain this point are true and all which
do not contain the point are false. The term unicity has been
used in Sec. 27.3 of [8] and in Refs. [14,15] to describe this
concept of a single unique state of affairs at any given time.
However, in the quantum Hilbert space the closest analogy to
a single point in classical phase space is a one-dimensional
subspace or ray. If one assumes that one particular ray is
true, then one might suppose that all rays orthogonal to it are
false. But there are many rays that are neither identical to
nor orthogonal to the ray in question; what shall be said of
them? Thus attempting to extend the concept of unicity into
the quantum domain runs into problems. We have good reason
to believe that physical reality is better described by quantum
theory than by classical physics, and hence certain classical
concepts must be abandoned, to join others, such as the earth
immobile at the center of the universe, which modern science
has rendered untenable, even though for certain purposes they
may remain useful approximations. Unicity seems to belong
to that category.

But the question remains: what are the criteria which lead
to the use of a particular framework, rather than another which
is incompatible with it? The examples in Sec. II and various
applications in Sec. V suggest that quantum physical situations
possess what one might call different aspects, and a quantum
description of a particular aspect can only be constructed using
a framework compatible with that aspect. For example, the Sz

“aspect” of a spin-half particle can only be discussed using the
Sz framework; the Sx framework is of no use. As is usual with
with unfamiliar concepts, the best way to understand them is
to apply them to several different examples. In particular, in
Secs. V A and V B we will show how the use of frameworks
can “untangle” the paradoxes in Secs. II A and II B.

C. Histories and the extended Born rule

A quantum history is best understood as a sequence of
quantum properties at successive times. A classical analogy
is a sequence of coin tosses, or rolls of dice. The theory is
simplest if one employs a finite set of discrete times, rather
than continuous time. This is no real limitation, as these times
may be arbitrarily close together. A history associated with the
times t0 < t1 < t2 < · · · tn can be written in the form

Y = F0 � F1 � F2 � · · · Fn, (9)

where each Fj is a projector representing some quantum
property at the time tj , and the � separating properties at
successive times are tensor product symbols, a variant of ⊗.
Thus if H is the quantum Hilbert space at one time, Y in
Eq. (9) is a projector on the tensor product history Hilbert
space H̆ = H⊗(n+1). A family of histories is a collection of such
projectors that sum to the history identity Ĭ = I � I � · · · I ,
thus a PDI. For present purposes it suffices to use a family in
which the histories are of the form

Yα = [�0] � F
α1
1 � F

α2
2 � · · · Fαn

N , (10)

where [�0], see (2), is the projector on a pure state |�0〉.
The superscripts are labels distinguishing different projectors
at the same time, and together they form a vector α =
(α1,α2, . . . ,αn). In addition there is a special history Y 0 =
I − [�0] � I � I · · · I which is assigned zero probability, and
whose sole purpose is to ensure that the history projectors sum
to Ĭ .

A complete family of histories is one in which the Yα sum
to Ĭ , but we will also use the term if they sum to Ĭ − Y 0.
One way to ensure that the family is complete is if for each
time tj > t0 it is the case that the {Fαj

j } are a PDI of H, but
this is often too restrictive. There is no reason why a family
should not contain projectors on states “entangled” between
different times, but in the following discussion we will only
need “product” histories as in Eq. (9).

Since a family of histories is a PDI it can serve as
a probabilistic sample space for the quantum analog of a
classical stochastic process such as a random walk. As in the
classical case there is no fixed rule for assigning probabilities
to such a process. However, in a closed quantum system for
which Schrödinger’s equation yields unitary time development
operators T (t ′,t) (e.g., exp[−i(t ′ − t)H/h̄] in the case of a
time-independent Hamiltonian H ) these can be used to assign
probabilities to a history family using an extension of the Born
rule, provided certain consistency (or decoherence) conditions
are satisfied. If all histories start with the same initial pure state
one defines a chain ket (an element of H not H̆):

|Yα〉 = Fαn

n T (tn,tn−1)Fαn−1
n−1 T (tn−1,tn−2) · · · Fα1

1 T (t1,t0)|�0〉.
(11)

The consistency conditions are the requirement that the chain
kets are orthogonal for distinct histories,

〈Yα|Yα′ 〉 = 0 for α �= α′. (12)

When it is satisfied the extended Born rule assigns to each
history of the sample space a probability

Pr(Yα) = 〈Yα|Yα〉. (13)

The orthogonality requirement (12) is not unnatural when
one remembers that the |Yα〉 are elements of the single-time
Hilbert spaceH, not the history space H̆, and the ordinary Born
rule is used to assign probabilities to an orthonormal basis, or,
more generally, a PDI. In fact, for a history involving only
two times, t0 and t1, the consistency condition is automatically
satisfied because the F

α1
1 for different α1 form a PDI on H,

and then (13) is just the usual Born probability.
It is important to notice that quantum mechanics allows

a description of what happens in an individual realization of
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a quantum stochastic process, even though the dynamics is
probabilistic, the same as in a classical stochastic theory. One
is sometimes given the impression that quantum theory only
allows a discussion of statistical averages over many runs of
an experiment. This is not the case, and it is easy to identify
instances where individual outcomes and not just averages play
a significant role. For example, if Shor’s quantum algorithm
[20,21] is employed to factor a long integer, then at the end
of each run the outcome of a measurement is processed to
see whether this result solves the problem, and if it does, no
further runs are needed. While it may take more than one run to
achieve success, the outcome of a particular run is a significant
quantity, and not just the average over several runs. Similarly,
in the case of Einstein’s paradox, Sec. II A, a flash of light
at a particular point on the fluorescent screen, Fig. 1(a), can
be understood to mean that the particle traveled on a straight
(or almost straight) path from the source to the screen on this
particular occasion.

IV. MEASUREMENT MODELS

A. Projective measurements

Our first model is a generalization of the one introduced
by von Neumann in Sec. VI.3 of [16].1 Let Hs be the Hilbert
space of the system to be measured, which for convenience will
hereafter be referred to as “the particle,” whereas the measuring
apparatus, including its environment if that is significant, is
described by a Hilbert spaceHm. The total system with Hilbert
space HM = Hs ⊗ Hm is thought of as closed, so its dynamics
can be associated with a collection of unitary time development
operators T (t ′,t). We will focus on histories involving three
times t0 < t1 < t2, where the interval from t0 to t1 is so short
that T (t1,t0) ≈ I and thus

T (t2,t0) ≈ T (t2,t1) (14)

with negligible error. At the initial time t0 the particle can be
assigned a quantum state |ψ0〉 in Hs , and the apparatus (and
environment) a state |�0〉 in Hm; hence an initial state

|�0〉 = |ψ0〉 ⊗ |�0〉 (15)

for the combined, closed system. The use of pure states rather
than density operators does not involve any loss of generality;
see Sec. IV D for additional comments. But the requirement
that |�0〉 in Eq. (15) be a product state is important. It means
that the particle and the apparatus (or environment) are initially
uncorrelated, at least to a sufficiently good approximation.

We assume that the interaction between the particle and the
apparatus takes place during the time interval between t1 and
t2, and as a consequence of this interaction

T (t2,t1)(|sj 〉 ⊗ |�0〉) = |	j 〉, (16)

where the |sj 〉 form an orthonormal basis for the particle
Hilbert spaceHs , while the |	j 〉, which lie in the Hilbert space

1Von Neumann also gives a specific application of his general model
to the case of a “Gaussian probe” whose momentum is shifted by
an (almost) instantaneous interaction with the measured system. Our
discussion concerns the more general model rather than its application
to the Gaussian probe.

HM , are states of the particle plus apparatus that correspond to
distinct macroscopic outcomes of the measurement—distinct
“pointer positions” of the apparatus, to use the traditional ter-
minology of quantum foundations—in the sense of satisfying
(17) below. (The space HM has the same dimension as Hs ⊗
Hm, but we have not written it in that form since sometimes the
particle does not even exist at the end of the measurement. See
the discussion of nondestructive measurements in Sec. IV C.)
These pointer positions are mutually orthogonal, as is always
the case for states which are macroscopically distinct. To be
more precise, we assume there is a PDI {Mk} on HM such that

Mk|	j 〉 = δjk|	j 〉, (17)

where each Mk is a projector on a macroscopic subspace
(property) whose interpretation is that the pointer is in position
k, and (17) says that |	k〉 lies within the subspace defined by
Mk . To ensure that the {Mk} sum to the identity on HM ,
assume that the possible pointer positions are represented by
k = 1,2, . . . ,n, and let

M0 := IM −
n∑

k=1

Mk (18)

project on the subspace that includes all other possibilities
(e.g., the apparatus has broken down).

To better understand what this measurement measures it is
useful to introduce an isometry J : Hs → HM defined by

J |ψ〉 = T (t2,t1)(|ψ〉 ⊗ |�0〉). (19)

An isometry, like a unitary, preserves lengths, and is charac-
terized by the requirement that

J †J = Is, (20)

where J † : HM → Hs is the adjoint of J . (The operator
JJ † : HM → HM is a projector on the subspace of HM that
is the image of under J of Hs , and is not important for our
discussion.)

