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Both conservation laws and practical restrictions impose symmetry constraints on the dynamics of open
quantum systems. In the case of time-translation symmetry, which arises naturally in many physically relevant
scenarios, the quantum coherence between energy eigenstates becomes a valuable resource for quantum
information processing. In this work, we identify the minimum amount of decoherence compatible with this
symmetry for a given population dynamics. This yields a generalization to higher-dimensional systems of the
relation T2 � 2T1 for qubit decoherence and relaxation times. It also enables us to witness and assess the role of
non-Markovianity as a resource for coherence preservation and transfer. Moreover, we discuss the relationship
between ergodicity and the ability of Markovian dynamics to indefinitely sustain a superposition of different
energy states. Finally, we establish a formal connection between the resource-theoretic and the master equation
approaches to thermodynamics, with the former being a non-Markovian generalization of the latter. Our work thus
brings the abstract study of quantum coherence as a resource towards the realm of actual physical applications.

DOI: 10.1103/PhysRevA.96.032109

I. INTRODUCTION

The consequences of symmetry in physics are of the
utmost importance. Considerable insight into the evolution of a
complex system can often be gained through an understanding
of the underlying symmetries, even when the precise dynamics
are not fully known or are too complicated to be solved exactly.
One fundamental class of dynamics consists of those that are
symmetric under time translations. This restriction originates
from a conservation law for energy [1,2], the lack of a shared
reference frame for time [3], or a superselection rule [4].
Moreover, we will see that common assumptions made in
the study of open quantum systems, such as the secular ap-
proximation [5], can be rephrased as symmetry constraints on
the system dynamics. Such dynamics arise naturally in many
areas of quantum physics, including the resource-theoretic
formulation of thermodynamics [6–8], quantum metrology
[3,9,10], quantum noise of amplifiers [11], cloning [12,13],
nonlocality [14], cryptography [3,14], and quantum speed
limits [15].

It is understood that symmetries of a system interacting
with an environment can be studied within a framework that
generalizes Noether’s theorem [2]. However, what are the
general consequences of symmetries for open dynamics that
are Markovian? The importance of this question is twofold.
First, from a fundamental perspective, we wish to understand
the interplay between memory effects and symmetries of the
dynamics. Second, from the point of view of applications,
it is crucial to unify the recent resource-theoretic approach
[2,16] with the master equation formalism. This unification is
particularly important for furthering research in fields such as
quantum thermodynamics, in which the two approaches are
currently very much distinct and rather disconnected.

In this work, we focus on symmetry under time translations,
a property characterizing dynamical evolutions whose action is
insensitive to their particular timing. Such dynamics constrain
possible transformations of coherence, which then becomes

an essential resource in quantum information processing
[4,10]. A central question is therefore as follows: What is
the minimal amount of decoherence compatible with a given
population dynamics (e.g., relaxation process)? The main
technical contribution of this paper is Theorem 1, which
gives the optimal coherence evolution consistent with a given
population dynamics among all time-translation symmetric
and Markovian processes. We also present several applications
to illustrate the utility of our result.

Our study relies on a seminal work of Holevo [17] that
investigated the structure of covariant dynamical semigroups.
In contrast to much of the literature that followed [18–22],
here we focus on finite-dimensional systems and our results
on decoherence emerge directly from the underlying symmetry
of the dynamics rather than the behavior of a particular model.
Moreover, our perspective on the problem is based on a
resource-theoretic treatment of coherence, and thus we study
the optimal limits of coherence processing.

We begin in Secs. II and III by introducing more pre-
cisely the dynamics we will investigate and the underlying
assumptions of Markovianity and time-translation symmetry.
Section IV presents our main result, the minimal decoherence
theorem, which forms the basis for the remainder of the
paper. In Sec. V we demonstrate the power of our result by
applying it to several different scenarios. We first recover
the famous relation T2 � 2T1 for a qubit, and provide a
generalization of this inequality to d-dimensional systems.
We then prove a relationship linking the complete loss of
coherence to the existence of a unique stationary population,
demonstrating that when the population does not relax to
a unique fixed point, there exist processes that indefinitely
support coherence, despite nontrivial interaction with the
environment and the absence of memory effects. This is
followed by an investigation of non-Markovianity as a resource
for coherence manipulation and an analysis of the role of
non-Markovianity in the resource theory of thermal operations.
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We then show how observed coherences and populations can
be used to witness non-Markovian behavior in the evolution
of a quantum system. Finally, we apply our result to relate the
resource-theoretic formulation of quantum thermodynamics to
the standard approach of open system dynamics, and to obtain
tighter and physically more relevant bounds on the possible
transformations under thermal operations. Overall conclusions
are then given in Sec. VI.

II. ELEMENTARY EXAMPLE

Before we give a formal statement of the systems studied
in this paper, let us present an elementary example to give a
flavor of our investigation. Consider a qubit system initially
described by the density operator

ρ(0) =
[
p(0) c(0)
c∗(0) 1 − p(0)

]
, (1)

where p(0) is the initial population of the ground state |0〉, and
c(0) is the initial quantum coherence between states |0〉 and |1〉.
Now, assume that the system is in contact with an environment
at thermal equilibrium. Under typical assumptions concerning
the strength of interaction and environmental relaxation times
(which will be discussed in more detail in Sec. III B), the
system evolves according to the Bloch equations [5]

dp

dt
= L0|0p(t) + L0|1[1 − p(t)],

(2)
d|c|
dt

= −γ |c(t)|.

The populations transition rates satisfy
∑

x ′ Lx ′ |x = 0 and
Lx ′|x � 0 for x ′ �= x, while γ � 0 represents the decoherence
rate.1

Solving Eq. (2), one finds

p(t) = π + [p(0) − π ]e−t/T1 ,
(3)

|c(t)| = e−t/T2 |c(0)|,
where T1 = 1/(|L0|0| + L0|1) is the relaxation time, T2 = 1/γ

is the decoherence time, and

π = lim
t→∞ p(t) = L0|1T1

is the stationary ground-state population.
Crucially, the population relaxation process (described by

T1) and the decoherence process (described by T2) are not
independent. Loosely speaking, the reason for this is that every
initial state must be mapped to a valid density matrix at all
times, i.e., to a unit trace, positive-semidefinite operator. More
formally, one requires complete positivity of the map E that
describes the evolution given in Eq. (2), which in turn sets
a general constraint linking the relaxation and decoherence
times. In order to see this, note that complete positivity of E

1Note that we have ignored the evolution of the phase of the off-
diagonal term arg c(t) since for the sake of our discussion we need
only focus on the absolute value of the coherence term |c(t)|.

FIG. 1. Elementary example. The evolution of the initial qubit
state ρ(0) towards the stationary state ρ(∞) presented on the Bloch
sphere. During the evolution the difference between the current
population and the stationary population, �p(t) = |p(t) − π |, must
decrease. Due to a constraint linking relaxation and decoherence
processes, at any time the ratio between the current and initial
coherence |c(t)|/|c(0)| is bounded by

√
�p(t)/�p(0).

is equivalent to positivity of the Choi operator J [E] [23,24]
(refer to Appendix A for details):

J [E] = 1

2

⎡⎢⎢⎢⎣
P0|0(t) e−t/T2 0 0

e−t/T2 P1|1(t) 0 0

0 0 1 − P0|0(t) 0

0 0 0 1 − P1|1(t)

⎤⎥⎥⎥⎦,

where Px ′ |x(t) are the elements of population transition matrix
P (t) = eLt . Positivity of the Choi operator, J [E] � 0, is thus
equivalent to

e−2t/T2 � P0|0(t)P1|1(t) (4)

at all times. A necessary condition for this is that the above
inequality holds as t → 0, which results in T2 � 2T1. That
this constraint is sufficient can be verified by substituting T2 =
2T1 into Eq. (4) and checking directly that the inequality is
satisfied at all times. This constraint, together with Eq. (3),
links possible evolution of coherence with the evolution of
population (see Fig. 1).

In this elementary example it was possible to derive
the relation between T1 and T2 by completely solving the
dynamics. Of course, it becomes much harder to approach
such a problem analytically beyond this simplest case of a
qubit system. Moreover, T1 and T2 times are only properly
defined when we deal with just two degrees of freedom.
The aim of this work is to introduce a suitable theory that
overcomes these limitations and allows us to study the links
between population relaxation and decoherence processes
for any finite-dimensional system. In so doing, we will see
that the relation T2 � 2T1 is in fact a consequence of the
time-translation symmetry of the dynamics.
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III. SETTING THE SCENE

A. Assumptions and the resulting structure

Given a closed system described by a density operator ρ,
its most general evolution is described by a unitary generated
by some Hamiltonian H :

dρ

dt
= −iH(ρ), (5)

where H(ρ) := [H,ρ]. In many circumstances, however, the
system is open, i.e., it interacts with a generally large
environment whose full quantum description is unmanageable.
In this case, one can still hope to describe the evolution of
the system alone by means of a generalization of Eq. (5). A
standard way to do so is through the formalism of master
equations [5]. Within this work, we assume that the evolution
of quantum systems satisfies the following assumption:

(I) Markovianity. The time evolution of the density operator
ρ is described by

dρ

dt
= −iH(ρ) + L(ρ), (6)

where, in addition to unitary evolution according to the
Hamiltonian, we also have dissipative evolution governed
by the Lindbladian L, whose general form was given in
Refs. [25,26],2

L(·) = A(·) − 1
2 {A†(1),·}. (7)

Here, A is a completely positive (CP) map, A† denotes
the adjoint of A with respect to the Hilbert-Schmidt inner
product, Tr[ρA(σ )] = Tr[A†(ρ)σ ], and {·,·} stands for the
anticommutator. We denote the formal solution of Eq. (6) by

Et (ρ) := e(−iH+L)t (ρ), (8)

with e−iHt (ρ) = e−iH tρeiHt .
More technically, Eqs. (6) and (7) describe the general evo-

lution satisfying a semigroup property, which means that for
any times t1 and t2 we have Et1 (Et2 (·)) = Et1+t2 (·). Equivalently,
the master equation has fixed and positive rates. There exist a
wide range of axiomatic as well as microscopic derivations
of this equation (see Ref. [5]). Here, we only remind the
reader that (I) is linked to the fact that the environment is
memoryless at the relevant time scales, which microscopically
can be derived by assuming weak coupling, sufficiently fast
decay of environmental correlation functions, and coarse
graining of time [5]. Let us also note that evolutions satisfying
assumption (I) are sometimes referred to as time-independent
or time-homogeneous Markovian dynamics [27].

The only other assumption that will be made in this work
is that the dynamics is symmetric under time translations:

(II) Time-translation symmetry. Each channel Et is symmet-
ric under time translations, which means that for every s ∈ R
and ρ we have

Et (e−iHs(ρ)) = e−iHs(Et (ρ)). (9)

2Often in the literature L is called the dissipator [5], and −iH + L
is called the Lindbladian.

Since such channels are often called time-translation
covariant, for the sake of brevity we will sometimes simply
refer to them as covariant channels. Another convention used
in the literature is to call them phase insensitive [11], as
eiHsEt e

−iHs = Et .
Note that, given assumption (I), the assumption of time-

translation symmetry (II) can be conveniently rewritten as a
condition involving only the Lindbladian. Namely, for every
ρ we have

L(H(ρ)) = H(L(ρ)). (10)

Equation (10) lies at the core of how the symmetry properties of
the dynamics translate into the symmetry of the corresponding
generator L. Let us make this more explicit. We identify the
Hermitian operator H as the Hamiltonian of a d-dimensional
system (note that formally H is the system Hamiltonian
renormalized by the system-reservoir coupling [5]). We further
assume that H is nondegenerate,

H =
d−1∑
x=0

h̄ωx |x〉〈x|, (11)

and define the Bohr spectrum of H as the set of all transition
frequencies defined by the energy eigenvalues of H . In other
words, it is the set {ω} such that there exist ωx and ωy in
the spectrum of H with ωxy := ωx − ωy = ω. Each ω denotes
a particular mode, consisting of matrix elements |x〉〈y| for
which ωxy = ω [11]. Now, the symmetry condition of Eq. (10)
enforces the Lindbladian to have a particular mode structure
dependent on {ω}. As we explain in detail in Appendix B
(using tools introduced in Appendix A), the matrix elements
of a superoperator L vanish,

〈x ′|L(|x〉〈y|)|y ′〉 = 0, (12)

unless ωxy = ωx ′y ′ .
As a result, the evolution of populations (diagonal terms

|x〉〈x| of a density matrix ρ) decouples from the evolution of
coherences (off-diagonal terms |x〉〈y| of ρ), and the latter one
can also be divided into independently evolving modes. To be
more precise, let us first introduce the vector of populations p
with components defined by px := ρxx . Now, the evolution
of p(t) is fully described by the population transfer rate
matrix L,

d p
dt

= L p, (13)

where the matrix elements of L are given by

Lx ′|x = 〈x ′|L(|x〉〈x|)|x ′〉. (14)

Note that since p(t) = eLt p(0), the matrix L is a generator of
a stochastic matrix satisfying Lx|x � 0 and

∑
x ′ Lx ′|x = 0 for

all x [28].

