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Nonperturbative environmental influence on dephasing
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Environmental noise leads to dephasing and relaxation in a quantum system. Often, a rigorous treatment of
multiple noise sources within a system-bath approach is not possible. We discuss the influence of environmental
fluctuations on a quantum system whose dynamics is dephasing already due to a phenomenologically treated
additional noise source. For this situation, we develop a path-integral approach, which allows us to treat the
system-environment coupling in a numerically exact way, and additionally we extend standard perturbative
approaches. We observe strong deviations between the numerically exact and the perturbative results even for
weak system-bath coupling. This shows that standard perturbative approaches fail for additional, even weak,
system-bath couplings if the system dynamics is already dissipative.
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I. INTRODUCTION

Open quantum dynamics is a very successful approach to
describe and treat dissipative effects like relaxation, decoher-
ence, and dephasing in quantum systems [1–3]. Dissipation
results therein by coupling the quantum system of interest
to an environment. The latter is typically described by a
set of harmonic oscillators bilinearly coupled to the system.
The according system-bath model can then be treated either
perturbatively or by numerically exact methods. This allows
successful treatment of problems like energy transfer in
photosynthetic complexes [4,5], fluorescence properties of
optical quantum dots [6], and dephasing in various qubit
realizations [7], for example, in two-electron charge qubits [8].

The quantum systems of interest are typically subject to
various noise sources. Charge and flux qubits, for example,
experience noise due to phonons, voltage fluctuations in the
various gates, charged defects, and currents through nearby
quantum point contacts [7,9]. Chromophores in photosynthetic
complexes are disturbed by strong environmental fluctuations
due to intra- and intermolecular vibrations of the photoactive
complexes, vibrations of embedding proteins, solvent fluctu-
ations, and the charge separation in the reaction center [5].
Usually, the various noise sources are described by one effec-
tive bath if they all couple identically to the quantum system.
Alternatively, one focuses on the main noise source and treats
the others phenomenologically. Pure dephasing effects in flux
qubits due to defects are phenomenologically treated by intro-
ducing dephasing rates. In energy transfer in photosynthetic
complexes the reaction center is often included as an energy
sink described by phenomenological Lindblad rates [10].

A system-bath approach treats the environmental influence
on a quantum system with Hamiltonian dynamics. In contrast,
the dynamic of problems, which include a phenomenological
sink or dephasing rate, is Liouvillian; i.e., it is determined by a
Liouville–von Neumann equation. Environmental noise which
additionally acts on such a dissipative quantum system can
then not be treated within a standard system-bath approach.
Approximately, one might determine the influence of each
noise source independently. Thereby, all cross correlations
between the different fluctuations are neglected.

We extend the numerically exact quasiadiabatic
path-integral approach [11–13] and a perturbative approach
[14,15] to allow for Liouvillian system dynamics. We then

discuss a quantum two-level system (TLS) which dephases
via a phenomenological dephasing rate γD and is subject to
environmental fluctuations which we treat with the extended
system-bath approach. We observe that the dephasing of the
TLS due to γD strongly suppresses the dissipative influence of
the environmental fluctuations. Surprisingly, the perturbative
results differ quantitatively and qualitatively strongly from
numerically exact results even at weak system-bath coupling.
Thereby, the dephasing due to γD is treated exactly in both
cases. Accordingly, perturbative treatment of system-bath
coupling for a dephasing quantum two-level system fails.

II. MODEL

We study a quantum TLS with dipolar coupling � leading
to a system Hamiltonian

HS = �

2
σx. (1)

The TLS is disturbed by two independent fluctuation sources
of which we model one as a harmonic bath, i.e., HSB,z, leading
to a Hamiltonian H = HS + HSB,z with

HSB,z =
M∑

k=1

p2
k

2mk

+ 1

2
mkω

2
k

(
qk − λkσ̂z

mkω
2
k

)2

(2)

and [qk′ ,pk] = ih̄δk,k′ . Herein, the qk and pk are the position
and momentum of mode k with frequency ωk coupled via
λk to the system. Explicitly, the system-bath coupling terms
are HI,z = −σ̂z

∑M
k=1 λkqk and HSB,z = HI,z + HB,z. The

(longitudinal) fluctuations of the energy difference between
the eigenstates to σz, induced by HSB,z, result in energy
exchange between system and bath and thus relaxation and
dephasing. For simplicity, we employ an Ohmic spectral
function for the bath, i.e.,

Gz(ω) =
M∑

k=1

λ2
k

2mkωk

δ(ω − ωk) = γzω
ω2

c

ω2
c + ω2

, (3)

with coupling strength γz and cutoff frequency ωc.