The isometry that corresponds to T (t2,t1) in Eq. (16) is

J |sj 〉 = |	j 〉. (21)

Combining this with (17) leads to

MkJ |sj 〉 = δjkJ |sj 〉. (22)

Multiplying both sides on the left by J † and using (20) yields

J †MkJ |sj 〉 = δjk|sj 〉, (23)

which implies that

[sk] = |sk〉〈sk| = J †MkJ. (24)

That is, the “backwards map” J †(·)J applied to the projector
Mk on the subspace that corresponds to pointer position k is
the prior microscopic state [sk] giving rise to this outcome.

To complete the discussion of projective measurements we
need to introduce families of histories. Let us begin with the
family {Y k} consisting of histories

Y k = [�0] � I � Mk (25)

at times t0 < t1 < t2, where |�0〉 was defined in Eq. (15), and

|ψ0〉 =
∑

j

cj |sj 〉 (26)
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is an arbitrary state of Hs . The chain kets

|Y k〉 = ck|	k〉 (27)

associated with these histories [remember that T (t2,t1) ≈
T (t2,t0)] are obviously orthogonal to each other in view of
(17) and the fact that the {Mk} form a PDI. Thus the Born rule
assigns a probability

Pr
(
Mk

2

) = 〈Y k|Y k〉 = |ck|2, (28)

the absolute square of the coefficient of |ψ0〉 in Eq. (26), to the
pointer outcome k, in agreement with textbooks, but without
employing any special rule for measurements, since (28) is
nothing but a particular application of the general formula
(13) that assigns probabilities to histories.

Note that the first measurement problem, attempting to give
a physical interpretation to the macroscopic superposition state

|�2〉 = T (t2,t0)|�0〉 =
∑

j

cj |	j 〉, (29)

never arises, because |�2〉 has never entered the discussion.
To be sure, from the consistent histories perspective there
is nothing wrong with the family consisting of just the two
histories

[�0] � I � {[�2],I − [�2]}, (30)

where each history uses one of the projectors inside the curly
brackets. It (trivially) satisfies the consistency condition, and
the Born rule assigns a probability of 1 to [�2]. It is a perfectly
good quantum description which, however, is incompatible
with the family (25) if at least two of the cj in Eq. (26)
are nonzero, since [�2] will then not commute with the
corresponding Mj , rendering a discussion of measurement
outcomes impossible. Combining the families in Eqs. (25)
and (30) is as silly as simultaneously assigning to a spin-half
particle a value for Sz along with one for Sx . The choice
of which of these families to use will generally be made on
pragmatic grounds. In particular, if one wants to discuss real
experiments of the sort actually carried out in laboratories and
what one can infer from their outcomes—one might call this
practical physics—the choice is clear: one needs to employ a
family in which measurements have outcomes.

There are physicists who object to a framework choice
based on pragmatic grounds which seem related to human
choice, e.g., see Sec. 3.7 of [7], though they might not object
to astronomers interested in the properties of Jupiter using
concepts appropriate to that planet rather than, say, Mars. Of
course this is a classical analogy, but thinking about it, along
with the spin-half example mentioned earlier, may help in
understanding how the single-framework rule can assist in
sorting out quantum paradoxes while still allowing quantum
theory to be an objective science. The idea that there can only
be exactly one valid quantum description, the principle of
unicity discussed in Sec. III B, runs into difficulties in the case
of Einstein’s paradox, Sec. II A, as well rendering the infamous
first measurement problem insoluble for reasons that have just
been discussed.

After this diversion let us return to the second measurement
problem. To see how the macroscopic measurement outcomes
Mk are related to the microscopic properties the measurement

was designed to measure, we introduce a refinement {Y jk},
Y jk = [�0] � [sj ] � Mk, (31)

of the family (25) considered previously. Here [sj ] at the
intermediate time t1 is to be interpreted, following the usual
physicists’ convention, as [sj ] ⊗ Im; the property [sj ] of
the particle and no information about anything else. The
corresponding chain kets, see (26) and (16),

|Y jk〉 = cj δjk|	k〉, (32)

are mutually orthogonal since the |	k〉 are orthogonal. Thus
the family {Y jk} is consistent, and yields a joint probability
distribution

Pr
(
s
j

1 ,Mk
2

) = 〈Y jk|Y jk〉 = δjk|cj |2, (33)

where the subscripts of the arguments of Pr( ) indicate time.
Summing over j gives (28), and combining that with (33)
yields conditional probabilities:

Pr
(
s
j

1

∣∣Mk
2

) = Pr
(
s
j

1 ,Mk
2

)
/ Pr

(
Mk

2

) = δjk, (34)

assuming ck is nonzero. In words: if the measurement outcome
(pointer position) is k, i.e., Mk , at time t2, the particle certainly
had the property [sk] at time t1. Thus the second measurement
problem has been solved for the case of projective measure-
ments. Note that this conclusion does not depend upon the
initial state |ψ0〉, which only determines the probability of
the measurement outcome Mk as noted above in Eq. (28). [If
ck = 0, (34) does not hold, but it is also not needed, since the
outcome k will never occur.]

B. Generalized measurements and POVMs

The basic setup for discussing generalized measurements is
the same as that in Sec. IV A: times t0 < t1 < t2, an initial state
(15) at time t0, negligible time development [see (14)] between
t0 and t1, the isometry J defined in Eq. (19), and a PDI {Mk}
corresponding to different pointer positions at t2. However, we
now drop the assumption of an orthonormal basis {|sj 〉} of Hs

with J |sj 〉 lying in the space Mj . Instead, use the backwards
map of the projectors on the pointer subspaces to define for
each k an operator

Qk := J †MkJ (35)

onHs . For a projective measurement Qk = [sk] is the property
possessed by the particle at the earlier time t1 when the
measurement outcome is Mk , and we shall see that something
similar, though a bit more complicated, holds for generalized
measurements. Another special case, a generalized projective
measurement, is one in which each Qk is a projector and the
{Qk} form a PDI, but one or more may have a rank (so project
on a subspace of dimension) greater than 1.

The collection {Qk} forms a POVM (positive operator-
valued measure), a collection of positive semidefinite operators
with sum equal to the identity on Hs . The equality

〈ψ |Qk|ψ〉 = 〈ψ |J †MkJ |ψ〉 = 〈�|Mk|�〉 � 0, (36)

for an arbitrary |ψ〉 in Hs , with |�〉 = J |ψ〉, demonstrates
that Qk , just like the projector Mk , is a positive semidefinite
operator. Summing both sides of (36) over k and remembering
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that the Mk form a PDI shows that∑
k

Qk = Is, (37)

completing the proof that {Qk} is a POVM. [Note that the
special M0 in Eq. (18) gives rise to Q0 = 0.]

The first measurement problem for such a POVM is solved
in exactly the same way as for the von Neumann model:
use the PDI {Mk} at time t2, not the projector [	2] of the
unitarily evolved state. The second measurement problem is
more subtle, as it requires introducing suitable properties as
events at t1 to produce a consistent family. The choice is not
unique, but the following is a quite general and fairly useful
approach. The spectral decomposition of Qk can be written in
the form

Qk =
∑

j

qjkξ
jk,

∑
j

ξ jk = Is, (38)

where for each fixed k the ξ jk labeled by j are projectors that
form a PDI on Hs , while the qjk � 0 are the corresponding
eigenvalues of Qk . We assume the eigenvalues are unique,
qjk �= qj ′k when j �= j ′, so some of the ξ jk may have rank
greater than one. As with any PDI the projectors are orthogonal
and sum to the identity:

ξ jkξ j ′k = δjj ′ξ jk,
∑

j

ξ jk = Is. (39)

The family {Y jk} of histories

Y jk = [�0] � ξ jk � Mk (40)

when augmented with the uninteresting [�0] � I � M0 (of
zero weight) is complete, since∑

j

Y jk = [�0] � I � Mk. (41)

The chain kets

|Y jk〉 = MkJ ξjk |ψ0〉 (42)

are obviously mutually orthogonal if the two k values differ.
For a given k we need to consider

〈Y jk|Y j ′k〉 = 〈ψ0|ξ jkJ †MkJξj ′k|ψ0〉
= 〈ψ0|ξ jkQkξj ′k|ψ0〉
= δjj ′qjk〈ψ0|ξ jk|ψ0〉, (43)

where the second equality follows from (35), the third from
(38) and (39). Thus the family {Y jk} defined in Eq. (40) is
consistent, with probabilities

Pr
(
ξ

jk

1 ,Mk′
2

) = δkk′ qjk 〈ψ0|ξ jk|ψ0〉, (44)

where subscripts 1 and 2 identify the times t1 and t2 before and
after the measurement takes place. It follows that

Pr
(
Mk

2

) =
∑

j

Pr
(
ξ

jk

1 ,Mk
2

) = 〈ψ0|Qk|ψ0〉, (45)

Pr
(
ξ

jk′
1

∣∣Mk
2

) = δkk′ qjk 〈ψ0|ξ jk|ψ0〉/〈ψ0|Qk|ψ0〉. (46)

What (46) tells us is that if the outcome (pointer position)
is k the system earlier had one of the properties ξ jk , with

probabilities that will in general depend on the initial particle
state |ψ0〉. If Qk is itself a projector or proportional to
a projector, as will be the case for a general projective
measurement, one can be sure that the particle possessed
the property Qk at time t1. If the support of Qk is a proper
subspace of Hs , the system can be assigned the property
corresponding to this subspace at the time immediately before
the measurement. If neither of these conditions holds it may
be possible on the basis of additional information about |ψ0〉
to assign probabilities to the different ξ jk for this k, or perhaps
argue that some of these probabilities are negligible, allowing
one with reasonable confidence to say something nontrivial
about the property possessed earlier by the particle.