B. Physical significance of the symmetry condition

The significance of the symmetry assumption (II) may
initially seem unclear since, despite its broad applicability,
it is often referred to differently in different fields, and it
is sometimes hidden within various physical approximations.
Therefore, we will now briefly analyze the motivation behind
it (see also Ref. [3] and Sec. III B of Ref. [10]):
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(1) Within quantum optics, time-translation symmetry is
a consequence of the rotating-wave approximation (RWA).
This corresponds to manipulating the interaction Hamil-
tonian by discarding the so-called counter-rotating terms,
which are those which rotate with higher frequency in
the interaction picture. A typical example is the Jaynes-
Cummings Hamiltonian, which in the simplest case reads as
HJC ∝ (σ+ + σ−) ⊗ (a + a†), with σ± denoting qubit raising
and lowering operators and a,a† being bosonic annihilation
and creation operators. In this case, the approximation discards
the terms σ− ⊗ a and σ+ ⊗ a†, which leads to a master
equation satisfying assumption (II).

(2) Within the general theory of open quantum systems,
assumption (II) is called the secular approximation. The
secular approximation coincides with discarding terms in
the Lindbladian that would prevent the commutation relation
specified by Eq. (10) from being satisfied. It is in fact a “safer”
way of implementing the RWA [29] and is broadly used in
applications [5].

(3) In quantum metrology, consider the task of estimating
the phase φ of a unitary generated by the Hamiltonian
H,Uφ = e−iHφ . Then, assumption (II) identifies the set of
quantum channels {E} that degrade any metrological resource
ρ, i.e., for every ρ, optimal phase estimation using E(ρ)
performs worse than optimal phase estimation using ρ [10].

(4) In quantum information, Eq. (9) coincides with the set
of channels that can be performed in the absence of a reference
frame for time [3], or in the presence of a superselection
rule for particle number. A dual perspective comes from the
theory of U(1) asymmetry, which is a resource theory where
Eq. (9) defines the set of free operations [30]. This is in fact
a resource theory of quantum coherence in the basis defined
by H [10]. Time-translation covariance can also be linked to
a global conservation law on energy [31] (see Theorem 25 of
Ref. [30]) and it is one of the defining properties of thermal
operations [8].

(5) In the study of quantum speed limits, the set of
channels {E} covariant with respect to H cannot increase the
speed of evolution of any state under H . More precisely,
the distinguishability between any state ρ and its evolved
version, e−iHt (ρ), is lower bounded by that between E(ρ) and
e−iHt (E(ρ)) [15].

IV. MINIMAL DECOHERENCE THEOREM

The main result of this paper is to identify the optimal
coherence preservation compatible with a given evolution of
populations p(t). The result is a sole consequence of the
time-translation symmetry of the Lindbladian, as described
by Eq. (10). More precisely, for a given population transfer
rate matrix L we provide a bound that tells us what is
the optimal amount of coherence that can be preserved
in a state at time t . For notational convenience, let us
parametrize the matrix elements of a density matrix ρ in the
energy eigenbasis in the following way: ρxy = |ρxy |ϑxy , where
ϑxy is a phase factor, |ϑxy | = 1. We also define
damping rates γx ′y ′ := (|Lx ′|x ′ | + |Ly ′|y ′ |)/2, transport rates

t
x ′|x
y ′|y := √Lx ′ |xLy ′|y , and introduce the symbol

∑(ω)
x,y to indicate

the sum over indices of a mode ω, i.e., x,y such that ωxy = ω.
Then, we have the following:

Theorem 1. Let ρ̃x ′y ′ (t) be the solution of

dρ̃x ′y ′

dt
= −γx ′y ′ ρ̃x ′y ′ +

(ωx′y′ )∑
x �= x ′
y �= y ′

t
x ′ |x
y ′ |y ρ̃xy, (15)

with ρ̃x ′y ′ (0) = |ρx ′y ′ (0)|. Then, if the time evolution of ρ

satisfies assumptions (I) and (II) with population transfer rate
matrix L, we have

|ρx ′y ′ (t)| � ρ̃x ′y ′ (t), (16)

for all t � 0. Moreover, the bound can be saturated for all
elements of a mode ω if for every x ′,y ′,x,y with ωx ′y ′=ωxy=ω

one has

ϑx ′y ′ (0)ϑ∗
xy(0) = ϑx ′x(0)ϑ∗

y ′y(0). (17)

Equation (17) will be referred to as the Markovian phase-
matching condition for the initial state. We point out that
pure states, and also mixed states for which amplitudes
share a common phase (i.e., ϑxy = ϑ for all x and y),
satisfy this condition for all modes. Moreover, the Markovian
phase-matching condition is also satisfied independently of the
initial state for modes consisting of a single element or two
overlapping elements, i.e., ρxy and ρx ′y ′ with x = y ′ (see also
Sec. V B for more details on overlapping elements). Finally, it
is crucial to note that the evolution of |ρxy | only depends on
elements |ρx ′y ′ | with ωx ′y ′ = ωxy (recall that ωxy = ωx − ωy),
which reflects the mode structure of the time-translation
symmetric Lindbladian.

Physically, Theorem 1 demonstrates a combination of decay
and transport phenomena, corresponding to each of the two
terms in Eq. (15) that contribute to the evolution of ρx ′y ′ .
The first is a decay term, proportional to the amount of
coherence ρx ′y ′ itself. If only this term were present, then we
would obtain a familiar exponential damping of coherence
(with rate γx ′y ′ ), due to the presence of the dissipative
environment. The extra contributions to the evolution of
ρx ′y ′ are transport terms. Only coherence elements ρxy that
rotate with the same frequency as ρx ′y ′ (i.e., belong to the
same mode of coherence) can contribute, as indicated by
the restricted summation. This “selection rule” is imposed
by the underlying time-translation symmetry. The transport
terms themselves have a suggestive physical interpretation.
Namely, Lx ′ |x is the transfer rate of the classical process that
maps the energy state x into x ′, so Lx ′ |xpx(t)dt gives the
population flow from x to x ′ between times t and t + dt . The
transfer of coherence from ρxy to ρx ′y ′ involves a superposition
of two classical processes: the mapping of x into x ′ and of y

into y ′. The optimal transport of coherence from ρxy to ρx ′y ′ is
characterized by the geometric mean of the transition rates of
these two classical processes, i.e.,

√
Lx ′ |xLy ′|yρxy(t)dt .

The proof of Theorem 1 can be found in Appendix C
(however, refer also to Appendix A, where a step-by-step
analysis of the structure of covariant maps can be found).
In the next section, we will proceed to present consequences
and applications of the above theorem. However, let us
first compare the bound on coherence processing under
covariant Markovian dynamics, as specified by Theorem 1,
with the bound on general covariant dynamics, valid even
when the Markovianity assumption is dropped. Similarly to
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the Markovian case, the evolution of populations under a
general covariant map E is independent from the evolution of
coherences. It may be described using the population transfer
matrix P according to

p(t) = P p(0), (18)

where the matrix elements of P are conditional probabilities
given by

Px ′ |x = 〈x ′|E(|x〉〈x|)|x ′〉. (19)

Note that, in the case of a Markovian evolution, P = eLt . The
bound we present below was first given in Ref. [32], however,
in Appendix A we provide a derivation that also sheds light on
the tightness of the bound (see Appendix D for details).

Theorem 2. Let σ = E(ρ), where E is a time-translation
covariant CPTP map with corresponding population transfer
matrix P . Then,

|σx ′y ′ | �
(ωx′y′ )∑
x,y

√
Px ′ |xPy ′ |y |ρxy |. (20)

The following tightness conditions hold:
(1) Equation (20) can be simultaneously saturated for all

x ′,y ′ belonging to a given mode.
(2) Equation (20) can be simultaneously saturated for

all x ′,y ′ if the Bohr spectrum is nondegenerate, or if the
non-Markovian phase-matching condition holds, meaning that
there exists a set of phase factors {φx} such that for all x and
y we have ϑxy = φxφ

∗
y .

We emphasize that the non-Markovian phase-matching
condition is satisfied by all pure states and all mixed states
ρ with ϑxy = ϑ for all x and y.

V. APPLICATIONS

A. A generalization of T1 and T2 times

We begin by studying the evolution of a system with
nondegenerate Bohr spectrum, i.e., described by a Hamiltonian
for which all energy differences between any two levels are
distinct. For such a system, any off-diagonal element |x〉〈y| of
the density matrix is the only element in its mode. Hence, the
evolution ρxy(t) decouples from all other elements as

d|ρxy |
dt

= − Re(αxy)|ρxy |, (21)

where αxy can be found directly from the matrix of elements
A, the map that generates the Lindbladian [see Eq. (7) and
Eq. (C10) in Appendix C]. The decoherence rate Re(αxy)
enables us to define the decoherence time for ρxy as
T

xy

2 := 1/ Re(αxy). The evolution of an off-diagonal element
is thus given by

|ρxy(t)| = |ρxy(0)|e−t/T
xy

2 . (22)

Now, consider the evolution of diagonal elements. In
terms of the population vector, we have p(t) = eLt p(0),
where L is the population transfer rate matrix. Denote by
λx an eigenvalue of L, with corresponding eigenvector vx

(i.e., we have Lvx = λxvx for x = 0, . . . ,d − 1). Then, for
diagonalizable L, the population vector evolves as

p(t) =
d−1∑
x=0

bxe
λx tvx, (23)

where bx are constants determined by the initial conditions.
As L is the generator of a stochastic matrix, it must have a zero
eigenvalue, λ0 = 0. Let us assume that this zero eigenvalue of
L is unique (nondegenerate), with eigenvector π . As we now
show, this means that the population dynamics has a unique
stationary distribution π , a situation sometimes referred to
as ergodic dynamics [33]. For all nonzero eigenvalues, we
must have Re(λx) < 0 (following directly from the Gershgorin
circle theorem [34,35]). Hence,

p(t) = π +
d−1∑
x=1

bxe
−t/T x

1 ei Im(λx )tvx, (24)

where we have defined relaxation times T x
1 := 1/| Re(λx)|.

Clearly, as t → ∞, we have p(t) → π , so that the system
relaxes towards a unique stationary population.3

The following result gives a direct relation between the
decoherence times T

xy

2 and the relaxation times T x
1 .

Corollary 1. Consider any system with nondegenerate
Bohr spectrum evolving towards a unique stationary popu-
lation. Then, under assumptions (I) and (II), we have the tight
bound

〈T2〉h � d

d − 1
〈T1〉h, (25)

where 〈·〉h denotes the harmonic mean over all decoherence
times T

xy

2 and all relaxation times T x
1 .

Proof. Theorem 1 states that the evolution of an off-diagonal
element is bounded as |ρxy(t)| � ρ̃xy(t), where for a nondegen-
erate Bohr spectrum ρ̃xy is the solution to dρ̃xy/dt = −γxyρ̃xy ,
with ρ̃xy(0) = |ρxy(0)|. Hence, ρ̃xy(t) = |ρxy(0)|e−γxy t . Com-
paring with Eq. (22), we see that e−t/T

xy

2 � e−γxy t and so
1/T

xy

2 � γxy . From Theorem 1, these inequalities are tight.
Consider now the trace of the population transfer rate

matrix. We have Tr[L] =∑d−1
x=0 λx . Since L is a real matrix,

its eigenvalues come in complex-conjugate pairs. Hence,
recalling that T x

1 = 1/| Re(λx)| with Re(λx) < 0 and x �= 0,

3In fact, our analysis follows in much the same way for the case that
L is not diagonalizable. In this case, L must have some eigenvalue λx

that is defective, i.e., has multiplicity m > 1 but possesses fewer than
m linearly independent eigenvectors. To form a complete solution
to the differential equation for the evolution of populations, we
must then use generalized eigenvectors wx , and the solution (23)
will have terms of the form q(t)eλx twx where q(t) is a polynomial
function [36]. Any defective eigenvalue λx must be nonzero for
ergodic L, and we also have Re(λx) < 0. Hence, in Eq. (24) as t →
∞, we still obtain relaxation to a fixed population π . Furthermore, we
may still write T x

1 := 1/| Re(λx)| as a relaxation time, and Corollary 1
will still hold precisely as given.
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we obtain

|Tr[L]| =
d−1∑
x=1

1

T x
1

⇒ 〈T1〉h = d − 1

|Tr[L]| . (26)

Notice that we also have |Tr[L]| =∑d−1
x=0 |Lx|x |. Since

γxy = 1
2 (|Lx|x | + |Ly|y |) and γxy � 1/T

xy

2 , we obtain

|Tr[L]| = 2

d − 1

∑
x>y

γxy � 2

d − 1

∑
x>y

1

T
xy

2

= d

〈T2〉h ,

where 〈T2〉h is the harmonic mean of the 1
2d(d − 1) decoher-

ence times. Finally, we substitute this inequality into Eq. (26)
to give the result stated. �

The tightness of Corollary 3 relies on saturating the bounds
of Theorem 1. In fact, in Appendix C we explicitly show
how one can construct A that leads to the longest possible
decoherence time T

xy

2 = 1/γxy for every coherence element;
the resulting evolution achieves 〈T2〉h = d

d−1 〈T1〉h.
When we take the simplest case of a qubit, d = 2, there is

only one relaxation time and one decoherence time. Hence, in
Corollary 3 there is no need to perform an average, and we
obtain the well-known result T2 � 2T1. For a qutrit, d = 3,
we instead obtain 〈T2〉h � 3

2 〈T1〉h. Note that for large d,
Corollary 3 simply bounds the harmonic mean of decoherence
times by the harmonic mean of relaxation times.