III. DYNAMICS & METHODS

The second fluctuation source is assumed to cause pure
dephasing. Most often pure dephasing noise sources are
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difficult to characterize in detail and a full description is
missing. At temperatures kBT � �, typically pure dephasing
can effectively be treated by incorporating into the von
Neumann equation explicit dephasing terms [6,16–20]. Thus,
the dynamics of the TLS is determined by the von Neumann
equation

∂tW = − i

h̄
[HS + HSB,z,W ] − 	DW = LeW (4)

for the statistical operator W (t) with 	D = diag(0,0,γD,γD)
in a basis {1l,σx,σy,σz} and the dephasing rate γD . The right-
hand side of Eq. (4) defines the Liouvillian Le = − i

h̄
[HS +

HSB,z,�] − 	D . We aim now at a system-bath approach which
allows a numerical exact treatment of the HSB,z noise in Eq. (4).

Introducing the time evolution super-operator U(t,t0) via
W (t) = U(t,t0)W (t0) and U(t,t0) = exp(Le(t − t0)) allows for
an alternative description of the dynamics in terms of a Dyson
equation

U(t,t0) = U0(t,t0) +
∫ t

t0

dsU0(t,s)LIU0(s,t0)

+
∫ t

t0

ds

∫ s

t0

ds ′U0(t,s)LIU0(s,s ′)LIU(s ′,t0) (5)

which facilitates perturbative approaches. The bare evo-
lution is U0(t,t0) = exp(L0(t − t0)) with L0 = − i

h̄
[HS +

HB,z,�] − 	D and the system-bath coupling leads to LI =
− i

h̄
[HI,z,�]. Typically, a factorized initial state W (0) =

ρS(0) ⊗ ρBz,eq with the bath in thermal equilibrium, i.e.,
ρBz,eq = e−βHSB,z[λk≡0]/Tr{e−βHSB,z[λk≡0]}, is assumed. The ef-
fective system dynamics under the influence of the environ-
ment is obtained by integrating out the bath degrees of freedom
leading to ρeff(t) = TrB{W (t)} or, alternatively, the effec-
tive time evolution superoperator Ueff(t,t0) = 〈U(t,t0)〉B =
TrB{U(t,t0)ρBz,eq}.

In the case of purely Hamiltonian dynamics, i.e., for
vanishing dephasing γD , resumed perturbative treatments
leading to Redfield-type master equations are efficient for
small system-bath coupling strength, i.e., γz � 1, to describe
the system dynamics and the dissipative bath influence [21].
One such approach is RESPET [14,15], which derives the
effective time-evolution superoperator by integrating out the
bath degrees of freedom in Eq. (5). For Liouvillian system
dynamics, i.e., finite γD , such a resumed perturbative treatment
formally leads to

Ueff(t,t0) = US(t,t0)

+
∫ t

t0

ds

∫ s

t0

ds ′US(t,s)M(s,s ′)Ueff(s
′,t0). (6)

Therein, US(t,t0) = exp(LS(t − t0)) with LS = − i
h̄

[HS,�] −
	D . The memory kernel M(s,s ′) is in lowest-order pertur-
bative treatment given as M(s,s ′) = 〈LIU0(s,s ′)LI 〉B .

A. Extended RESPET

As a dynamic observable we discuss Pz(t) = 〈σz〉(t), whose
derivation is now straight forward. We obtain for Pz(t) �

cos �t e−	pt with the rate

	p(γD) = γD −
∫ ∞

−∞
dω G(ω) coth

(
β

ω

2

) γD

(� − ω)2 + γ 2
D

+ 2πRe

{
G(� − iγD) coth

(
β

� − iγD

2

)}
(7)

for initial system state ρS(0) = 1
2 (1l + σz). Note that additional

small non-Markovian contributions to Pz(t) are neglected since
they do not exhibit damped oscillations and, thus, will not
contribute to an observed damping rate.

B. Hybrid-QUAPI

Little is known about the reliability of such a perturbative
approach to treat a system-bath coupling when the system
dynamics is Liouvillian instead of Hamiltonian, i.e., for finite
γD . In order to test it, we must devise a numerically exact
approach to treat the dynamics, specifically the HSB,z noise in
Eq. (4). The regular QUAPI approach [11,12] employs a time
discretization to split the quantum-mechanical time-evolution
operator U (t) = exp(−iH t) which, combined with a symmet-
ric Trotter splitting, leads to a description in terms of a path
integral where the bath effects enter via a Feynman-Vernon
influence functional. The effective dynamics of Eq. (4) cannot,
however, be described in terms of a quantum-mechanical time-
evolution operator. Instead we must employ a time-evolution
superoperator

Ue(t) = eLet and W (t) = Ue(t)W (0). (8)

Thereby, Le = LS + LSB,z and LSB,z = −(i/h̄)[HSB,z,�] and
LS = −(i/h̄)[HS,�] − 	D . To proceed we discretize time in N

steps, i.e., t = N�t , and Ue = ∏N
j=1 Ue,j with Ue,j = eLe�t .

Inserting, furthermore, 1l superoperators, i.e.,

1l =
∫ ∞

−∞
dσ+

∫ ∞

−∞
dσ−

∫ ∞

−∞
dq+

∫ ∞

−∞
dq−|σ±,q±)(σ±,q±|,

in between all time steps leads to a discretized path sum.
Herein the superstates |σ±,q±) = |σ+,q+〉〈σ−,q−| and the
scalar product is defined as (A|B) = Tr{A† · B} for operators
A and B acting on the Hilbert space.