Note that whereas for a fixed k the ξ jk for different j are
mutually orthogonal, for different k values, different outcomes
of the experiment, one may be able to draw different and
perhaps mutually incompatible conclusions about the prior
properties. This is a feature of quantum measurements which
has given rise to a lot of confusion, and is best discussed in
terms of a specific example; see the one in Sec. V C. While
the consistent family in Eq. (40) is not the only possibility
for discussing what one can learn about the prior state of the
particle from measurement outcomes, it is a rather natural
choice, especially when nothing else is known about the
measured system.

C. Nondestructive measurements and preparations

A measurement determines a past property whereas a
preparation is a procedure to prepare a particular quantum
state, and a nondestructive measurement combines the two:
the apparatus both measures and prepares certain properties.
While preparations lie somewhat outside the scope of the
present paper, it is worthwhile making some remarks on the
subject, if only because of the confusion found in textbooks and
other publications, where “measurement” is often (incorrectly)
defined as something that has to do with “wave function
collapse.” The confusion goes back to von Neumann’s original
measurement model in which, using the notation of the present
paper, HM = Hs ⊗ Hm, and the isometry J in Eq. (19) takes
the form

J |sj 〉 = |sj 〉 ⊗ |	j 〉, Mk|	j 〉 = δjk|	j 〉, (47)

with the {|sj 〉} an orthonormal basis of Hs . (The |	j 〉 and the
PDI {Mk} now refer to Hm rather than HM , as in our earlier
discussion, but this is a minor difference.) In place of (31) use
the family

Y jj ′k = [ψ0] ⊗ [�0] � {[sj ]} � {[sj ′
] ⊗ [Mk]}. (48)

It is straightforward to show that it is consistent, since all the
chain kets vanish except for the cases j = j ′ = k, with the
result

Pr
(
s
j

1 ,s
j ′
2 ,Mk

2

) = δjj ′δjk〈ψ0| [sj ] |ψ0〉, (49)

Pr
(
s
j

1

∣∣Mk
2

) = δjk, Pr
(
s
j

2

∣∣Mk
2

) = δjk. (50)

This measurement is nondestructive in the sense that from
the outcome Mk one can immediately infer that the particle
property both before and after the measurement was [sk], so it
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did not change. Furthermore, this conclusion is independent of
the initial particle state |ψ0〉 [assuming only that ck in Eq. (26)
is not zero; if it is zero the outcome Mk will never occur].
That the earlier |ψ0〉 is replaced by the later |sk〉 in the case
of outcome Mk is the idea of “wave function collapse,” a
confusing notion best replaced with the second equality in
Eq. (50).

Discussions of measurements are sometimes based on a
generalization of (47) in which for any |ψ〉 in Hs the isometry
is assumed to be of the form

J |ψ〉 =
∑

j

Kj |ψ〉 ⊗ |	j 〉, (51)

where the {	j } are an orthonormal collection, and the Kraus
operators Kj (note that j is a label) are arbitrary maps of Hs

to itself subject only to the condition that∑
j

(Kj )†Kj = Is, (52)

which guarantees that J in Eq. (51) is an isometry. Regarded
as a measurement, which is to say something that determines
the property of the particle at t1, this is equivalent to a POVM
in which

Qj = (Kj )†Kj . (53)

The nondestructive model in Eq. (47) is easily extended
to a general PDI {P j } on Hs by setting the Kraus operator
Kj in Eq. (51) equal to P j , whence it follows that any
initial |ψ〉 in Hs with the property P k , i.e., P k|ψ〉 = |ψ〉 will
result in a measurement outcome Mk and |ψ〉 will emerge
unchanged at time t2. This is the essence of Lüders’ proposal
[22,23], which is best regarded as a particular model of a
nondestructive measurement and not (as sometimes supposed)
a general principle of quantum theory.

In the case of a preparation one is not interested in the
property of the particle at an earlier time, but instead its state
at a time t2 after the interaction with the measuring device
is over. If, for example, the isometry is given by (47), then
according to (50) if the pointer is in position k at time t2 one
can be certain that the particle is in state [sk] at this time. But
a simpler and more general preparation model is obtained if in
place of (47) one assumes there is a normalized state |ψ1〉 at
time t1 and an isometry J such that

J |ψ1〉 =
∑

k

√
pk |ŝk〉 ⊗ |	k〉, Mk|	k′ 〉 = δkk′ |	k〉, (54)

where the pk are probabilities that sum to 1. The states |ŝk〉 are
normalized, but we do not assume that they form a basis; in
particular, they need not be mutually orthogonal. Nonetheless
one can infer that if at t2 the pointer is in position k, the
particle at this time is in the state |ŝk〉. Note that even if the |ŝk〉
are not orthogonal the states |ŝk〉 ⊗ |	k〉 are orthogonal and
hence distinct; see Chap. 14 in Ref. [8] for some discussion of
states of this sort. One might worry that this preparation model
is stochastic: if outcome k = 3 is desired, sometimes it will
occur and sometimes it will not. But since the pointer position
is macroscopic it is not difficult to design a system whereby
undesired outcomes are removed (e.g., run the particle into
a barrier), or if one is repeating the experiment many times,

simply keep a record of the value of k for each run, and throw
out the runs for which it is not equal to 3.

D. Some remarks about density operators

The foregoing discussion of measurement models em-
ployed pure states and projectors on pure states, and it is
natural to ask what the appropriate formulation ought to be
if one is dealing with mixed states. Mixed states arise in
quantum mechanics in two somewhat different ways. The first
is analogous to a classical probability distribution: one has
in mind some collection of pure states |ψj 〉 with associated
probabilities pj , known as an ensemble, and the associated
density operator is

ρ =
∑

j

pj [ψj ]. (55)

Suppose particles are prepared in states chosen from this
ensemble with the specified probabilities, and then measured.
What can one infer about the state of a particle just before the
measurement, given a particular outcome? Since the only role
of the initial state |ψ0〉 in Secs. IV A and IV B is to assign
probabilities, in the case of a random input one replaces |ψ0〉
by ρ when computing averages; e.g., 〈ψ0|Qk|ψ0〉 in Eq. (45)
is replaced with Tr(ρ Qk). Note that the state inferred in this
way from the measurement outcome in a particular run need
not be the same as the member of the ensemble sent into the
measurement apparatus. This is no more surprising than the
fact that the [sk] inferred in Eq. (38) can be different from
[ψ0].

The second way in which a density operator arises is
through taking a partial trace of an entangled pure state on
a composite system down to one of the subsystems; see Chap.
15 of [8] for further details. If one is only concerned with
properties of this particular subsystem and not its correlations
with the others, and if only this subsystem interacts with the
measuring apparatus, then the previous discussion applies: the
situation is exactly the same as for the case of an ensemble.
If, however, one is interested in correlations with the another
subsystem or subsystems it is best to treat the entire system
under consideration as a single system when working out what
one can infer from a measurement, even if the measurement
is carried out on just one of the subsystems, as the density
operator may not provide the sort of information one is
interested in. See Sec. V F below for an example.

One may also be concerned about using a pure initial state
|�0〉 for a macroscopic apparatus rather than a density operator
or a projector onto a large (macroscopic) subspace. This gives
rise to a different set of concerns, and we refer the reader to
the treatment in Chap. 17 of [8].

V. APPLICATIONS

Various applications below will illustrate the approach
outlined in Sec. IV. Those in Secs. V A and V B show how a
proper application of quantum principles can give physically
reasonable results for the cases considered in Secs. II A
and II B, while avoiding paradoxes. Simple examples of
POVMs and weak measurements are considered in Secs. V C
and V D. Quantum (non)contextuality and aspects of the
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Einstein-Podolsky-Rosen (EPR) paradox are examined in
Secs. V E and V F.

A. Spin half

The simplest nontrivial example of a quantum system is the
spin of a spin-half particle, and the spin was first measured
in the Stern-Gerlach experiment mentioned in every textbook.
Using the notation for the eigenstates of the z component of
angular momentum Sz introduced earlier in Sec. III A, suppose
that a measurement of Sz corresponds to an isometry

J |zj 〉 = |	j 〉 (56)

of the form (21), where j = + or −, and the macroscopic
outcomes correspond to projectors M+ and M− on pointer
subspaces satisfying (17). Then (24) takes the form

[z+] = J †M+J, [z−] = J †M−J. (57)

Hence if the macroscopic outcome is M+—e.g., an atom is
detected in the upper beam emerging from a Stern-Gerlach
magnet—one can conclude using the family of four histories at
times t0 < t1 < t2 (at t1 and t2 choose one of the two properties
inside the curly brackets)

[ψ0] ⊗ [�0] � {[z+],[z−]} � {M+,M−}, (58)

that at time t1 before the measurement began the particle had
the property [z+] corresponding to Sz = +1/2, whatever the
initial state [ψ0]. Similarly, M− would indicate Sz = −1/2 at
the earlier time.