As an example application of our bound, we consider
the case of thermalization. When the population dynamics is
ergodic and transfer rates satisfy the detailed balance condition
[Lx ′|x = Lx|x ′e−βh̄ωx′x with β := 1/(kBT ) denoting the inverse
temperature], the populations relax towards a thermal state,
i.e., components of the stationary population are given by
πx ∝ e−βh̄ωx . Since the columns of L sum to zero, we may
sum over all nondiagonal elements to obtain

|Tr[L]| =
∑
x,x ′

x �= x ′

Lx ′|x =
∑
x,x ′

x ′ < x

Lx ′|x(1 + e−βh̄ωxx′ ),

where in the second step we split the summation into
elements with x ′ < x and those with x ′ > x and used the
detailed balance condition. Equation (26) then gives directly
an expression for 〈T1〉h and, hence, according to Corollary 3,
a bound for the harmonic average of decoherence times.

B. Coherence preservation

The results of Ref. [32], strengthened in Theorem 2,
together with the tools developed here, allow us to assess
the role of non-Markovianity in the preservation of coherence
in the presence of a dissipative environment. Intuitively, one
may expect that nontrivial Markovian processing of coherence
necessarily yields deterioration of the quantum resources at
hand, whereas non-Markovianity could provide an advantage.
It is important to note that under assumption (II) alone,
coherence cannot be created in the system. Introducing

Sω(ρ) =
(ω)∑
x,y

|ρxy |, (27)

one can show that for any quantum channel E satisfy-
ing assumption (II), one has Sω(E(ρ)) � Sω(ρ) for every
mode ω [11].

Significantly, in Ref. [32] it was shown that using covariant
operations nontrivial processing of coherence (e.g., coherence
transfer within a mode) can be performed perfectly, so that
Sω(E(ρ)) = Sω(ρ). On the other hand, typically considered
noise models are Markovian [5]. Hence, a more relevant
question is as follows: Are there nontrivial covariant channels
admitting a master equation description that preserve coher-
ence indefinitely? The existence of such frozen coherence has
recently been proposed in Ref. [37], and an experimental
demonstration followed shortly thereafter [38]. Here, we
formalize the question by asking what general features in
the class of master equations satisfying assumption (II) allow
such phenomena to arise. Our approach differs from that
of Ref. [37] in that here noise acts in the same basis in
which the quantum information is encoded, rather than in a
transversal basis. We also note that our investigation concerns
quantum coherence between different energy eigenspaces,
so we exclude the obvious possibility that superpositions
can be preserved within decoherence-free subspaces. Another
way to phrase the question above is as follows: Do perfect
(covariant) coherence manipulations necessarily require non-
Markovianity? We begin to answer this question with the
following result:

Corollary 4. Under assumptions (I) and (II), assume the
population dynamics has a unique stationary distribution π

with πx �= 0 ∀ x. Then,
(1) for all t ′ > t , Sω(ρ(t ′)) < Sω(ρ(t));
(2) for all x ′ �= y ′, lim

t→∞|ρx ′y ′ (t)| = 0.

The proof of the above Corollary can be found in
Appendix E. Its physical meaning is clear: whenever the
stochastic process generated by L has a unique fixed point
(with full support), such as a thermal state, coherence will
eventually be destroyed. When the population finally relaxes
to a stationary distribution, no coherence is left in the system.
This is in stark contrast to non-Markovian covariant evolutions,
where a finite fraction of coherence can always be preserved
when the population reaches its fixed point π . To see this,
consider a covariant channel E with the population transfer
matrix P defined by Px ′ |x = πx ′ , which transforms every initial
population into π (so its fixed point is π ). The remaining
parameters defining the action of E on coherence elements (see
Appendix A) are C

x ′ |x
y ′ |y := 〈x ′|E(|x〉〈y|)|y ′〉 for ωx ′y ′ = ωxy .

The choice C
x ′ |x
y ′|y = δx ′xδy ′y

√
Px|xPy|y (with δx ′x denoting the

Kronecker delta) guarantees that E is completely positive
and results in the preservation of a fraction

√
πxπy of every

initial coherence element ρxy . Hence, under non-Markovian
covariant dynamics, some coherence can always be preserved
when populations reach their fixed point π .

On the other hand, let us note that when L does not have a
unique fixed point, perfect Markovian processing of coherence
is possible. One such example is given by the coherence mixing
process. Consider a four-dimensional system described by
Hamiltonian

H4 = h̄�|1〉〈1| + h̄(� + �)|2〉〈2| + h̄(2� + �)|3〉〈3|.
(28)
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FIG. 2. Optimal coherence mixing. Within a mode � (consisting
of coherence elements ρ10 and ρ32), the optimal mixing of coherence
elements can be achieved via covariant Markovian dynamics: the
initial total coherence within the mode |ρ10(0)| + |ρ32(0)| is equal to
the final total coherence |ρ10(t)| + |ρ32(t)|, and for t → ∞ we obtain
|ρ10(t)| = |ρ32(t)|.

Starting with some initial values of coherence elements
ρ10(0) = |ρ10(0)| and ρ32(0) = |ρ32(0)| (that belong to the
same mode �, see Fig. 2) one may obtain an optimal evolution
of coherences given by

|ρ10(t)| = 1 + e−2λt

2
|ρ10(0)| + 1 − e−2λt

2
|ρ32(0)|,

|ρ32(t)| = 1 − e−2λt

2
|ρ10(0)| + 1 + e−2λt

2
|ρ32(0)|,

for some λ > 0. Such a process is optimal as we have
S�(ρ(t)) = S�(ρ(0)) at all times, and it can be achieved by
the following choice of L:

L = λ

⎡⎢⎣−1 0 1 0
0 −1 0 1
1 0 −1 0
0 1 0 −1

⎤⎥⎦.

Notably, we thus see that a dissipative and memoryless
interaction with an environment can in some cases sustain
coherence indefinitely.

C. Coherence transfer

Let us now focus on a particular type of coherence
processing: coherence transfer within a mode. Consider a
three-dimensional system with equidistant energy spectrum

H3 = h̄�(|1〉〈1| + 2|2〉〈2|), (29)

and focus on the � mode composed of matrix elements ρ10 and
ρ21. For simplicity, we assume that initially only the element
ρ10(0) of mode � is nonzero and we wish to maximize the final
amount of coherence ρ21(t) [see Fig. 3(a)]. Similarly, consider
a four-dimensional system described by the Hamiltonian H4

given in Eq. (28). In this case, we wish to transfer coherence
from ρ10 to ρ32 [see Fig. 3(b)]. Note that the only unitaries
allowed by assumption (II) are energy preserving. Hence, the
only way to raise the superposition up the ladder is to extract
energy from the environment. Although in both cases we deal
with a mode consisting of two elements, there is an important
difference. Namely, in the first case we transfer coherence
between off-diagonal elements corresponding to overlapping
energy eigenstates ρ10 and ρ21, whereas in the second case

FIG. 3. (a) Coherence transfer within a mode � between over-
lapping coherence elements |1〉〈0| and |2〉〈1|. (b) Coherence transfer
within a mode � between nonoverlapping coherence elements |1〉〈0|
and |3〉〈2|.

the transfer takes place between off-diagonal elements in
nonoverlapping energy eigenstates ρ10 and ρ32.

Our minimal decoherence theorem, Theorem 1, shows that
in the first case the optimal coherence evolution achievable
for a given population transfer rate L is given by dc/dt = Qc
with

Q =
[

−γ10
√

L0|1L1|2√
L1|0L2|1 −γ21

]
,

where we introduce the coherence vector c := (|ρ10|,|ρ21|).
This is a system of two first-order differential equations that
may be transformed into the second-order differential equation

d2c2

dt2
− Tr(Q)

dc2

dt
+ det(Q)c2 = 0. (30)

Since the above equation describes the motion of a damped
harmonic oscillator, we see that while coherence is transferred
within a mode, damping can progressively destroy it. In order
to find the optimal coherence transfer, we need to maximize
c2(t) over all population transfer rates Lx ′|x and over all times.
The solution to this problem is presented in Appendix F, where
we show that in the overlapping case, covariant Markovian
evolution cannot achieve a higher coherence transfer than
ρ21(t) = ρ10(0)/

√
2. This is in sharp contrast to the result for

general covariant maps, where this transference task can be
performed without loss of coherence, i.e., at some later t we
have ρ21(t) = ρ10(0) [32]. We thus conclude that, under the
covariance restriction, non-Markovianity enhances our ability
to transfer coherence.

In fact, the no-go result on Markovian transfer of coherence
can also be derived directly from Corollary 4. From Theorem 2,
any covariant process transferring coherence from an element
ρ10 to ρ12 must have P1|0(t) > 0 and P2|1(t) > 0 at some
t > 0. Due to Markovianity, this implies that the same relation
holds for every t > 0 (see Appendix E), which gives L1|0 > 0
and L2|1 > 0. However, from Corollary 4, we know that
perfect coherence transfer requires L to have at least two
zero eigenvalues. By direct inspection, one can verify that
this requirement is incompatible with these two inequalities
(the eigenvalues are of the form −a ± √

a2 − b with a > 0
and b > 0).
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However, what is perhaps more surprising is that it is
possible to perfectly transfer all coherence in the nonover-
lapping case, i.e., there exists a Markovian evolution leading
to ρ32(t) = ρ10(0) as t → ∞. To see this, note that from
Theorem 1 the optimal coherence evolution achievable for
a given population transfer rate L in the case of H4 is again
given by dc/dt = Qc, but this time with

Q =
[

−γ10
√

L0|2L1|3√
L2|0L3|1 −γ32

]
, (31)

where the coherence vector is now c := (|ρ10|,|ρ32|). One
can directly verify that optimal coherence transfer is achieved
through the following choice of population transfer rate matrix:

L = λ

⎡⎢⎣−1 0 0 0
0 −1 0 0
1 0 0 0
0 1 0 0

⎤⎥⎦.

This result is less surprising when we realize that the
matrix L that leads to a perfect transfer does not satisfy the
requirements of Corollary 4, i.e., it does not have a unique
stationary point. Therefore, preserving coherence indefinitely
within a mode through a memoryless process is possible and
so, in particular, is perfect transfer within a mode. We conclude
that the question of whether non-Markovianity is a resource
for coherence manipulations is a subtle one that depends on
the mode structure of the Hamiltonian.

D. Witnessing non-Markovianity

In this section we focus on signatures of non-Markovian
dynamics. More precisely, assuming that the evolution is
covariant, we study how one can identify that the underlying
dynamics is non-Markovian. We analyze two ways to achieve
this: one based on monitoring the coherence of the system
(which is an application of the minimal decoherence theorem),
and the other on monitoring populations (which uses only the
covariance condition).

1. Coherence-based witnessing

Let us consider a probe prepared in some state ρ(0) and left
in contact with an environment. What can we learn about the
Markovian or non-Markovian nature of the covariant dynamics
by measuring ρ(t) at various times t? A standard approach
based around the idea of “information backflows” [39] can be
applied to our scenario. Consider any distance-based measure
of quantum coherence

SD(ρ) := min
σ∈I

D(ρ,σ ), (32)

where D satisfies contractivity under CPTP maps, i.e.,
D(E(ρ1),E(ρ2)) � D(ρ1,ρ2) if E is a quantum channel, and I
is the set of states invariant under dephasing in the eigenbasis
of H . Then, if the process is Markovian, covariance implies
that for every t ′ > t one has

SD(ρ(t ′)) � SD(ρ(t)). (33)

This follows directly from ρ(t ′) = Et ′−t (ρ(t)) and the fact that
ρ ∈ I induces E(ρ) ∈ I:

min
σ∈I

D(ρ,σ ) := D(ρ,σ ∗) � D(E(ρ),E(σ ∗))

� min
σ∈I

D(E(ρ),σ ).

Hence, violations of the inequality given in Eq. (33) are
a signature of non-Markovianity, along similar lines to
Ref. [40].

An alternative approach [41] assumes that we only know the
initial preparation ρ(0) and the final state ρ(t) at a unique time
t > 0. As our previous example of coherence transfer between
overlapping coherence elements illustrates, sometimes such a
single “snapshot” can be enough to deduce non-Markovianity.
To simplify the argument, let us assume that the probe is a
single qubit and that the dynamics has some known fixed point
ρ(∞) with occupations π = (π,1 − π ) and zero coherence.
What can we learn from a single snapshot of qubit dynamics?
The situation is analogous to that of the elementary example
from Sec. II. The initial state is given by Eq. (1). If the evolution
is Markovian, Theorem 1 applies, leading to an optimal process
described by Eq. (2) with γ = (|L0|0| + |L1|1|)/2. Solving the
equations for the optimal process, one obtains

|c(t)| =
√

p(t) − π

p(0) − π
|c(0)|, (34)

as shown in Fig. 1 and illustrated for example initial and
stationary states by the dashed trajectories of Fig. 4.

If the observed final state ρ(t) lies outside the dashed region,
we can infer that we are witnessing non-Markovianity. Note
that this includes cases where classical information alone, i.e.,
measurement of p(t), would be inconclusive by itself [in Fig. 4,
this is the case when p(t) � π ]. It also includes dynamics
that, despite satisfying |c(t)| < |c(0)|, are still incompati-
ble with a Markovian process as they preserve too much
coherence.

FIG. 4. Qubit covariant dynamics: Markovian vs non-Markovian.
(a) Initial state with p(0) = 1

6 and c(0) = √
5/6, and ρ(∞) such

that π = ( 1
2 , 1

2 ). (b) Initial state with p(0) = 1
4 and c(0) = 1

4 , and
ρ(∞) such that π = ( 3

4 , 1
4 ). The dashed lines show the maximum

coherence preservation possible with Markovian covariant dynamics
with a given fixed point ρ(∞); the solid lines show the maximum
coherence preservation possible for general covariant operations with
a fixed state given by ρ(∞).
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2. Population-based witnessing

Even though complete tomographic knowledge about the
final state ρ(t) gives more powerful ways to identify non-
Markovianity, owing to the particular structure of covariant
maps, sometimes knowledge of the population dynamics is
sufficient. As described in Eq. (13), a covariant Markovian
channel induces a stochastic matrix P on the vector of pop-
ulations, so that p(t) = P p(0), where P = eLt . Technically,
one can say that the stochastic matrix P must be embeddable,
which means that it is induced by exponentiation of a generator
L. As not all stochastic matrices P can be generated this
way, embeddability of the population dynamics matrix gives
a necessary condition for the channel to be Markovian. In
particular, one can use the following known result [28,42,43]:

Theorem 5. The eigenvalues {λ} of a d × d embeddable
stochastic matrix P must satisfy λ = reiφ with −π � φ � π ,
0 � r � r(φ), and r(φ) = e−|φ| tan(π/d). In other words, the
eigenvalues are bounded to the region of the complex plane
that lies inside the curve x(φ) + iy(φ) with

x(φ) = e−|φ| tan π
d cos φ, y(φ) = e−|φ| tan π

d sin φ. (35)

For the convenience of the reader, we present the proof in
Appendix H.

Given a population transfer matrix P acting on a qu-d-it
system, one can use Theorem 5 to verify whether any of its
eigenvalues lie outside of the “embeddability region.”4 In order
to understand how restrictive this condition is, we compare
the embeddable region, specified by Theorem 5, with the
region occupied by the eigenvalues of generic d × d stochastic
matrices, specified by the Karpelevič theorem [44,45]. We
present this comparison in Fig. 5 for several small values
of d. Whereas for small dimensions a large class of co-
variant operations can be deemed non-Markovian by simply
analyzing the dynamics of populations, the bound becomes
less tight for higher-dimensional systems, illustrating the
relevance of the previous considerations involving coherence.
Interestingly, some important transformations are necessarily
non-Markovian in any dimension. As an example, consider
“probabilistic rigid translations” defined by a stochastic map
T (q) = (1 − q)1 + qP with q ∈ (0,1] and P a cyclic per-
mutation, i.e., Pi+1|i = 1 for i = 0, . . . ,d − 2 and P0|d−1 = 1
(or Pi−1|i = 1 for i = 1, . . . ,d − 1 and Pd−1|0 = 1). Since
P d = 1, one of the eigenvalues of T (q) is 1 − q + qe2πi/d ,
which lies on the edge connecting the points (1,0) and
(cos 2π

d
, sin 2π

d
). However, as can be verified using Eq. (35),

for d � 3, the eigenvalues of embeddable stochastic matrices
will always lie below this edge and, hence, “probabilistic rigid
translations” cannot be achieved using Markovian dynamics.

E. Resource theory of thermodynamics

Despite a great amount of work pursued within the so-called
resource-theoretic formulation of quantum thermodynamics
(see Refs. [46,47] and references therein), its relation to the
standard formalism of master equations and thermalization
models has not been clarified. This has generated confusion

4If only p(0) and p(t) are known, this requires the study of all
stochastic P such that P p(0) = p(t).

FIG. 5. Eigenvalues of stochastic matrices. The eigenvalues of a
d × d stochastic matrix all lie within the unit circle on the complex
plane, independently of d . For a given d , points corresponding
to the eigenvalues of a stochastic d × d matrix are given by the
Karpelevič theorem [44,45] and are depicted in dark gray. Points that
correspond to the eigenvalues of an embeddable stochastic d × d

matrix, specified by Theorem 5, are depicted in light gray.

regarding the scope of the results derived within the resource
theory and their relevance for applications [48]. In this section
we present a unified picture that relates both formalisms, and
show explicitly how the technical machinery of open quantum
systems can be used to strengthen the resource-theoretic
approach in physically relevant scenarios.

1. From generalized thermal operations to standard
thermalization models

Within the resource theory of thermodynamics one studies
the possible dynamics of quantum systems induced by the
restricted set {E} of quantum channels known as thermal
operations [6]. However, all constraints on the allowed trans-
formations derived so far emerge from two core properties:
covariance of E with respect to time translations, as given in
Eq. (9), and the presence of a thermal fixed point, i.e., E(τ ) = τ

with τ = e−βH /Tr[e−βH ] being the thermal Gibbs state at
inverse temperature β [32]. The set of channels satisfying these
two properties has been called generalized thermal operations
(GTOs) in Ref. [49].

We will now argue that GTOs, in a precise sense, are a gen-
eralization of a class of master equations whose properties are
commonly assumed or derived in the study of thermalization
processes. Figure 6 illustrates the overall structure of the sets of
quantum channels we consider. More precisely, it shows how
one can move from the resource theory of thermodynamics
to a standard open quantum system description by adding
certain physical restrictions. The largest class of operations
represents GTOs. The dynamics of coherence under these
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FIG. 6. Families of thermodynamic quantum channels. By incor-
porating assumptions of Markovianity and quantum detailed balance
into the set of generalized thermal operations, one obtains the set
of Davies maps. These are precisely those which achieve optimal
coherence transformation in Theorem 1.

channels is limited by the constraints of Theorem 2, with
transition probabilities Px ′ |x satisfying Pπ = π , where π

is a vector of thermal occupations (eigenvalues of τ ), i.e.,
πx ∝ e−βh̄ωx . GTOs can then naturally be restricted to the
subset that admits a realization through a Markovian master
equation, i.e., satisfying assumption (I). This set presents
stronger constraints on processing coherence, in the form
of Theorem 1, where Pπ = π translates into the condition
Lπ = 0 on the transition rates Lx ′ |x . The next step is to
recognize that the relation Lπ = 0 is itself simply a weaker
form of the so-called detailed balance condition

Lx ′|xπx = Lx|x ′πx ′ . (36)

This stronger condition is satisfied, for example, by Davies
maps, which describe standard thermalization models whose
microscopic derivation involves large thermal baths and weak
couplings [33,50]. In our formalism, detailed balance can
be implemented simply by restricting the allowed transition
rates in Theorem 1. We also note that Davies maps are
covariant Markovian channels satisfying an even stronger
form of Eq. (36) known as quantum detailed balance [33].
To complete the connection between the resource-theoretic
and master equation formalisms, we make the following
observation: among all detailed balanced GTOs that admit a
master equation description, those that transform coherence
optimally are Davies maps. We will formally prove this
by showing that optimal coherence transformations require
quantum detailed balance and hence restrict us to the smallest
set shown in Fig. 6.

To sum up, GTOs can be understood as a generalization of
Davies maps in which the following conditions are relaxed:

(1) The map does not necessarily admit a Markovian
master equation description, i.e., assumption (I) is dropped.

(2) Quantum detailed balance is relaxed to the minimal
condition that the thermal state is a fixed point of the dynamics.

In the remainder of this section, we first prove the already
mentioned connection between quantum detailed balance
and optimality of coherence preservation. We then illustrate
how additional physical restrictions on the resource theory,

identified in Fig. 6, allow us to obtain stronger constraints on
the allowed transformations.

2. Quantum detailed balance and optimal coherence processing

The dynamics generated by the dissipator L satisfies the
quantum detailed balance condition when [33]

Tr[L(Aτ )B] = Tr[L(τB)A], (37)

for all d × d matrices A, B, with τ denoting a thermal Gibbs
state. We will now prove that, under the assumptions of
Theorem 1, with the Markovian phase-matching condition
holding and population transition rates satisfying the detailed
balance condition [Eq. (36)], the maps that transform coher-
ence optimally satisfy Eq. (37), and hence are Davies maps.

Due to linearity, quantum detailed balance holds if and
only if it holds for all A and B of the form A = |x〉〈y| and
B = |y ′〉〈x ′|, i.e.,

e−βh̄ωy 〈x ′|L(|x〉〈y|)|y ′〉 = e−βh̄ωy′ 〈x|L(|x ′〉〈y ′|)|y〉∗. (38)

Note that, due to covariance, we only need to consider |x〉〈y|
and |x ′〉〈y ′| belonging to the same mode since all other terms
vanish.

For mode zero (x = y and x ′ = y ′), Eq. (38) simply yields
Eq. (36) and thus holds by assumption. For nonzero modes
we need to use the expression for the optimal channel. This is
given by (see Appendix C for details)

L(·) = A(·) − 1
2 {A†(1),·}, (39a)

A
x ′ |x
y ′ |y = ϑx ′x(0)ϑ∗

y ′y(0)
√

Lx ′|xLy ′ |y. (39b)

If either x ′ �= x or y ′ �= y the above can be simplified as [see
Eq. (B6)]

〈x ′|L(|x〉〈y|)|y ′〉 = 〈x ′|A(|x〉〈y|)|y ′〉. (40)

Using this equation and the expression for the optimal A, it is
now straightforward to show that Eq. (38) holds. To complete
the proof, we need to show that Eq. (38) also holds when
x = x ′ and y = y ′. This is equivalent to 〈x|L(|x〉〈y|)|y〉 being
real, which can be easily verified.

3. Strengthening the resource theory constraints

Finally, we demonstrate how our framework can be used to
derive stronger bounds on the processing of coherence under
thermal operations when additional physical constraints hold.
We first consider the simplest case of a qubit system. Then,
the hierarchy of Fig. 6 simplifies to three sets: general GTOs,
GTOs admitting a Markovian master equation, and Davies
maps. The fixed thermal state is specified by π = (π,1 − π )
with π = 1/(1 + e−βh̄ω), where ω is the relevant transition
frequency. Recall that we denote the off-diagonal element of
the density operator in the energy eigenbasis by c(t) and the
ground-state population by p(t). In Refs. [32,49] it was shown
that for transformations induced by GTOs, the following tight
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bound holds:

|c(t)| �
√

[p(t) − qβ(0)][p(0) − qβ (t)]

|p(0) − qβ(0)| |c(0)|, (41)

where qβ(t) := [1 − p(t)]eβh̄ω. The bound is marked with
solid lines in Fig. 4. This can be obtained directly from
Theorem 2 by imposing Pπ = π [32], and was shown to
be achievable under thermal operations in Ref. [49].