One can check this by a direct calculation assuming an
initial state

|ψ0〉 = α|z+〉 + β|z−〉, (59)

and using the chain kets to evaluate the probabilities for the
four histories in Eq. (58):

Pr(z+
1 ,M−

2 ) = Pr(z−
1 ,M+

2 ) = 0,

Pr(z+
1 ,M+

2 ) = |α|2, Pr(z−
1 ,M−

2 ) = |β|2. (60)

The marginals and conditionals are then

Pr(M+
2 ) = |α|2, Pr(M−

2 ) = |β|2,
Pr(z+

1 | M+
2 ) = 1, Pr(z−

1 |M−
2 ) = 1, (61)

where the last two hold if |α|2 (respectively, |β|2) is nonzero.
In short, the particle at t1 had the value of Sz indicated by the
measurement outcome at t2, independent of the state |ψ0〉 at
t0, in agreement with (57).

Next, assuming the same unitary dynamics (56), consider a
different family of histories,

[x+] ⊗ [�0] � {[x+],[x−]} � {M+,M−}, (62)

in which the initial [ψ0] is now [x+], and the properties at t1
refer to Sx instead of Sz. It is straightforward to show that the
family is consistent, with joint probabilities (obtained from
chain kets)

Pr(x+
1 ,M+

2 ) = Pr(x+
1 ,M−

2 ) = 1/2,

Pr(x−
1 ,M+

2 ) = Pr(x−
1 ,M−

2 ) = 0. (63)

The conditionals

Pr(x+
1 | M+

2 ) = Pr(x+
1 | M−

2 ) = 1,

Pr(x−
1 | M+

2 ) = Pr(x−
1 | M−

2 ) = 0 (64)

are exactly the same for M+ and M−, so the measurement
outcomes at t2 tell us nothing at all about Sx at time t1. Instead
its value is determined entirely by the initial state |x+〉 at t0.

Given the family (62) and a pointer outcome, say M− at
t2, are we to infer Sx = +1/2 at the earlier time t1 using (64),
or Sz = −1/2 using (61)? Both inferences are correct, but in
separate frameworks which cannot be combined. Frameworks
are chosen by the physicist depending on which aspect of the
situation is of interest. The physicist who sets up an apparatus
to prepare a spin-half particle with a particular polarization
may wish to explain in quantum mechanical terms how it
functions, in which case the family (62) is an appropriate
starting point, and (64) will confirm that later measurements
do not have any undesirable retrocausal influence. On the
other hand the physicist who has constructed an apparatus
to measure a particular polarization can best explain how it
functions in that capacity by using the family (58). Even if
[ψ0] = [x+] is not an eigenstate of Sz, (61) shows that the
later pointer position reveals the prior property the instrument
was designed to measure. These two physicists might be
one and the same; several incompatible frameworks may be
useful for analyzing a particular experimental arrangement,
while the single-framework rule prevents drawing meaningless
conclusions or paradoxical results.

Properties at an additional intermediate time before the
measurement has begun, say t1.1, can be added to (62) to form
a consistent family at times t0 < t1 < t1.1 < t2, (62):

[x+] ⊗ [�0] � {[x+],[x−]} � {[z+],[z−]} � {M+,M−},
(65)

where we assume that T (t1.1,t1) = I . Using it one can show
that

Pr(x+
1 ) = 1, Pr(z+

1.1 |M+
2 ) = Pr(z−

1.1 | M−
2 ) = 1. (66)

Thus if the later measurement outcome is M− one can be
sure (based on the initial state) that Sx = +1/2 at t1 and also
(based on the measurement outcome) that Sz = −1/2 at t1.1.
This seems odd if one tries to imagine a physical process
rotating the direction of the spin from +x to −z, since the
particle is moving in a field-free region and not subject to
a torque. Once again the choice of framework which allows
a description of a particular aspect of the situation must be
carefully distinguished from a dynamical physical process.
While there is no exact classical counterpart of a framework
choice, the following analogy may help: If one looks at a
coffee cup from above one can discern certain things—is it
filled with coffee?—which are not visible from below, whereas
things visible from below, such as a crack in the bottom, may
not be visible from above. Changing the point of view does
not change the coffee cup or its contents, but does allow one
to see different things. The analogy with the quantum case
breaks down in that it makes sense to speak of a cup that both
contains coffee and has a (small) crack in the bottom, whereas
Sx = +1/2 AND Sz = −1/2 is meaningless, as the projectors
do not commute. To be sure, Sx = +1/2 at an earlier time is
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correctly combined in Eq. (65) with Sz at a later time: think
of first looking at the coffee cup from the top and later from
the bottom. However, interchanging the intermediate events in
Eq. (65) so that Sz properties at t1 precede the Sx properties at
t1.1 results in an inconsistent family. Classical analogies help,
but in the end there is no substitute for a consistent quantum
analysis.

B. Mach-Zehnder

A correspondence between spin-half measurements as
discussed in Sec. V A and the Mach-Zehnder setup of Sec. II B
will assist in understanding the latter. Consider a time t1 at
which, see Fig. 3, the photon has been reflected from the
upper and lower mirrors, but has yet to reach the location of
the second beam splitter, or, if the latter is absent, the crossing
point of the two trajectories. Let |z+〉 be the part of the photon
wave packet in the upper arm, and |z−〉 the part in the lower
arm of the interferometer at this time, and let |x+〉 and |x−〉
be the coherent superpositions of |z+〉 and |z−〉 defined in
Eq. (4). Further assume that the action of the first beam splitter
in Fig. 3 is to prepare the photon in the state |x+〉. Let M+
be the projector on the macroscopic subspace in which D+ in
Fig. 3 has detected the photon while D− has not, and M− its
counterpart for detection by D− rather than D+.

If the second beam splitter is absent, Fig. 3(b), a photon in
the state |z+〉 in the upper arm will trigger D+, while |z−〉 in
the lower arm will trigger D−. This can be discussed using a
family of four histories as in Eq. (58), with |ψ0〉 = |x+〉:

[x+] ⊗ [�0] � {[z+],[z−]} � {M+,M−}. (67)

The conditional probabilities are the same as in Eq. (61): if D+
is triggered one can be certain the photon was earlier in the
state [z+], so in the upper arm of the interferometer, whereas
detection by D− indicates the earlier state [z−] in the lower
arm. These are the same conclusions one would arrive at from a
naive inspection of Fig. 3(b), but they have now been confirmed
using an analysis based on consistent quantum principles.

Now add an additional time t1.1 > t1 at which the photon is
still inside the interferometer. The consistent family

[x+] ⊗ [�0] � {[x+],[x−]} � {[z+],[z−]} � {M+,M−}
(68)

(where note that histories with [x−] at t1 have zero probability,
so can be ignored) is formally identical to (65), but introduces
a new conceptual difficulty. In the spin-half case the issue
was how a spin angular momentum of Sx = +1/2 at t1 could
suddenly precess into Sz = +1/2 or −1/2 at t1.1. However
mysterious that might be, one could still imagine the change
taking place at the location of the spin-half particle. But for the
Mach-Zehnder [x+] is a nonlocal superposition between the
two arms at t1; can it suddenly collapse into one or the other
arm, [z+] or [z−], at a time t1.1, even if the interval between
t1 and t1.1 is very short, so making this collapse essentially
instantaneous? Is this (seeming) nonlocality consistent with
relativity theory?

Just as in the case of spin half this (apparent) paradox
may be dealt with by noting that a change in what is being
described is not the same as a physical process. Thus if the
pair {[z+],[z−]} at t1.1 in Eq. (68) is replaced with {[x+],[x−]},

this new family is again consistent, but the “collapse” between
t1 and t1.1 is no longer present. Families or frameworks are
chosen by the physicist and are not consequences of some law
of nature. See the discussion following (66).

In addition it is worth noting that a quantum superposition,
such as |x+〉, of a particle at two locations is not at all the same
thing as its being in both places at the same time. Translated
into quantum terminology the statement that the photon is in
the upper arm AND in the lower arm becomes [z+] AND [z−],
which because the projectors commute makes perfectly good
sense, and because their product is zero this conjunction is
always false: a photon can never be located simultaneously in
both the upper and in the lower arm, unlike a classical wave.