Employing the relation given in Eq. (34), one obtains
a tighter bound for GTOs that admit a Markovian master
equation, namely,

|c(t)| �
√

p(t) − qβ(t)

p(0) − qβ(0)
|c(0)|. (42)

This bound is plotted with dashed lines in Fig. 4. From the
discussion presented in this section we know that processes
achieving this bound are Davies maps. Moreover, we see
that for any β �= ∞ and any initial state carrying quantum
coherence, the saturation of the thermal operation (or GTO)
bound always requires non-Markovianity.5

For higher-dimensional systems, the relation Lπ = 0,
which captures the irreversibility of thermal operations, allows
one to find temperature-dependent bounds on the coherence
transport rates t

x ′|x
y ′ |y . More precisely, taking πx ∝ e−βh̄ωx one

can show that (see Appendix I for details)

t
x ′|x
y ′|y � γx ′y ′ min{e−βh̄ωx′x ,1}, (43)

so that transport processes responsible for moving coherence
up in energy are exponentially damped by a Gibbs factor
e−βh̄ωx′x . This becomes more pronounced when one addition-
ally assumes the detailed balance condition for the population
dynamics, i.e., Lx ′|x = Lx|x ′e−βh̄ωx′x , resulting in asymmetry
between transport rates:

t
x ′|x
y ′ |y � t

x|x ′
y|y ′ min{e−βh̄ωx′x ,1}. (44)

These relations are the analog at the level of master equations
of the results derived for GTOs in Ref. [32].

VI. CONCLUSIONS

In this work we have attempted to unify two rather contrast-
ing concepts. On the one hand, Holevo introduced an approach
to characterize the generators of dynamics compatible with a
given symmetry [17,18]. On the other hand, recent theoretical
works from quantum information and the theory of reference
frames present the lack of symmetry of a quantum state as
a consumable resource when dynamics are restricted by a
symmetry principle [2,3]. In the specific case of symmetry
under time translation considered in this paper, this resource
coincides with quantum coherence in the basis of the system
Hamiltonian [10,32].

5Also note that at zero temperature (a situation studied in Ref. [51]),
the two regions coincide, i.e., any transformation that can be achieved
by the full set of thermal operations can be also achieved by
Markovian processes.

We have investigated what are the fundamental limitations
on the processing of such coherences. Our results are derived
using purely the underlying symmetry and the assumption of
Markovianity, without any reference to the specific features
of a particular model. This yields general bounds connecting
the evolution of populations and coherences, from which
a wide variety of further results are easily obtained. We
find a d-dimensional generalization of the classic inequality
T2 � 2T1 that relates the relaxation time T1 and the decoher-
ence time T2 of a qubit. Highlighting the relationship between
ergodicity and the preservation of coherence enables us to
study the role of non-Markovianity as a resource for coherence
processing. It also raises the possibility of engineering a
symmetric dissipative interaction to have multiple fixed points,
with the aim of protecting coherent resources (in a similar
spirit to Ref. [52]). By providing explicit examples, we show
how non-Markovian transformations can enhance coherence
processing under symmetric dynamics, motivating the utility
of a resource-theoretic formulation of non-Markovian pro-
cesses [27]. We also present methods for witnessing such non-
Markovian behavior through the dynamics of coherences and
populations. These are based on the underlying symmetry of
the dynamics and, as such, illustrate how symmetry reasoning
can simplify the detection of non-Markovianity. We point out
that the possibility of simultaneously saturating our bound for
all coherence elements, or of weakening the Markovian phase-
matching condition, remains open for future investigations.

We have also explicitly connected the resource theory
approach to thermodynamics with the well-established master
equation formalism. As well as clarifying the physical scope
of the abstract resource theory, this paves the way for
the use of the open quantum systems dynamics toolkit to
tackle resource-theoretic questions, as our bounds illustrate.
Conversely, new insights can be obtained into well-established
models of thermalization, as demonstrated by the optimal
coherence preservation properties of Davies maps. More
generally, we have presented evidence that our approach allows
one to establish fruitful links between two formalisms used
to study thermodynamics that were principally developed
independently.

In this study, we have focused on time-translation sym-
metry, but all the main ingredients can in fact be generalized
to dynamics that are symmetric with respect to an arbitrary
group G. The result of Holevo [17], the so-called resource
theory of asymmetry [30], and the harmonic analysis tools [11]
used throughout this paper all apply to general groups. Hence,
one should be able to derive relations for the evolution of
a generalized “coherence” for different observables. Resource
states in the generalized theory are those which are asymmetric
with respect to a group G, i.e., they evolve nontrivially under
its action [2,53]. In our study of time-translation symmetry
we have taken G = U(1), and such states possess quantum
coherence relative to the basis defined by the Hamiltonian.
If we were to instead take G = SU(2), i.e., spherically
symmetric dynamics, then a state that is sensitive to rotations
(a superposition of different angular momentum eigenstates)
would constitute a resource. We thus hope that the results
we have presented here suggest a general resource-theoretic
approach for studying the consequences of symmetry within
the master equation formalism.
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APPENDIX A: COVARIANT MAPS: A WALK-THROUGH

1. Definition

Consider a d-dimensional system with nondegenerate
Hamiltonian H =∑d−1

x=0 h̄ωx |x〉〈x|. A completely positive
map E is called covariant with respect to time translations
generated by H (also known as phase insensitive) when

E(e−iH tρeiHt ) = e−iH tE(ρ)eiHt (A1)

holds for all ρ and t . Note that this is a special case of
covariance with respect to a general (compact) group G [2].
Equivalent characterizations of covariant maps can be found
in Ref. [10], Sec. III A.

2. Modes of coherence

Recall that, as in the main text, the set {ω} consisting of
all differences between eigenfrequencies of H is known as the
Bohr spectrum of H . A covariant map can be decomposed
according to its action on the modes of a state [11] (an analog
of the Fourier component, but for quantum states). The mode
structure is defined by the Bohr spectrum of H . More precisely,
the state ρ =∑x,y ρxy |x〉〈y| can be written in the form

ρ =
∑

ω

ρ(ω), (A2)

where

ρ(ω) =
∑
x,y

ωxy = ω

ρxy |x〉〈y| =:
(ω)∑
x,y

ρxy |x〉〈y|. (A3)

Here, we have introduced the symbol
∑(ω) to indicate

the sum over indices x,y such that ωxy = ω (recall that
ωxy = ωx − ωy). The operators ρ(ω) are called modes of
coherence of the state ρ. Now, if E is a covariant operation
such that E(ρ) = σ , then

E(ρ(ω)) = σ (ω) ∀ ω. (A4)

The converse is also true (see Ref. [10], Proposition 6). In other
words, each mode ρ(ω) of the initial state is independently
mapped to the corresponding mode σ (ω) of the final state if
and only if the mapping is achieved via a covariant operation.

We can now conveniently parametrize a covariant map E
in the following way. First, let us define the action of E on

diagonal (i.e., mode zero) matrix elements by

E(|x〉〈x|) =
d−1∑
x ′=0

Px ′ |x |x ′〉〈x ′|, (A5)

where, if E is trace preserving, the coefficients are the entries
Px ′ |x of a stochastic matrix P (Px ′|x � 0 and

∑
x ′ Px ′ |x = 1).

This can naturally be interpreted as the population transfer
matrix, i.e., the transition matrix between energy eigenstates.
To see this more clearly, let us introduce the vector of
populations p that describes the zero mode of ρ, i.e., its
components are given by px = ρxx . The transformation of
the zero mode under E is then described by the transformation
p �→ P p.

The action of E on an off-diagonal matrix element |x〉〈y|
can be parametrized as follows:

E(|x〉〈y|) =
(ωxy )∑
x ′,y ′

C
x ′ |x
y ′ |y |x ′〉〈y ′|. (A6)

The coefficients C
x ′ |x
y ′ |y describe how much the initial coherence

|x〉〈y| contributes to the final coherence |x ′〉〈y ′|. Hermiticity
of the final state imposes C

x ′ |x
y ′|y = (Cy ′|y

x ′|x )∗. Note that formally

Px ′ |x can be thought of as C
x ′ |x
x ′ |x .

As an example, we now look at a qubit system, which
without loss of generality can be described by the Hamiltonian
H = h̄�|1〉〈1|.

Example 1. The state ρ can be decomposed into three
modes consisting of the following matrix elements:

ρ(0) : {|0〉〈0|,|1〉〈1|},
ρ(�) : {|1〉〈0|},

ρ(−�) : {|0〉〈1|}.
As a covariant map does not mix modes, the action of E on ρ

is given by

E(|0〉〈0|) = P0|0|0〉〈0| + P1|0|1〉〈1|,
E(|1〉〈1|) = P1|1|1〉〈1| + P0|1|0〉〈0|,
E(|1〉〈0|) = C

1|1
0|0 |1〉〈0|,

E(|0〉〈1|) = C
0|0
1|1 |0〉〈1|.

Since P1|0 = 1 − P0|0, P0|1 = 1 − P1|1, and C
1|1
0|0 = (C0|0

1|1 )∗, a
general covariant qubit map is fully specified by two transition
probabilities P0|0 and P1|1 and a complex number C

0|0
1|1 .

3. Structure of the Choi-Jamiołkowski state

Until now, we have described the conditions for E to
be covariant. However, in order to represent a physical
transformation E must also be completely positive (CP) and,
since we look at deterministic transformations, we take E to
be trace preserving (TP). The latter property is automatically
satisfied given the mode structure and the fact that P is a
stochastic matrix. To see this, note that the trace of the final
state can be written as

Tr[E(ρ)] = Tr[E(ρ)(0)] = Tr[E(ρ(0))] =
∑

x

(P p)x = 1,
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FIG. 7. The block-diagonal structure of the Choi state. An exam-
ple of the Choi state J [E] of a covariant map E for a qutrit system de-
scribed by an equidistant Hamiltonian, i.e., H = h̄�(|1〉〈1| + 2|2〉〈2|).
(a) The diagonal terms of J [E] (in blue) describe the evolution of
populations, i.e., the transition rates Px′ |x between energy eigenstates
|x〉〈x| and |x ′〉〈x ′|. (b) The off-diagonal terms of J [E] describe the
preserved “fraction” C

x|x
y|y of coherence term |x〉〈y| (in red), and the

amount C
x′ |x
y′ |y of coherence transferred (in yellow) between coherence

terms |x〉〈y| and |x ′〉〈y ′|.

where we have used Eq. (A4) and the fact that a stochastic
matrix maps the space of probability vectors onto itself.

To enforce the CP condition, we recall the Choi-
Jamiołkowski isomorphism [23,24,54] that maps a quantum
channel E into the state

J [E] := [E ⊗ I](|φ+〉〈φ+|), (A7)

where |φ+〉 =∑d−1
x=0 |xx〉/√d is the maximally entangled

state, and I denotes the identity superoperator. The require-
ment of E to be CP is equivalent to the Choi operator J [E]
being positive semidefinite. Writing out J [E] explicitly we
have

J [E] = 1

d

∑
x,y

(ωxy )∑
x ′,y ′

C
x ′ |x
y ′|y |x ′〉〈y ′| ⊗ |x〉〈y|

= 1

d

∑
x ′,x

(ωx′x )∑
y ′,y

C
x ′|x
y ′|y |x ′x〉〈y ′y|, (A8)

where we have rearranged the expression to emphasize the
block-diagonal structure. Note that J [E] is block diagonal
with respect to the eigenbasis of H ⊗ 1 − 1 ⊗ H ∗.

Each block consists of matrix elements C
x ′ |x
y ′|y for which

ωx ′x = ωy ′y = ω and can thus be labeled by ω (see Fig. 7).
The diagonal of each block ω consists of population transfer
coefficients Px ′ |x with ωx ′x = ω, i.e., it describes the population
transfers between energy levels differing by h̄ω in energy.
Off-diagonal elements in the ω = 0 block, Cx|x

y|y , correspond to
the fraction of the initial coherence term ρxy that is preserved in
the final state (modulo adding phases); off-diagonal elements
in blocks with ω �= 0, C

x ′ |x
y ′ |y describe the transfer of the initial

coherence term ρxy into the final coherence term σx ′y ′ .