Next consider the case with the second beam splitter
present, and suppose that the phases are such that a photon
in the state |x+〉 inside the interferometer will later be detected
by D+, and |x−〉 detected by D−. In this case one can think
of the detectors and the second beam splitter as together
constituting an apparatus designed to detect [x+] and [x−],
the photon analogs of the spin-half Sx eigenstates (which
for a spin-half particle could be measured by rotating the
Stern-Gerlach apparatus so that its field gradient is in the x

rather than the z direction). The second beam splitter changes
the unitary dynamics in such a way that |zj 〉 on the left side of
(56) is replaced by |x+〉, and thus (57) becomes

[x+] = J †M+J, [x−] = J †M−J. (69)

Thus the measurement outcomes now indicate different su-
perposition states of the photon inside the interferometer; the
measurement measures “which phase?” rather than “which
path?”; see Fig. 4. With the new dynamics (67) is no longer a
consistent family, but one can instead use

[ψ0] ⊗ [�0] � {[x+],[x−]} � {M+,M−}, (70)

in order to infer from the measurement outcome the presence of
one of two distinct (i.e., orthogonal) superposition states inside
the interferometer, which is to say the difference between
photons originating in S1 or S2 in Fig. 4(a).

We are now ready to discuss the (supposed) paradox,
Sec. II B, associated with removing or inserting the second
beam splitter at the very last moment just before the photon
reaches it. One can think of this change as the Mach-Zehnder
analog of rotating a Stern-Gerlach apparatus about the axis of
the atomic beam just before the arrival of a spin-half particle,
so that it will measure Sx rather than Sz. In the absence of
this rotation one can use the measurement outcome to assign
a value to Sz before the measurement took place, whereas if
the rotation has taken place before the particle arrives, the
measurement outcome indicates the prior value of Sx . This
does not mean that the particle has both an Sz and an Sx

value, for these two quantities are incompatible, and that is
why they cannot be measured simultaneously. In the case
of the Mach-Zehnder, if the second beam splitter is absent
the measurement outcome will indicate either an earlier [z+]
property, photon in the upper arm, or [z−], photon in the lower
arm. If the second beam splitter is present the measurement
outcome distinguishes the earlier superposition properties [x+]
and [x−], neither of which is compatible with assigning the
photon to one of the arms rather than the other. In neither case
is there any need to suppose that the later measurement choice
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influences the particle before measurement. Instead, changing
the type of measurement alters what type of information
about the earlier state of the particle can be inferred from
the measurement outcome.

C. Spin-half POVM

A simple but instructive example of a POVM for a spin-half
particle can be constructed using the three nonorthogonal states

|u1〉 = (|z+〉 + |z−〉)/
√

2, |u2〉 = (ω|z+〉 + ω2|z−〉)/
√

2,

|u3〉 = (ω2|z+〉 + ω|z−〉)/
√

2, ω := exp[2πi/3]. (71)

The projectors [uk] are associated with points on the equator
of the Bloch sphere: [u1] at the positive x axis, while [u2]
and [u3] are separated from [u1] and each other by 120◦. The
operators

Qk := (2/3)[uk] (72)

for k = 1,2,3 sum to the identity and hence constitute a POVM.
This POVM can be obtained from an isometry as discussed

in Sec. IV B, where we assume for simplicity a “toy” apparatus
Hilbert space HM of dimension 3, with an orthonormal basis
{|k〉}, k = 1,2,3. The isometry J can be written in the form

J |uk〉 = |vk〉 :=
√

3/2 |k〉 −
√

1/2 |w〉,
|w〉 := (|1〉 + |2〉 + |3〉)/

√
3. (73)

This J maps the two-dimensionalHs into the two-dimensional
subspace of HM consisting of kets orthogonal to |w〉. The
orthogonal measurement projectors in the notation of Sec. IV
are

Mk := [k]. (74)

With the help of the formulas

|uk〉 = J †|vk〉, J †|w〉 = 0, |k〉 =
√

2/3 |vk〉 +
√

1/3 |w〉,
(75)

where the first and second are consequences of J †J = Is

and the fact that 〈w|J |uk〉 = 0, while the third comes from
rewriting (73), one can show that

J †MkJ = J †[k]J = (2/3)[uk] = Qk, (76)

in agreement with (35).
The analysis in Sec. IV B shows that the family consisting

of the histories

Y k = [ψ0] ⊗ [�0] � {[uk],Is − [uk]} � Mk (77)

at times t0 < t1 < t2, k = 1,2,3, is consistent for any initial
spin-half state |ψ0〉. Note that the PDI {[uk],Is − [uk]} at t1 is
linked to the final Mk , and because the [uk] are not orthogonal
these intermediate PDIs for different k are incompatible.
This is not a problem, because in a particular run only one
measurement outcome corresponding to a specific k will occur,
and for that k one can be sure (see the discussion in Sec. IV B;
here Qk is proportional to a rank-one projector) the particle
was at time t1 in the state [uk], since the history with the event
Is − [uk] has zero weight.

That the framework used to describe the situation at t1
depends on the later measurement outcome at time t2 should

not be misunderstood. It is not the case that a later event caused
an earlier one. Rather, a specific later outcome of a process
which is intrinsically random allows one to reach a conclusion
which would not have been possible had the outcome been
different. There are classical analogs of this, though of course
they all have limitations when discussing quantum systems.
One should also keep in mind that while the family (77)
provides a rather natural interpretation of the measurement
outcome k, the choice is not unique.

It is worth considering what happens if one is trying to
calibrate the POVM apparatus using several runs in which
particles are prepared in the state [u1], i.e., Sx = 1/2. The
probability of outcome k will be

Pr
(
Mk

2

) = Tr([u1] Qk) =
{

2/3, if k = 1,
1/3, if k = 2 or 3.

(78)

Thus unlike the situation for a PDI, the prior preparation does
not determine the measurement outcome, although M1 is more
likely to occur than either of its alternatives. If for some run
the outcome is M2 we might conclude, using (77) with k = 2,
that the particle was earlier in the state [u2], even though we
know it was prepared in [u1]. This is not a paradox as long as
one remembers that quantum theory allows the use of different
frameworks, and one is careful not to combine incompatible
frameworks in violation of the single-framework rule. An
alternative calibration procedure uses particles prepared in
states orthogonal to the [uk]. For example, [x−] is orthogonal to
[u1], and if in Eq. (77) |ψ0〉 = |x−〉, the outcome probabilities
are

Pr
(
Mk

2

) = Tr( [x−] Qk) =
{

0, if k = 1,
1/2, if k = 2 or 3.

(79)

The fact that in this case the k = 1 outcome is never observed
is an indication that the apparatus is functioning properly.

D. Weak measurements

A weak measurement is one in which the measured system,
the particle, interacts very weakly with the measurement appa-
ratus. As a consequence a single measurement provides very
little information about the particle, so weak measurements are
usually employed in a situation in which the measurement can
be repeated many times, each time with a particle prepared
in the same state before the measurement. One way of
implementing a weak measurement is to let the particle interact
weakly with a another microscopic system, called a probe,
which has itself been prepared in a known quantum state.
After interacting with the particle the probe is subjected to a
projective (“strong”) measurement by a macroscopic appara-
tus, with the intent of learning something about the original
particle in this indirect way. There are many possible variations
of this procedure. For example, the same particle may
be subjected to a succession of weak measurements, one
after the other, each supplying some additional information.
Or, after interacting with the probe, the particle may itself
be subjected to a strong measurement. When attention is
focused on cases resulting in some particular outcome of
the final strong measurement on the particle one speaks
of postselection. There is an enormous literature on weak
measurements; for access to some of it see [24–26].
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Weak measurements have no necessary connection with
weak values, though the two are often discussed together, and
sometimes it is assumed that weak measurements can or should
be be interpreted using weak values. The physical significance
of weak values has been the subject of an ongoing controversy
[25]. Suffice it to say that in general there is no reason to
think of a weak value as linked to a physical property, or the
average value of a physical variable, at least as those terms are
employed in the present article, where they are associated with
Hilbert subspaces.

A weak measurement, either by itself or when followed by
a strong measurement, can be understood as a particular type
of POVM, and thus understood in terms of prior properties of
the particle as discussed in Sec. IV B. The following simple
example illustrates how this works in a particular case. Let
the particle be a two-state system with an orthonormal basis
{|A〉,|B〉}, which one can think of as representing a photon in
one of two channels, as in the Mach-Zehnder interferometer
considered earlier in Secs. II B and V B. The three-dimensional
Hilbert space Hr for the probe has an orthonormal basis
{|j 〉},j = 0,1,2. We assume the probe is initially in the state
|0〉, while the particle is in a superposition

|ψ0〉 = a|A〉 + b|B〉. (80)

The particle-probe interaction results in a unitary time devel-
opment

T (t2,t1)(|A〉 ⊗ |0〉) = |A〉 ⊗ (ζ |0〉 + η|1〉),
T (t2,t1)(|B〉 ⊗ |0〉) = |B〉 ⊗ (ζ |0〉 + η|2〉) (81)

during the interval from t1 to t2 [or t0 to t2, given our usual
assumption that T (t2,t0) = T (t2,t1)], where

ζ = √
1 − ε, η = √

ε. (82)

Here ε, a measure of the strength of the particle-probe
interaction, is assumed to be very small, so that the probability
is high that the probe will be left in its initial untriggered state
|0〉, but on rare occasions it will be kicked to |1〉 if the particle
is in channel A, or to |2〉 if the particle is in B. Feynman’s use
of a weak light source in Sec. 1-6 of [12] is a good illustration
of this idea.

After this, during the time interval from t2 to t3 the probe is
measured in the j = 0,1,2 basis, and the particle is measured
in an orthonormal basis |E〉,|F 〉 related to |A〉,|B〉 by

|A〉 = αe|E〉 + αf |F 〉, |B〉 = βe|E〉 + βf |F 〉, (83)

where (
αe αf

βe βf

)
(84)

is a unitary matrix. Different choices of these parameters could
be used to represent different situations analogous to those
shown in Fig. 3, where the second beam splitter is either present
or absent.

As the particle and the probe are measured by separate
devices we can associate with each an isometry mapping from
t2 to t3:

Js |E〉 = ∣∣	E
s

〉
, Js |F 〉 = ∣∣	F

s

〉
,

Jr |j 〉 = ∣∣	j
r

〉
for j = 1,2,3. (85)

Combining these with (81) yields an isometry mapping Hs at
time t1 to both outputs at time t3:

J |A〉 = ζ (αe|	E0〉 + αf |	F0〉) + η(αe|	E1〉 + αf |	F1〉),
J |B〉 = ζ (βe|	E0〉 + βf |	F0〉) + η(βe|	E2〉 + βf |	F2〉),

(86)

where |	E0〉 is shorthand for |	E
s 〉 ⊗ |	0

r 〉, and lies in the
subspace ME0 = ME ⊗ M0 for the two pointers, and similarly
for the other cases.

The backward J †(·)J map applied to the pointer projectors
yields POVM elements which are operators on Hs and thus
can be written as 2 × 2 matrices in the |A〉,|B〉 basis:

QE0 = (1 − ε)

(|αe|2 α∗
e βe

αeβ
∗
e |βe|2

)
,

QF0 = (1 − ε)

(|αf |2 α∗
f βf

αf β∗
f |βf |2

)
,

QE1 = ε

(|αe|2 0
0 0

)
, QE2 = ε

(
0 0
0 |βe|2

)
,

QF1 = ε

(|αf |2 0
0 0

)
, QF2 = ε

(
0 0
0 |βf |2

)
. (87)

That these six operators sum to the identity follows from the
unitarity of (84): its rows are orthogonal, so α∗

e βe + α∗
f βf = 0,

and its column vectors are normalized.
The simple form of the last four matrices in Eq. (87) can

be understood by noting that the probe, which starts off in |0〉,
can reach state |1〉 only if the particle is in channel A, which
is why QE1 and QF1 are proportional to the projector [A];
similarly, only if the particle is in B can the probe arrive at |2〉.
The more complicated matrix QE0 is 1 − ε times the projector
[E], which is reasonable since in this case the probe was not
triggered but remained in |0〉, so did not perturb the particle;
similarly, QF0 = (1 − ε)[F ].

Our discussion has employed the strategy introduced in
Sec. IV B, of interpreting outcome k of a generalized measure-
ment in terms of properties that correspond to diagonalizing
the operator Qk . In this example each Qk is proportional to a
pure state projector, so the interpretation is relatively simple,
and is independent of the initial state |ψ0〉 of the particle in
Eq. (80). The probabilities of various measurement outcomes
will depend on the coefficients a and b in |ψ0〉, and can be
computed from the POVM matrices using 〈ψ0|Q|ψ0〉, whereas
the physical interpretation of each outcome in terms of prior
properties does not depend on |ψ0〉. The framework used here
is convenient for discussing what a quantum measurement
measures, but does not exclude the use of other frameworks.
The standard textbook computational procedure uses the
entangled state T (t2,t1)(|ψ0〉 ⊗ |0〉) to calculate probabilities
of various measurement outcomes, and there is nothing wrong
with that when one is only interested in those probabilities, and
not in how these outcomes reveal the properties of the particle
that the apparatus was designed to measure.

For an analogous discussion (without using the language
of POVMs) of a more complicated situation, which has given
rise to some controversy, see Sec. V of [2].
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E. Is quantum mechanics contextual?

One often encounters the claim that “quantum mechanics
is contextual.”2 Unfortunately the term “contextual” is used in
more than one way. A relatively precise definition due to Bell
[28] and used in some later quantum foundations literature,
e.g., Sec. VII of [29] and p. 188 of [30], is the following: Let
A,B, and C be three observables (i.e., Hermitian operators),
and suppose that A commutes with B and C, but B and C do
not commute:

[A,B] = 0, [A,C] = 0, [B,C] �= 0. (88)

This means that A can (in principle) be measured together
with B, or together with C, whereas B and C are incompatible
and cannot be measured together. One can then ask, does
the measured value of A depend on whether it is measured
together with B or with C? If the answer is “yes,” then
quantum mechanics (or whatever theory is being discussed) is
contextual, and if “no,” it is noncontextual. To avoid confusion,
let us add a modifier and refer to Bell (non)contextual when
these terms are used in the way just described. The following
argument will show that quantum mechanics in the consistent
histories interpretation is Bell noncontextual. (A more recent
and somewhat different definition of “contextual” is discussed
briefly at the end of this section.)

The definition given above runs into the following difficulty.
In a single experimental run A cannot be measured together
with both B and C, since B and C cannot be measured in the
same run. And the measured value of A may vary randomly
from run to run, making it difficult to make a comparison
between those in which A is measured with B and those in
which it is measured together with C. Let us explore this
difficulty by thinking of an apparatus equipped with a switch
with two settings: β and γ . With the switch at β the apparatus
will measure both A and B, while with the setting γ it will
measure A and C. We suppose that the apparatus has been
calibrated, Sec. II C, for A measurements for both switch
settings, so the experimenter can be reasonably confident that
the A pointer outcome will give the correct answer if the input
state is an eigenstate of A. Similarly, B calibrations can be
carried out with the switch at β, and C calibrations for the γ

setting.
Now we ask, Suppose that with the β setting the A

measurement outcome corresponds to a particular eigenvalue,
say a3. Would this outcome have been the same if the switch
setting had been γ ? Counterfactual questions of this sort are
a bit tricky; see [31] and Chap. 19 of [8] for a proposal that
gives plausible results in a quantum setting. For the present
discussion the basic idea is that if one can reliably infer from
the apparatus outcome with switch setting β the eigenvalue of
A that characterized the particle before any interaction with
the apparatus, it seems reasonable that changing the switch
from β to γ at the very last moment could not have altered that
earlier property, so the result would have been the same with
the γ setting, given that the apparatus had been calibrated.

2Some authors make it clear that it is hidden variables versions
of quantum mechanics which are contextual, but many omit that
qualification; for a recent (but hardly unique) example, see [27].

D4

D1 D2

D3

β ↔ γ
U WV

FIG. 5. Apparatus to measure A along with B (Uβ ), or with
C (Uγ ).

To make things less abstract, consider a spin-one particle,
and let |1〉, |2〉, |3〉 be an orthonormal basis for its Hilbert space
Hs . Define the following observables using dyads:

A = |1〉〈1| − |2〉〈2| − |3〉〈3|,
B = 1

2 |1〉〈1| + |2〉〈2| − |3〉〈3|, (89)

C = 2|1〉〈1| + |2〉〈3| + |3〉〈2|.
It is obvious that [A,B] = 0, and straightforward to show that
[A,C] = 0 and [B,C] �= 0.

A possible apparatus for measuring these observables is
shown schematically in Fig. 5. The incoming particle first
passes through a device V (one can think of an electric
field gradient acting on a particle with an electric quadrupole
moment) which splits the path in two. The upper path is
followed by a particle in the state |1〉 and leads to the
detector D1. The lower (straight) path is followed by a particle
whose state is any linear combination of |2〉 and |3〉, and it
passes through a nondestructive detector D4 that measures
the particle’s passage without disturbing its internal state.
Following this there is another device U with a switch: if
the switch setting is β it carries out a unitary transformation
Uβ equal to the identity I (i.e, the device does nothing), while
if the setting is γ the unitary is

Uγ = (1/
√

2){|2〉〈2| + |2〉〈3| + |3〉〈2| − |3〉〈3|}. (90)

Then yet another device W (think of a Stern-Gerlach magnet)
splits the trajectory into one moving upwards if the particle
state is |2〉, or downwards if it is |3〉; these terminate in detectors
D2 and D3.

A particle initially in the eigenstate |1〉 of A with eigenvalue
+1 will be detected by D1, whereas any eigenstate of A with
eigenvalue −1, i.e., any linear combination of |2〉 and |3〉, will
be detected by D4 and then travel on. Thus a measurement
of A precedes the particle’s passing through the box U , and
the outcome will not be affected by whether the unitary is
Uβ or Uγ . The switch setting could, in principle, be decided
at the very last moment, after the particle (if on this path)
has passed through D4. A measurement of B is carried out
by setting U = I , so that initial eigenstates with eigenvalues
of 1/2, 1, and −1 will be detected by detectors 1, 2, and
3, respectively. Alternatively, C can be measured by setting
U = Uγ , (90), and its eigenvalues of 2, 1, and −1 correspond
to detection by detectors 1, 2, and 3, respectively. It should be
clear from the construction shown in Fig. 5 that if the change
from an A-plus-B apparatus to an A-plus-C apparatus, by
moving the switch from β to γ , is made after the particle has
passed the position of detectors D1 and D4, this cannot affect
the A measurement outcome, assuming the future does not
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influence the past. Thus in this case it seems evident that the
measurement is (Bell) noncontextual.