4. Positivity of the Choi-Jamiołkowski state

Owing to the block-diagonal structure of J [E], positivity
is equivalent to the positivity of each block. A necessary

condition for the positivity of block ω is that for all x,y and
x ′,y ′ within, one has∣∣Cx ′ |x

y ′ |y
∣∣ � √Px ′ |xPy ′ |y, (A9)

i.e., the magnitude of the off-diagonal term is constrained
by the corresponding diagonal terms. Now, note that from
Eq. (A6) and the triangle inequality, we have

|σx ′y ′ | �
(ωx′y′ )∑
x,y

∣∣Cx ′ |x
y ′ |y
∣∣|ρxy |. (A10)

Using the above together with Eq. (A9) immediately yields
Eq. (20) from Theorem 2 in the main text, i.e.,

|σx ′y ′ | �
(ωx′y′ )∑
x,y

√
Px ′ |xPy ′ |y |ρxy |. (A11)

Example 2. In the qubit case, introduced in Example 1,
the Choi state is block diagonal with blocks spanned by
{|00〉,|11〉}, {|10〉} and {|01〉}:

J [E] = 1

2

⎡⎢⎢⎢⎣
P0|0 C

0|0
1|1 0 0(

C
0|0
1|1
)∗

P1|1 0 0

0 0 1 − P0|0 0

0 0 0 1 − P1|1

⎤⎥⎥⎥⎦,

as in the elementary example of Sec. II. Positivity thus
reads as

|σ10| �
√

P1|1P0|0|ρ10|.

APPENDIX B: COVARIANT MARKOVIAN MAPS

1. Definition and Holevo’s characterization

According to (I), a Markovian evolution is given by a one-
parameter family of quantum channels constituting a quantum
dynamical semigroup. The general form of the generator LH

is given by [25,26]

LH (·) = A(·) − 1
2 {A†(1),·} − i[·,H ], (B1)

where H is a Hermitian operator, A is a CP map, A†

is the adjoint of A (with respect to the Hilbert-Schmidt
inner product, Tr[ρA(σ )] = Tr[A†(ρ)σ ]) and {·,·} denotes the
anticommutator.

If the channel E = eLH t generated by LH is covariant, then
LH must be covariant, and it has been shown that both A and
H(·) = [H,·] can also be chosen to be covariant [17]. Let
L = LH − iH. Since [L,H] = 0 the evolution induced by
LH and L is the same up to an energy-preserving unitary:
E = eiHt ◦ eLt , where eiHt = e−iH t (·)eiHt . Hence, from now
on, we will ignore the term involving H and consider
Lindbladians of the form

L(·) = A(·) − 1
2 {A†(1),·}. (B2)

Since L is covariant, it acts on each mode independently
(see Sec. A 2). The action of L on the diagonal of a density
matrix is therefore completely described by a matrix L with
elements

Lx ′|x := 〈x ′|L(|x〉〈x|)|x ′〉. (B3)
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Recall that the covariant map E acts on the diagonal elements
as a stochastic matrix P , hence, L is the generator of such a
matrix. In other words, P must be an embeddable stochastic
matrix [28]: P = eLt . This implies that L can be interpreted
as a matrix of population transfer rates, similarly to the
elementary example of Sec. II. Hence, L satisfies Lx ′ |x � 0 for
x ′ �= x and

∑
x ′ Lx ′|x = 0 [55], which implies that Lx|x � 0 for

all x.

2. Conditions on the generators of covariant Markovian maps

Recall that A, which appears in Eq. (B2), is a covariant CP
(but not necessarily TP) map. Denote the matrix elements of
A by

A
x ′|x
y ′|y = 〈x ′|A(|x〉〈y|)|y ′〉. (B4)

Reasoning as in Appendix A 4, the complete positivity of A is
enforced by requiring J [A] � 0. Then, the set of conditions∣∣Ax ′ |x

y ′ |y
∣∣ � √Ax ′ |xAy ′ |y, (B5)

where Ax ′|x := A
x ′ |x
x ′ |x , is necessary for ensuring that A is CP.

We now state some useful relations between the matrix
elements of A and L. Using the covariance of A it is straight-
forward to show that A†(1) =∑x ′,x Ax ′ |x |x〉〈x|. Hence, we
obtain

〈x ′|{A†(1),|x〉〈y|}|y ′〉 =
∑

z

(Az|x + Az|y)δxx ′δyy ′ , (B6)

where δxx ′ denotes the Kronecker delta. So, in terms of the
elements of A and L, we have Lx ′|x = Ax ′ |x −∑z Az|xδxx ′ .
Importantly, any element Lx ′ |x can be expressed purely in
terms of elements Ax ′ |x for which x ′ �= x:

Lx ′ |x =
⎧⎨⎩−
∑
z �=x

Az|x if x ′ = x,

Ax ′|x if x ′ �= x.

(B7)

APPENDIX C: PROOF OF THEOREM 1

Theorem 1. Let ρ̃x ′y ′ (t) be the solution of

dρ̃x ′y ′

dt
= −γx ′y ′ ρ̃x ′y ′ +

(ωx′y′ )∑
x �= x ′
y �= y ′

t
x ′|x
y ′|y ρ̃xy, (C1)

with ρ̃x ′y ′ (0) = |ρx ′y ′ (0)|. Then, if the time evolution of ρ

satisfies assumptions (I) and (II) with population transfer rate
matrix L, we have

|ρx ′y ′ (t)| � ρ̃x ′y ′ (t), (C2)

for all t � 0. Moreover, the bound can be saturated for all
elements of a mode ω if for every x ′,y ′,x,y with ωx ′y ′=ωxy=ω

one has

ϑx ′y ′ (0)ϑ∗
xy(0) = ϑx ′x(0)ϑ∗

y ′y(0). (C3)

We first recall some notation and present identities that
will be used in the proof. As in the main text, we define
damping rates γx ′y ′ := (|Lx ′|x ′ | + |Ly ′|y ′ |)/2 and express ma-
trix elements in terms of their magnitudes and phase factors as

ρxy = |ρxy |ϑxy . The following two identities for the evolution
of these terms are readily derived:

d|ρxy |
dt

= Re

(
ϑ∗

xy

dρxy

dt

)
, (C4)

|ρxy |dϑxy

dt
= dρxy

dt
− ϑxy

d|ρxy |
dt

. (C5)

The strategy for the proof is as follows:
(1) Express the evolution of the absolute values of the

density matrix element |ρx ′y ′ | in terms of the matrix elements
of A.

(2) Show that this expression may be bounded as

d|ρx ′y ′ |
dt

� −γx ′y ′ |ρx ′y ′ | +
(ωx′y′ )∑
x �= x ′
y �= y ′

√
Lx ′ |xLy ′|y |ρxy |. (C6)

(3) Show that the solution of Eq. (C1), i.e., of Eq. (C6) with
inequality sign replaced by an equality, gives an upper bound
for the maximum coherence preservation. In other words,
Eq. (C2) holds, and all that remains is to prove the tightness
claims.

(4) Make a particular choice of A
x ′|x
x ′|x (while leaving Lx ′ |x

unchanged), and find the evolution of the phase factor ϑx ′y ′

under this choice.
(5) Demonstrate that this choice leaves ϑx ′y ′ invariant when

the phase-matching condition is satisfied.
(6) Verify that when the initial phase-matching condition

holds, there is indeed a covariant CP map A that achieves the
bound of Eq. (C6).

Proof. (1) The evolution of the system is given by
dρ/dt =Lρ. Since L is covariant, each mode evolves inde-
pendently as [see Eq. (A4)]

dρ(ω)

dt
= Lρ(ω) =

(ω)∑
x,y

L(|x〉〈y|)ρxy. (C7)

According to Eqs. (B2) and (B6), the evolution of any element
ρx ′y ′ is

dρx ′y ′

dt
=

(ωx′y′ )∑
x,y

[
A

x ′|x
y ′|y − 1

2

∑
z

(Az|x + Az|y)δxx ′δyy ′

]
ρxy.

(C8)

We then use the identity given in Eq. (C4) to find an expression
for d|ρx ′y ′ |/dt . The summation over x,y may be split up to

isolate the term A
x ′ |x ′
y ′ |y ′ , leaving a sum over indices x,y such

that (x,y) �= (x ′,y ′). Owing to covariance and nondegeneracy,
this is equivalent to a sum such that x �= x ′ and y �= y ′
independently. We thus obtain

d|ρx ′y ′ |
dt

= − Re(αx ′y ′ )|ρx ′y ′ | +
(ωx′y′ )∑
x �= x ′
y �= y ′

Re
(
A

x ′ |x
y ′ |yϑ

∗
x ′y ′ρxy

)
,

(C9)
where αx ′y ′ = 1

2

∑
z(Az|x ′ + Az|y ′ ) − A

x ′ |x ′
y ′ |y ′ . Note that in the

case of a nondegenerate Bohr spectrum this expression takes
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the particularly simple form

d|ρx ′y ′ |
dt

= − Re(αx ′y ′ )|ρx ′y ′ |. (C10)

(2) We now place bounds on the terms in this expression.
Since A is CP we have [see Eq. (B5)]

Re
(
A

x ′ |x
y ′ |yϑ

∗
x ′y ′ρxy

)
� |Ax ′ |x

y ′ |y ||ρxy | �
√

Ax ′ |xAy ′ |y |ρxy | (C11)

and

Re(αx ′y ′ ) � 1

2

∑
z

(Az|x ′ + Az|y ′ ) − ∣∣Ax ′ |x ′
y ′ |y ′
∣∣

� 1

2

∑
z

(Az|x ′ + Az|y ′ ) −√Ax ′ |x ′Ay ′ |y ′

� 1

2

⎛⎝∑
z �=x ′

Az|x ′ +
∑
z �=y ′

Az|y ′

⎞⎠ = γx ′y ′ , (C12)

where the final inequality follows from the arithmetic-
geometric mean inequality, and to get the final equality we
use Eq. (B7). Applying the above bounds to Eq. (C9) and
translating the expression into elements of Lx ′ |x using Eq. (B7)
gives the bound on evolution that we seek, as given in Eq. (C6).

(3) Collecting all elements |ρx ′y ′ | of a given mode ω into
a coherence vector c(ω), and analogously for ρ̃x ′y ′ with a
corresponding vector c̃(ω), Eqs. (C1) and (C6) read as

d c̃(ω)

dt
= Qc̃(ω),

dc(ω)

dt
� Qc(ω), (C13)

with initial conditions c(ω)(0) = c̃(ω)(0) and the vector in-
equality denoting a set of componentwise inequalities. The
off-diagonal elements of Q are given by

√
Lx ′ |xLy ′|y and are

hence non-negative. Thus, Lemma 7 from Appendix G implies
that c̃(ω)(t) � c(ω)(t) for all t � 0. This can be rewritten as the
bound of Eq. (C2) for all elements of the mode. The same
reasoning applies to any mode ω, and so the result holds for
every off-diagonal element of ρ.

(4) We now begin our proof of attainability of the bound in
Eq. (C6). Consider setting Ax ′ |x ′ = 0 for all x ′. The necessary

condition forA to be CP, Eq. (B5), then also imposes A
x ′ |x ′
y ′ |y ′=0.

Note that this choice does not alter any element Lx ′|x , which
can be expressed using only elements Ax ′|x for which x �=x ′.
Using Eq. (B7) we find that Re(αx ′y ′ ) = γx ′y ′ and hence
Eq. (C9) becomes

d|ρx ′y ′ |
dt

= −γx ′y ′ |ρx ′y ′ | +
(ωx′y′ )∑
x �= x ′
y �= y ′

Re
(
A

x ′ |x
y ′ |yϑ

∗
x ′y ′ρxy

)
. (C14)

Note that in the case of a nondegenerate Bohr spectrum, the
above equation gives d|ρx ′y ′ |/dt = −γx ′y ′ |ρx ′y ′ | for all x ′,y ′,
which leads to simultaneous saturation of the bound for all
coherence elements.

For the more complicated general case, from Eq. (C8) and
with our particular choice of Ax ′ |x ′ we have

dρx ′y ′

dt
= −γx ′y ′ρx ′y ′ +

(ωx′y′ )∑
x �= x ′
y �= y ′

A
x ′ |x
y ′ |yρxy. (C15)

The identity provided in Eq. (C5) then gives the evolution of
the phase factor:

|ρx ′y ′ |dϑx ′y ′

dt
=

(ωx′y′ )∑
x �= x ′
y �= y ′

[
A

x ′ |x
y ′ |yρxy − ϑx ′y ′ Re

(
A

x ′|x
y ′|yϑ

∗
x ′y ′ρxy

)]
.

(C16)

Since ρxy = |ρxy |ϑxy and ρ∗
xy = |ρxy |ϑ∗

xy , we find that

dϑx ′y ′

dt
∝

(ωx′y′ )∑
x �= x ′
y �= y ′

(
A

x ′ |x
y ′ |yϑxyϑ

∗
x ′y ′ − A

x ′ |x
y ′ |y

∗
ϑx ′y ′ϑ∗

xy

)|ρxy |.