The preceding discussion for a particle with three states is
easily generalized to the case of an arbitrary (finite) number of
states. To see this, let {P j } be the PDI that diagonalizes A with
different projectors associated with different eigenvalues; i.e.,

A =
∑

α

ajP
j , (91)

and aj �= aj ′ when j �= j ′. Then it is straightforward to show
that if A commutes with B, every P j in Eq. (91) also commutes
with B. So if a basis is chosen such that the matrix of A

is diagonal with separate blocks for each eigenvalue, the
matrix of B will be block diagonal, and each of its blocks
can be separately diagonalized by a change of basis that
leaves the A matrix unchanged. The same comment applies
to any other observable C that commutes with A, whether
or not it commutes with B, though of course the bases used
to diagonalize B and to diagonalize C must be different if
[B,C] �= 0. The V box in Fig. 5 separates incoming particles
into separate beams corresponding to the different eigenvalues
of A, and in each beam there is a nondestructive detector that
plays the role of D4 in Fig. 5. These measurements determine
the value of A. Next in each beam there is a unitary that
depends on the choice of β or γ , followed by a final set of
detectors from which the eigenvalues of B or C, as the case
may be, can be inferred.

This example leaves open the possibility that if the time
ordering were different, B or C, as the case might be,
measured before A, this might have an effect on the value
of A. Also we have been assuming that the particle enters
the apparatus in an eigenstate of A; what if it is in some
arbitrary superposition state |ψ0〉? Both concerns are easily
handled using the measurement model introduced in Sec. IV.
In particular, (35) takes the form

P k = J †MkJ, (92)

for a projective measurement associated with the PDI {P k}, the
obvious generalization of (24). Thus one can be certain that
the particle possessed the property P k corresponding to the
eigenvalue ak of A at the time t1 before the measurement took
place, given the later measurement outcome (pointer position)
k that corresponds to Mk . What went on at an intermediate
time cannot alter this, always assuming the apparatus has
been properly calibrated, so that (92) holds. Hence quantum
measurements carried out with a properly designed and tested
apparatus are noncontextual, and in this sense quantum theory
is (Bell) noncontextual.

So why is it that one is sometimes told, often with great
confidence, that quantum theory is contextual? Various reasons
suggest themselves. The first is that measurements are not
properly treated in textbooks. One admires textbook authors
(e.g., [7,32,33]) who are brave enough to agree publicly with
Bell [34]: they have not been able to solve the measurement
problem. And without some, at least implicit, theory of
quantum measurements one cannot even begin to discuss
contextuality in Bell’s sense of the word. Another reason is
that in attempting to fill this serious gap in the textbooks, John
Bell and others have proposed that microscopic properties
rather than being represented by Hilbert subspaces might

correspond to hidden variables which in certain crucial
respects are classical. This is obvious in the best-known hidden
variables approach, the de Broglie–Bohm pilot wave [11,35],
where a quantum particle is assumed to have a well-defined
classical position at all times. But it is also true of the
mysterious quantity λ that appears in many discussions of
Bell inequalities. There is always an assumption of classical
behavior on the part of this mythical object, as has been pointed
out repeatedly by Fine, e.g., Sec. 3 of [36], and clearly comes to
light in a proper quantum mechanical analysis of the situation
[37]. Even when authors declare that λ is or could be the
“quantum state,” they are not referring to the noncommuting
projectors representing quantum properties in von Neumann’s
sense. Decades of research on hidden variables theories have
not come close to solving the second measurement problem
[38–40].

Sometimes the paradoxes and associated inequalities of
Kochen and Specker [41], the Mermin square (Sec. V of [29]),
and the like are invoked as grounds for believing that quantum
mechanics is contextual, so it is worth pointing out where
such claims go astray, at least in the case of what we are
calling Bell contextuality. (For a more detailed discussion,
see Chap. 22 of [8].) Suppose A commutes with B. Then,
see the discussion following (91), it is possible to write
down a collection of pairs of eigenvalues (aj ,bk), each pair
corresponding to some well-defined and nontrivial (i.e., not
just the zero vector) Hilbert subspace where A takes the value
aj and B the value bk . Similarly, if A commutes with C one
can construct a similar list (aj ,cl) of possible joint values.
One might suppose that by comparing these two lists one
could find pairs (bk,cl) of possible joint values of B and
C. In particular, suppose that (a2,b2) is a member of the
first list. Then there would surely be at least one pair in the
second list, say (a2,c3), such that (b2,c3) is a pair of possible
simultaneous values for B and C. Perfectly good classical
reasoning, but it can fail in the quantum case if B and C do not
commute; the reader can construct an example using (89). By
applying this reasoning, which violates the single-framework
rule, a sufficient number of times using a sufficient number of
observables one can arrive at a contradiction, and this, so it
is claimed, implies that quantum mechanics is contextual. But
this is not a demonstration of the Bell contextuality of quantum
mechanics; instead it shows that the single-framework rule
must be taken seriously if one wishes to reason in a consistent
way about microscopic quantum systems.

It is worth remarking that if Bell contextuality were
true this would seriously undermine quantum physics as
an experimental science, since experimenters often interpret
their data in terms of prior microscopic properties once the
apparatus has been calibrated. And calibration refers to the
quantity of interest, A in the above discussion, not to other
observables which the apparatus might quite incidentally be
measuring at the same time. It would be an insuperable task to
take all of these other possibilities into account when designing
or calibrating equipment. Thus experimental physics relies on
the fact that quantum mechanics is Bell noncontextual.

Finally, there is an alternative definition of “contextual”
that appears to underlie many of the more recent discussions
in the literature, and receives a precise definition in Ref. [42]. A
context is defined to be a collection of commuting observables

032110-16



WHAT QUANTUM MEASUREMENTS MEASURE PHYSICAL REVIEW A 96, 032110 (2017)

which can be measured simultaneously, thus associated with a
single PDI, or in consistent histories terminology a framework.
In the example in Eq. (89), A and B belong to one context,
and A and C to another, but there is no context (framework)
which contains all three. Given some collection of contexts
and a single initial quantum state, one can use the Born
rule to compute the probabilities of measurement outcomes
for operators in each context. The probability assigned to a
particular operator A that belongs to several different contexts
is independent of the context (as expected, since quantum
theory is Bell noncontextual). However there may not exist
a joint probability distribution for the entire collection of
observables if not all of them commute, and hence there
is no single context that contains them all. The absence of
such a joint distribution is taken to indicate that quantum
mechanics (or whatever theory is under consideration) is
contextual. Perhaps “multicontextual” would be a better
term.

F. Einstein-Podolsky-Rosen-Bohm

The Einstein-Podolsky-Rosen (EPR) paradox [43] is well
known and has given rise to an enormous number of publica-
tions. The purpose of the following remarks is to relate it to the
second measurement problem, using Bohm’s simple version
of EPR in Ref. [44]. It makes use of the singlet spin state

√
2 |ψ0〉 = |z+〉a ⊗ |z−〉b − |z−〉a ⊗ |z+〉b

= |x+〉a ⊗ |x−〉b − |x−〉a ⊗ |x+〉b (93)

in the Hilbert space Ha ⊗ Hb of two spin-half particles a and
b, thought of as quite far apart so they do not interact with
each other, and particle b will not interact with an apparatus
carrying out a measurement on particle a.

The essence of the original EPR argument expressed using
Bohm’s model is as follows. A measurement of Sz for particle
a can be used to infer the value of Sz for b, and since particle
a and the apparatus are not interacting with b, that particle
must have had that value of Sz before the measurement of a

took place. The property of particle b was, so to speak, “really
there,” a part of physical reality. But one could just as well
measure Sx for particle a, and via the same sort of argument
assign a value to Sx for particle b, which again would be
“really there.” But in the two-dimensional Hilbert space of
a spin-half particle there is nothing to represent a situation
in which both Sx and Sz simultaneously take on particular
values. Thus the Hilbert space approach does not provide
a complete description of physical reality; something is
missing.

We shall assume that only particle a is measured, and
that since neither it nor the measurement apparatus can
interact with particle b, the corresponding isometry J , see
Sec. IV A, that relates the spin states of both particles, Hs =
Ha ⊗ Hb, to the measurement outcome can be written in the
form

J (|ψ〉a ⊗ |χ〉b) = (Ja|ψ〉a) ⊗ |χ〉b, (94)

where |ψ〉 and |χ〉 are any two elements of Ha and Hb, and
Ja : Ha → HM is the isometry for a measurement of particle

a alone. For an Sz measurement, Ja tales the form

Ja|z+〉a = |A+〉, Ja|z−〉a = |A−〉,
M+|A+〉 = |A+〉, M−|A−〉 = |A−〉, (95)

where, as in Sec. IV A, M+ and M− are projectors on
the macroscopic pointer position subspaces representing the
possible outcomes of the measurement. The counterpart of
(24) is

[zk]a ⊗ Ib = J †(Mk ⊗ Ib)J, k = + or−, (96)

where Ib is the identity for particle b.
Consider a family of histories at times t0 < t1 < t2:

[ψ0] ⊗ [�0] � { [z+]a ,[z−]a} ⊗ { [z+]b ,[z−]b} � {M+,M−},
(97)

where the four projectors [z+]a ⊗ [z+]b, etc., at the interme-
diate time sum to the identity on Ha ⊗ Hb. There are eight
histories in this family, but we only need to pay attention to
those in which [z+]a at time t1 is followed by M+ at t2, or [z−]a
by M−, since the other chain kets vanish. But in addition, for
|ψ0〉 as defined in Eq. (93),

([z+]a ⊗ [z+]b)|ψ0〉 = ([z−]a ⊗ [z−]b)|ψ0〉 = 0. (98)

This means that only two histories have positive probabilities:
[z+]a ⊗ [z−]b followed by M+ or [z−]a ⊗ [z+]b followed by
M−. The chain kets are obviously orthogonal, so the family is
consistent, and each of these histories is assigned a probability
of 1/2, leading to the conditional probabilities:

Pr(z+
a1|M+

2 ) = Pr(z−
b1|M+

2 ) = 1,

Pr(z−
a1|M−

2 ) = Pr(z+
b1|M−

2 ) = 1. (99)

In words, the outcome M+ of the measurement of Sz for
particle a indicates that at the earlier time Sz was +1/2 for
particle a and −1/2 for particle b, while M− means Sz was
−1/2 for a and +1/2 for b.

A second consistent family, using the same isometry (95)
appropriate for measuring Sz, employs eigenstates of Sx rather
than Sz at t1:

[ψ0] ⊗ [�0] � {[x+]a,[x
−]a}

⊗{[x+]b,[x
−]b} � {M+,M−}. (100)

In this case the chain kets in which [x+]a and [x−]a are
followed by M+ or M− do not have to vanish. However, the
initial [ψ0] eliminates histories that contain [x+]a ⊗ [x+]b or
[x−]a ⊗ [x−]b at t1, leaving only four nonzero chain kets,
which are orthogonal (something the reader may wish to
check). The resulting probabilities then lead to

Pr(x+
a1 ⊗ x−

b1|M+
2 ) = Pr(x+

a1 ⊗ x−
b1|M−

2 ) = 1/2,

Pr(x−
a1 ⊗ x+

b1|M+
2 ) = Pr(x−

a1 ⊗ x+
b1|M−

2 ) = 1/2. (101)

Since these conditional probabilities are the same for the two
measurement outcomes M+ and M−, the later measurement
provides no additional information; that Sx has opposite
values for particles a and b is a consequence of the initial
state (93).

We are now in a position to discuss the Bohm version of
EPR using a consistent theory of quantum measurements. The
analysis based on the history family (97) indicates that one can,
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indeed, infer from a measurement of Sz on particle a the value
of Sz for particle b. However, see (101), the Sz measurement
of particle a tells one nothing about Sx for either particle a

or particle b. To which the response might be, Make an Sx

measurement on particle a, and the outcome will then tell
one Sx for particle b. This is entirely correct, but of course
one cannot measure both Sx and Sz for particle a, because
there is nothing there to be measured, at least if one is using
Hilbert space quantum mechanics. As for the counterfactual,
“Sz was measured for particle a and the value was +1/2, but
if instead Sx had been measured its value would have been
either +1/2 or −1/2,” this is blocked by the single-framework
rule applied to quantum counterfactuals (Chap. 19 of [8]).
Thus the entire EPR “paradox” when analyzed from this
point of view is nothing more than a particular application
of the “paradox” that in Hilbert space quantum mechanics
one cannot simultaneously assign values to Sz and Sx for a
spin-half particle. The issue is entirely a matter of what one can
say about the measurement of particle a. Particle b, together
with entanglement, Bell inequalities, possible nonlocality,
etc., are from this perspective entirely irrelevant. To be sure,
entanglement, locality, and the like are in and of themselves
interesting topics; for a detailed discussion from the consistent
histories point of view, see [37,45] and Chaps. 23 and
24 of [8].

VI. CONCLUSION

We have shown that a satisfactory solution to the second
measurement problem—inferring a prior microscopic state
of affairs from the macroscopic outcome (pointer position)
of a measurement described using quantum principles—
exists for a significant class of projective and generalized
(POVM) measurements. The approach using consistent his-
tories is mathematically sound, gives reasonable physical
results, and does not lead to paradoxes. Unlike current
textbook treatments of measurements it makes no use of
ad hoc principles and special rules that apply only when
measurements are being made; instead the entire measurement
process is analyzed using basic quantum principles that
apply to all physical processes, whether microscopic or
macroscopic.

A useful feature of the approach used here is the backwards
map Qk = J †MkJ , (35), relating a POVM element Qk to
the projector Mk on a subspace that corresponds to outcome
(“pointer position”) k. It is helpful for identifying an earlier
microscopic property or properties that resulted in outcome
k, even though it does not always give a precise answer. It is
a significant addition to, while at the same time completely
consistent with, the discussion of measurements in Chaps. 27
and 28 of [8]. And it would seem to be particularly useful for
analyzing weak measurements in terms of physical properties
rather than weak values, as illustrated by the simple example
in Sec. V D.

The applications in Secs. V A to V D are relatively simple
illustrations of the measurement formalism in Sec. IV, but
the last two applications, Secs. V E and V F, address issues
about which there is quite a bit of confusion in the published
literature. Claims that quantum mechanics is “contextual” are
incorrect if that term is interpreted in the sense introduced

by Bell and used by Mermin. This has been pointed out
previously [9], but one may hope that the quite specific
example worked out in Sec. V E will result in a more
precise definition of the term “contextual” on the part those
who claim that quantum mechanics is contextual, or perhaps
the withdrawal or modification of these claims. While the
nonexistence of nonlocal influences in Bohm’s version of
the Einstein-Podolsky-Rosen paradox has been pointed out
previously (see [37] and the references given there), the
analysis in Sec. V F should help to further pin down the source
of Bell’s mistake: he did not have a solution to the second
measurement problem (or, for that matter, the first; see [34]).

It is worth listing the fundamental quantum principles
which make the consistent histories analysis possible. First,
as we learned from von Neumann (Sec. II.5 of [16]), quantum
properties (attributes of a physical system that can be true or
false) correspond to subspaces of the quantum Hilbert space:
no need for additional “hidden variables.” Next, following
a proposal by Born [46], quantum time dependence is
inherently stochastic: Schrödinger’s unitary time evolution
should be used for calculating probabilities of events rather
than determining them. Stochastic quantum time development
can be described using histories represented by tensor products
on a history Hilbert space, as first pointed out by Isham
[47]. Assigning probabilities to quantum histories of a closed
system using the extended Born rule requires the use of
sample spaces satisfying consistency conditions; those used
here are the medium decoherence conditions of Gell-Mann and
Hartle [48].

Finally, a key principle that makes a clean break with
classical thinking, and hence is often misunderstood by critics
of consistent histories, is the abandonment of what elsewhere
(Sec. 27.3 of [8]) has been called the principle of unicity:
the idea that the universe, or at least that part of it which
forms a closed physical system, must at any given time be in a
single, well-defined physical state, a single point in a classical
phase space. By contrast, the consistent histories approach
gives the physicist liberty to construct alternative quantum
descriptions—frameworks—which are incompatible with one
another (and thus cannot be combined; the single-framework
rule), each of which can make an equal claim to describing
some aspect of physical reality. That freedom, discussed in
greater detail in Ref. [15], is important for resolving both the
first and the second measurement problem. As for the first
problem, there is nothing fundamentally wrong with using
unitary time evolution leading to a superposition state of
different pointer positions, but this is of no use for discussing
the measurement as having specific outcomes. Once unicity
has been abandoned there is a perfectly good framework in
which the pointer takes well-defined positions, each with some
probability. As for the second problem, the textbook procedure
that employs unitary evolution up to the time when the particle
begins to interact with the apparatus is perfectly good quantum
mechanics, but claiming that this is the only valid quantum
description stands in the way of reaching the conclusion, using
an appropriate framework, that the apparatus constructed by
a competent experimenter actually did measure what it was
designed to measure.

A proper understanding of what it is that quantum measure-
ments measure should lead to a better physical understanding
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of the quantum world, and will, one hopes, someday replace
the unsatisfactory discussion of quantum principles found in
current textbooks. Students find introductory quantum theory
hard to understand both because the mathematics is unfamiliar
and because its connection with physical concepts seems
obscure. They are not helped by the way “measurement”
suddenly shows up in an almost magical way in textbook

quantum mechanics. Somehow it doesn’t look like good
physics. And it isn’t. Students deserve something better.
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