(C17)

(5) Consider now the process that, for every |x〉〈y| belong-
ing to the same mode as |x ′〉〈y ′|, satisfies

A
x ′ |x
y ′ |y∣∣Ax ′ |x
y ′ |y
∣∣ = ϑx ′y ′ (0)ϑ∗

xy(0). (C18)

Note that again this choice does not affect Lx ′|x . Equation
(C17) then becomes

dϑx ′y ′

dt
∝

(ωx′y′ )∑
x �= x ′
y �= y ′

[ϑx ′y ′ (0)ϑ∗
xy(0)ϑxyϑ

∗
x ′y ′

− ϑxy(0)ϑ∗
x ′y ′ (0)ϑx ′y ′ϑ∗

xy]
∣∣Ax ′ |x

y ′ |y
∣∣|ρxy |, (C19)

which may be solved by taking phases factors constant for
all t : ϑxy = ϑxy(0) and ϑx ′y ′ = ϑx ′y ′ (0). Using this solution,
Eq. (C14) becomes

d|ρx ′y ′ |
dt

= −γx ′y ′ |ρx ′y ′ | +
(ωx′y′ )∑
x �= x ′
y �= y ′

∣∣Ax ′ |x
y ′ |y
∣∣|ρxy |. (C20)

We can now chooseA to be at the boundary of the CP constraint
by fixing ∣∣Ax ′ |x

y ′ |y
∣∣ = √Ax ′ |xAy ′ |y. (C21)

Recalling that Ax ′ |x = Lx ′ |x for x �= x ′, we conclude that under
the above choices the inequality (C6) is tight.

(6) Finally, we show that there is indeed a covariant CP
map A that realizes the above evolution when the initial
phase-matching condition holds. Consider a quantum channel
A given by its Kraus decomposition {Kω} with

Kω =
(ω)∑
x,y

ϑxy(0)
√

Ax|y |x〉〈y|. (C22)

Using A
x ′ |x
y ′ |y =∑ω〈x ′|Kω|x〉〈y|K†

ω|y ′〉 we find that

A
x ′ |x
y ′ |y = ϑx ′x(0)ϑ∗

y ′y(0)
√

Ax ′ |xAy ′|y. (C23)

Applying the phase-matching condition gives

A
x ′ |x
y ′ |y = ϑx ′y ′ (0)ϑ∗

xy(0)
√

Ax ′ |xAy ′ |y, (C24)
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which is readily seen to satisfy Eqs. (C18) and (C21), as well
as allowing the choice Ax ′ |x ′ = 0 that results in A

x ′ |x ′
y ′ |y ′ = 0.

The covariance of A immediately follows from Proposition 7
of Ref. [10], which states that if each Kω in the Kraus
decomposition is a mode ω operator [in the same sense as
each ρ(ω) in the decomposition of Eq. (A3)], then the induced
map is covariant.

Making the choice given in Eq. (C24) for every element
x ′,y ′ of mode ω, we see that our inequality for dc(ω)/dt

[Eq. (C13)] is saturated. Hence, with these choices, the
evolution of every element in a mode achieves the claimed
bound tightly. �

APPENDIX D: PROOF OF TIGHTNESS
OF THEOREM 2

In Appendix A 4 we proved that the bound specified in
Eq. (20) of Theorem 2 holds, a result first given in Ref. [32].
Here, we show under what conditions the bound is tight. We
achieve this by providing an explicit construction of a covariant
channel that saturates the bound.

Recall that we require the Choi state J [E] to be positive
semidefinite. By noting that

∑
x ′,x

(ωx′x )∑
y ′,y

(·) =
∑

ω

(ω)∑
x ′,x

(ω)∑
y ′,y

(·) (D1)

we can rewrite Eq. (A8) in the following form, which makes
the block-diagonal structure of J [E] evident:

J [E] = 1

d

∑
ω

(ω)∑
x ′,x

(ω)∑
y ′,y

C
x ′ |x
y ′ |y |x ′x〉〈y ′y|, (D2)

Now, given any population transfer matrix P , we can choose
each block ω of the Choi state to be an unnormalized pure state
|ψω〉〈ψω|, where

|ψω〉 = 1√
d

(ω)∑
x ′,x

ϕx ′x
√

Px ′ |x |x ′x〉 (D3)

and ϕx ′x are phase factors. This way we ensure positivity
of J [E] and the corresponding quantum channel is given by
E(·) =∑ω Kω(·)K†

ω with Kraus operators

Kω =
(ω)∑
x ′,x

ϕx ′x
√

Px ′ |x |x ′〉〈x|. (D4)

Using Proposition 7 of Ref. [10] one can directly verify that
these Kraus operators generate a time-translation symmetric
channel. The matrix elements C

x ′ |x
y ′|y are given by

C
x ′ |x
y ′|y = ϕx ′xϕ

∗
y ′y

√
Px ′ |xPy ′ |y. (D5)

Such a channel transforms populations according to the
population transfer matrix P ; and writing σ = E(ρ), we find
that coherence terms transform as

σx ′y ′ =
(ωx′y′ )∑
x,y

√
Px ′ |xPy ′ |y |ρxy |ϕx ′xϕ

∗
y ′yϑxy, (D6)

where we recall that ρxy = |ρxy |ϑxy .

FIG. 8. Choice of phases for overlapping elements of a mode.
The choice of phases ϕx′x that saturates the bound of Theorem 2 for
all elements of a mode. The phases are given for the case of three
overlapping elements: σ10, σ21, and σ32 (hence xi = 0, . . . ,3), but the
table can be easily extended noticing the structure of each diagonal.
The phases in the corners of the matrix, in this case ϕ30 and ϕ03, do
not need to be fixed to saturate the bound.

Now, the crucial question is whether the phase factors {ϕx ′x}
can be chosen in such a way as to saturate the bound given
in Eq. (20). Comparing Eqs. (D6) and (20), we see that the
choice ϕx ′xϕ

∗
y ′y = ϑ∗

xy ensures saturation of the bound. First,
let us consider a simple case when the mode ω contains no
overlapping elements, i.e., for every two distinct coherence
terms σx ′y ′ and σxy in mode ω, all indices x,y,x ′,y ′ are distinct.
Then, for every x ′,y ′ we can make the choice of phases
ϕx ′x = ϑ∗

xy and ϕ∗
y ′y = 1 for all x,y such that ωxy = ωx ′y ′ = ω

(note that ϕx ′x = ϑ∗
xy is meaningful as, due to nondegeneracy

of the Hamiltonian, a single index x is enough to specify y).
This leads to saturation of the bound.

In the general case, a mode ω consists of coherence
elements σxnxn−1 ,σxn−2xn−3 , . . . ,σx1x0 with xi sorted in nonde-
creasing energy order (ωxi

� ωxi+1 ), meaning that some of
xi are equal to xi+1 (corresponding to overlapping coherence
elements). One can now make the following choice of {ϕx ′x} to
saturate the bound given in Eq. (20). We set initial conditions
ϕxix0 = ϕx0xi

= 1 for all i = 0, . . . ,n, and impose iteratively
ϕxi+1xj+1 = ϕxixj

ϑ∗
xj+1xj

for all i,j = 0, . . . ,n − 1. This choice
is depicted in Fig. 8 for the example case of a three-element
mode.

Moreover, if it happens that phase factors of the initial
state ρ are of the form ϑxy = φxφ

∗
y , one can saturate the

bound simultaneously for all coherence elements. This can
be achieved by choosing ϕx ′x = φ∗

x for all x,x ′. Finally, if the
Bohr spectrum is nondegenerate, the summation in Eq. (D6)
consists of a single term with x = x ′ and y = y ′. Hence, the
bound is saturated independently of the choice of ϕx ′x .

APPENDIX E: PROOF OF COROLLARY 4

Corollary 6. Under assumptions (I) and (II), assume the
population dynamics has a unique stationary distribution π

with πx �= 0 ∀ x. Then,
(1) for all t ′ > t , Sω(ρ(t ′)) < Sω(ρ(t));
(2) for all x ′ �= y ′, lim

t→∞|ρx ′y ′ (t)| = 0.

Proof. We begin by proving that uniqueness of the fixed
point implies that all transition probabilities Px ′ |x(t) are
nonzero at some finite time t̃ > 0 [recall that P (t) = eLt ].

032109-16



MARKOVIAN EVOLUTION OF QUANTUM COHERENCE . . . PHYSICAL REVIEW A 96, 032109 (2017)

As we have seen in Eq. (24), if the fixed point is unique then
every initial distribution converges to π as t → ∞. Consider
the set of standard basis vectors {εx | x = 1, . . . ,d}, where
εx denotes the unit vector with a 1 in the xth coordinate and
0’s elsewhere. We have P (t)εx → π as t → ∞. Hence, for
every x,x ′ there exists some tx,x ′ > 0 such that Px ′ |x(t) > 0
for all t � tx,x ′ . Taking t̃ = maxx,x ′ tx,x ′ , we have Px ′ |x(t̃) > 0
for every x,x ′.

We now prove the second claim that all coherence terms
must vanish as t → ∞. Consider the elements of a mode ω.
From Theorem 2 we have

|ρx ′y ′ (t̃)| �
(ω)∑
x,y

√
Px ′ |x(t̃)Py ′ |y(t̃)|ρxy(0)|. (E1)

The definition of Sω given in Eq. (27) yields

Sω(ρ(t̃)) �
(ω)∑
x,y

|ρxy(0)|
(ω)∑
x ′,y ′

√
Px ′ |x(t̃)Py ′ |y(t̃)

�
(ω)∑
x,y

|ρxy(0)|Bxy(t̃),

where we have used the arithmetic-geometric mean inequality
and defined

Bxy(t̃) := 1

2

(ω)∑
x ′,y ′

[Px ′ |x(t̃) + Py ′ |y(t̃)]. (E2)

There are at most d − 1 terms in this summation. Given that∑d
x ′=1 Px ′ |x(t̃) = 1 and that Px ′ |x(t̃) > 0 for every x ′,x, it fol-

lows that
∑(ω)

x ′,y ′ Px ′ |x(t̃) < 1, so that Bxy(t̃) < 1 for every x,y.
Taking B = maxx,y Bxy(t̃), we have Sω(ρ(t̃)) � BSω(ρ(0))
with B < 1.

As the process is time homogeneous, the presented reason-
ing leads to

Sω(ρ((n + 1)t̃)) � BSω(ρ(nt̃)), (E3)

for all n ∈ N. This implies Sω(ρ(nt̃)) < BnSω(ρ(0)). Tak-
ing the limit n → ∞ we obtain Sω(ρ(t)) → 0 as t → ∞,
which implies that limt→∞ |ρx ′y ′ (t)| = 0 for every x,y with
ωx ′ − ωy ′ = ω. The same reasoning applies to every mode of
coherence ω, and hence proves the second claim.

Let us now prove the first claim. To achieve this we will
use a theorem of Lévy [56] that states that either Px ′ |x(t) = 0
for all t � 0 or Px ′ |x(t) > 0 for all t > 0. Since we proved that
Px ′ |x(t̃) > 0 for all x ′,x, we conclude that Px ′ |x(t) > 0 for all
t > 0 and for all x ′,x. Using this result, we can apply the same
reasoning as in the discussion above to show that for every
t ′ > t we have Sω(ρ(t ′)) � BSω(ρ(t)), with B < 1, and hence
Sω(ρ(t ′)) < Sω(ρ(t)). �

APPENDIX F: OPTIMAL COHERENCE TRANSFER
FOR A QUTRIT

As stated in the main text, for a qutrit with equidis-
tant spectrum, optimal coherence evolution is governed by

dc/dt = Qc, where

Q =
[

−γ10
√

L0|1L1|2√
L1|0L2|1 −γ21

]
,

and c := (|ρ10|,|ρ21|). We recall the definition of the damping
rate γxy = (|Lx|x | + |Ly|y |)/2. The (magnitude of) the coher-
ence element ρ21(t) evolves according to Eq. (30), which we
repeat here for convenience:

d2c2

dt2
− Tr(Q)

dc2

dt
+ det(Q)c2 = 0. (F1)

We wish to achieve optimal transfer of coherence from density
matrix element ρ10 to density matrix element ρ21. Concretely,
we find maxL,t c2(t), where the optimization runs over all
population transfer rates Lx ′|x and times t .

The dynamics described by Eq. (F1) are precisely those
of a damped harmonic oscillator with damping η and natural
frequency ν, where

η = −Tr(Q) = γ10 + γ21, (F2)

ν2 = det(Q) = γ10γ21 −√L0|1L1|2L1|0L2|1. (F3)

Given these expressions, we define D := η2 − 4ν2, which can
be straightforwardly evaluated as

D = (γ10 − γ21)2 + 4
√

L0|1L1|2L1|0L2|1. (F4)

It is clear that D � 0, which corresponds to an overdamped
(D > 0) or critically damped (D = 0) oscillator.

For the case that D > 0, the solution of Eq. (F1) is given
by c2(t) = A+ep+t + A−ep−t , where p± = 1

2 (−η ± √
D) and

A± are constants determined by the initial conditions. Given
that c2(0) = 0 and dc2

dt
(0) = √L1|0L2|1c1(0), one obtains

A+ = −A− = √L1|0L2|1c1(0)/
√

D. (F5)

The solution may then be written as

c2(t) = 2c1(0)

√
L1|0L2|1

D
e
− 1

2 ηtsinh
(

1
2

√
Dt
)
. (F6)

In addition to the prefactor involving L1|0 and L2|1, the
evolution c2(t) depends on the matrix elements Lx ′|x through
the expressions for η and D. To analytically perform the full
optimization maxL,t c2(t), subject to the constraints Lx|x � 0
and

∑
x ′ Lx ′|x = 0, appears to be highly nontrivial. However,

we can straightforwardly derive an upper bound for the optimal
coherence transfer. Consider the solution c̃2(t) that holds when
ν = 0, so that

√
D = η. Equation (F6) then becomes

c̃2(t) = 2c1(0)

√
L1|0L2|1

η2
e
− 1

2 ηtsinh
(

1
2ηt
)

= c1(0)

√
L1|0L2|1

η2
(1 − e−ηt ). (F7)

The solution for c̃2 provides an upper bound for c2, i.e., for
all t we have c2(t) � c̃2(t), and hence maxt c2(t) � maxt c̃2(t).
To see this, we observe that

c2

c̃2
= sinhc

(
1
2

√
Dt
)

sinhc
(

1
2ηt
) , (F8)
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where sinhc is the hyperbolic sinc function, sinhc(z) =
sinh(z)/z. Since sinhc(z) is monotonically increasing for
z � 0, and

√
D � η, we have c2(t) � c̃2(t). This inequality

may also be thought of physically in terms of the analogy
with a damped harmonic oscillator: ν gives a measure of the
linear “spring” force. The displacement of an oscillator from
its equilibrium position is always bounded by the displacement
when there is no restoring force.

We now proceed with the optimization maxL,t c̃2(t).
Equation (F7) achieves its maximum as t → ∞, so that
maxt c̃2(t) = c1(0)f (L), where

f (L) = 2
√

L1|0L2|1
|L0|0| + |L2|2| + 2|L1|1| . (F9)

To perform the maximization over L, we first note that the
only dependence of f (L) on elements Lx ′|2 is through the
|L2|2| in the denominator. To maximize f (L), we may thus
freely set L2|2 = 0 (and hence the population transfer rate
matrix will also have L1|2 = L0|2 = 0). Given the constraints∑

x ′ Lx ′|0 =∑x ′ Lx ′|1 = 0, it is clear that f (L) is maximized
when L2|0 = L0|1 = 0, so that |L0|0| = L1|0 and |L1|1| = L2|1.
Hence, we have f (L) = 2

√
L1|0L2|1/(L1|0 + 2L2|1). Accord-

ing to the inequality of arithmetic and geometric means,
this is maximized when we set L1|0 = 2L2|1, yielding
maxL f (L) = 1/

√
2. Hence, we find that

max
L,t

c2(t) � c1(0)/
√

2 ≈ 0.707c1(0), (F10)

as given in the main text.

APPENDIX G: DIFFERENTIAL INEQUALITIES
FOR A SYSTEM OF ODES

Here, we present a technical result that was used in the
proof of Theorem 1, but which may be of some independent
interest. Results on differential inequalities tend to be limited
to simple cases, e.g., Grönwall’s lemma [57] applies to the
linear first-order differential inequality du(t)/dt � α(t)u(t).
We prove a result that can be applied to a system of linear
first-order differential inequalities, such as those governing
the evolution of off-diagonal elements according to the Bloch
equations. This result can likely be understood as a special case
of general comparison theorems (see, e.g., Ref. [58], Chap. 3).
Here, we give a proof that does not require such sophisticated
technical machinery.

Given two n-dimensional vectors x and y, the notation
x � y will denote the componentwise inequality xi � yi for
all i = 1, . . . ,n. A system of linear first-order differential
equations may be written as ẋ(t) = Mx(t), where ẋ := dx/dt

and M is some n × n matrix. If we instead have the differential
inequality ẋ(t) � Mx(t), then what can be inferred about the
evolution?

Lemma 3. Let x : R �→ Rn be the solution of the system
of linear differential equations

ẋ(t) = Mx(t), x(0) = u, (G1)

where Mij � 0 for all i �= j . If y : R �→ Rn is a differentiable
function satisfying

ẏ(t) � M y(t), y(0) = u, (G2)

then x(t) � y(t) for all t � 0.
Proof. Denote by P the set of differential equations and

inequalities for x and y given in the statement of the lemma.
Given c > 0, we first prove the following implication for a
modified problem P ′:

ẋ(t) = Mx(t) + c
ẏ(t) < M y(t) + c
x(0) > y(0)

⎫⎬⎭ =⇒ x(t) � y(t) ∀ t � 0. (G3)

By continuity, there exists some t̃ > 0 such that x(t) > y(t)
for all t ∈ [0,t̃). Let us define the “overtaking” time as

t� = sup
t̃>0

{t̃ | x(t̃) > y(t̃) ∀ t ∈ [0,t̃)}. (G4)

By contradiction, assume t� < ∞. Continuity implies
x(t�) � y(t�). By definition of t�, we have that

(1) there exists i such that xi(t�) = yi(t�);
(2) there exists a sequence {tα} with tα ↘ t� such that

xi(tα) < yi(tα) for all α.
Using condition 1 and continuity,

ẏi(t
�) <

∑
j

Mijyj (t�) + ci = Miixi(t
�) +

∑
j �=i

Mijyj (t�) + ci

� Miixi(t
�) +

∑
j �=i

Mij xj (t�) + ci = ẋi(t
�).

But, this implies that there is a right neighborhood of t�

in which xi(t) > yi(t), which is in direct contradiction with
condition 2. Hence, it must be t� = ∞, i.e., overtaking can
never take place and the implication given in Eq. (G3) holds:
we have x(t) � y(t) ∀ t � 0.

Now, consider the following sequence of problems Pm with
m ∈ N:

ẋ(m)(t) = Mx(m)(t) + c(m), x(m)(0) = u(m),

ẏ(t) � M y(t), y(0) = u,

where c(m) := (1/m, . . . ,1/m) and u(m) ↘ u, u(m+1) < u(m).
Clearly, any Pm is a problem of the form P ′ since we have
ẏ(t) < M y(t) + c(m) and x(m)(0) > y(0) (as u(m) > u). Using
Eq. (G3) we therefore deduce that x(m)(t) � y(t) ∀ t � 0,

∀ m ∈ N.
Note that x(∞) solves the desired problem P and so

x(m) → x pointwise as m → ∞ [in fact, one can show the
convergence is locally uniform since comparing Pm and
Pm+1 gives x(m+1)(t) � x(m)(t)]. Hence, we have that x(t) �
y(t) ∀ t � 0, as required. �

APPENDIX H: EMBEDDABLE STOCHASTIC MATRICES

The proof of Theorem 5 requires the following results that
we state without proofs, instead pointing to references where
these can be found:
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Lemma 8 (Lemma 12.3.4 and 12.3.5 of Ref. [55]): A
matrix B is a generator of a stochastic matrix, i.e., A = eB

for some stochastic matrix A, if and only if it is of the form
B = α(C − 1) for some α � 0 and stochastic matrix C.

Lemma 9 (Theorem 1.7 in Chap. VII of Ref. [43]): A d × d

stochastic matrix has no eigenvalues corresponding to points
inside either of the two segments of the unit circle joining the
point 1 with e2πi/d and e−2πi/d .

We are now ready to present the proof of Theorem 5.
Proof. By Lemma 8 every embeddable stochastic matrix

P is of the form P = eα(C−1) with α � 0 and C a stochastic
matrix. Hence, an eigenvalue λ of P is equal to eμ, where
μ is an eigenvalue of α(C − 1). Now, using Lemma 9,
we have | arg μ| � π/2 + π/d, so that μ = −a + ib with
a � 0 and |b| � a tan−1(π/d). Introducing r = e−a and φ = b

we obtain λ = reiφ and the constraint on |b| is translated
into

e−|φ| tan π
d � r � 0.

�

APPENDIX I: BOUNDING TRANSPORT RATES

From Lπ = 0 and πx ∝ e−βh̄ωx one obtains for any fixed
and distinct x ′,x

Lx ′ |x ′e−βh̄ωx′ + Lx ′|xe−βh̄ωx +
∑

y �=x ′,x

Lx ′ |ye−βh̄ωy = 0.

Recalling that ωx ′x := ωx ′ − ωx , the above can be rewritten as

Lx ′ |x ′ + Lx ′ |xe−βh̄ωxx′ +
∑

y �=x ′,x

Lx ′ |ye−βh̄ωyx′ = 0.

Since Lx ′|x � 0 for x ′ �= x and Lx ′ |x ′ � 0, we thus arrive at

Lx ′|x � |Lx ′|x ′ |e−βh̄ωx′x . (I1)

Using the above and the arithmetic-geometric mean inequality,√
Lx ′ |xLy ′|y � Lx ′|x + Ly ′|y

2
, (I2)

and recalling the definition of t
x ′|x
y ′|y and γx ′y ′ we arrive at

Eq. (43).
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[33] W. Roga, M. Fannes, and K. Życzkowski, Davies maps for qubits
and qutrits, Rep. Math. Phys. 66, 311 (2010).

[34] S. A. Gershgorin, Uber die Abgrenzung der Eigenwerte einer
Matrix, Izv. Akad. Nauk. USSR Otd. Fiz.-Mat. Nauk 6, 749
(1931).

[35] G. H. Golub and C. F. Van Loan, Matrix Computa-
tions (Johns Hopkins University Press, Baltimore, 2012),
p. 320.

[36] C. H. Edwards and D. E. Penney, Elementary Differential
Equations (Pearson Education, London, 2008).

[37] T. R. Bromley, M. Cianciaruso, and G. Adesso, Frozen Quantum
Coherence, Phys. Rev. Lett. 114, 210401 (2015).

[38] I. A. Silva, A. M. Souza, T. R. Bromley, M. Cianciaruso, R.
Marx, R. S. Sarthour, I. S. Oliveira, R. Lo Franco, S. J. Glaser,
E. R. deAzevedo et al., Observation of Time-Invariant Coher-
ence in a Nuclear Magnetic Resonance Quantum Simulator,
Phys. Rev. Lett. 117, 160402 (2016).

[39] H.-P. Breuer, E.-M. Laine, J. Piilo, and B. Vacchini, Colloquium:
Non-Markovian dynamics in open quantum systems, Rev. Mod.
Phys. 88, 021002 (2016).

[40] T. Chanda and S. Bhattacharya, Delineating incoherent non-
Markovian dynamics using quantum coherence, Ann. Phys. 366,
1 (2016).

[41] M. M. Wolf, J. Eisert, T. S. Cubitt, and J. I. Cirac, Assessing Non-
Markovian Quantum Dynamics, Phys. Rev. Lett. 101, 150402
(2008).

[42] J. T. Runnenburg, On Elfving’s problem of imbedding a time-
discrete markov chain in a time-continuous one for finitely many
states I, P. K. Ned. Akad. A Math. 65, 536 (1962).

[43] H. Minc, Nonnegative Matrices (Wiley, New York, 1988).

[44] F. I. Karpelevich, On the characteristic roots of matrices with
nonnegative elements, Izv. Akad. Nauk SSSR Ser. Mat. 15, 361
(1951).

[45] H. Ito, A new statement about the theorem determining the
region of eigenvalues of stochastic matrices, Linear Algebra
Appl. 267, 241 (1997).

[46] J. Goold, M. Huber, A. Riera, L. del Rio, and P. Skrzypczyk,
The role of quantum information in thermodynamicsa topical
review, J. Phys. A: Math. Theor. 49, 143001 (2016).

[47] S. Vinjanampathy and J. Anders, Quantum thermodynamics,
Contemp. Phys. 57, 545 (2016).

[48] N. Y. Halpern, Toward physical realizations of thermodynamic
resource theories, in Information and Interaction (Springer,
Berlin, 2017), pp. 135–166.
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