To proceed we need the elements of the time-evolution
superoperator

(σ±
j ,q±

j |eLe�t |σ±
j−1,q

±
j−1)

= Tr{|σ−
j ,q−

j 〉〈σ+
j ,q+

j |eLe�t [|σ+
j−1,q

+
j−1〉〈σ−

j−1,q
−
j−1|]},

(9)

where we inserted the brackets ([·]) in order to highlight
on which operator the time-evolution superoperator acts.
Employing the symmetric Trotter splitting to split the time-
evolution superoperator leads to

Uj � eLSB,z�t/2eLS�t eLSB,z�t/2 + O(�t3).

With eLSB�t/2[A] = e−iHSB�t/2h̄AeiHSB�t/2h̄ we obtain

(σ±
j ,q±

j |eLe�t |σ±
j−1,q

±
j−1)

= (σ±
j |eLS�t |σ±

j−1)〈q+
j |e−iHSB (σ+

j )�t/2h̄e−iHSB (σ+
j−1)�t/2h̄

× |q+
j−1〉〈q−

j−1|eiHSB (σ−
j−1)�t/2h̄eiHSB (σ−

j )�t/2h̄|q−
j 〉. (10)
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FIG. 1. The difference of decoherence rate and γD normalized by
	p(γD = 0) is plotted versus dephasing rate γD for various system-
bath couplings γz for kBT = � and ωc,z = 5�. The inset plots the
decoherence rate directly.

Thus, as in the regular QUAPI scheme the system and the
bath dynamics are separated on a single time slice and the
bath influences are summed up into an influence functional.
Assuming a factorized initial condition, we obtain for the
components of the effective statistical operator of the system

〈σ+
N |ρeff(t)|σ−

N 〉 =
N−1∏
j=0

∫ ∞

−∞
dσ+

j

∫ ∞

−∞
dσ−

j (σ±
j+1|eLS�t |σ±

j )

×〈σ+
0 |ρ(0)|σ−

0 〉I (N)(σ±
0 ,σ±

1 , . . . ,σ±
N ).

(11)

with

(σ±
j+1|eLS�t |σ±

j ) = Tr{|σ−
j+1〉〈σ+

j+1|eLS�t |σ+
j 〉〈σ−

j |}. (12)

In the iterative scheme of Makri and Makarov [11,12] the
Hamiltonian system dynamics enters only in the combination
〈σ+

j+1|e−iHS�t/h̄|σ+
j 〉〈σ−

j |eiHS�t/h̄|σ−
j+1〉 which equals exactly

(σ±
j |eLS�t |σ±

j−1) for the special case of Hamiltonian system
dynamics, i.e.,LS = −(i/h̄)[HS,�]. Thus, for our more general
case of Liouvillian system dynamics, i.e., LS 
= −(i/h̄)[HS,�],
we can still construct an iterative scheme when restricting
to a finite memory time following the procedure as outlined
by Makri and Makarov [11,12]. Thus, Eq. (11) readily
allows us to extend the quasiadiabatic path-integral approach
to treat numerically exactly the influence of environmental
fluctuations on any system dynamics which can be cast into a
Liouvillian equation [Eq. (4)]. This is our first result.

IV. RESULTS

Equipped with two methods we study the influence of
environmental fluctuations on an already dephasing quantum
system. We determine the decoherence rate 	 of a symmetric
quantum two-level system (1) by fitting f (t) = cos �t e−	t to
the numerical results for the σ̂z expectation value employing
our hybrid-QUAPI scheme. The inset of Fig. 1 shows the deco-
herence rate 	 versus the dephasing rate γD . We use kBT = �
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FIG. 2. The difference of decoherence rate and γD normalized by
	p(γD = 0) is plotted versus dephasing rate γD for five temperatures
and two system-bath couplings and compared to the RESPET result
[Eq. (7)].

and ωc = 5� and find that 	 increases monotonically with γD

for all studied system-bath couplings γz. In order to separate
out the contribution from the system-bath coupling Fig. 1
plots the difference of decoherence rate and γD normalized
by the RESPET result 	p(γD = 0) for vanishing γD . For small
γz and γD we observe that the decoherence rate is simply the
sum of the dephasing rate γD and the weak-coupling result
for the longitudinal fluctuations. With increasing system-bath
coupling γz the ratio (	 − γD)/	p(γD = 0) decreases as
higher-order effects set in. Surprisingly, for all system-bath
couplings the ratio decreases also for increasing γD . Thus,
increasing a phenomenological dephasing suppresses the
decohering effect of longitudinal fluctuations. In contrast, the
relaxation rate (determined by fitting an exponential decay
to 〈σ̂x〉(t); data not shown) is constant within the numerical
accuracy of the hybrid-QUAPI scheme.

The observed suppression of decoherence is studied in
more detail in Fig. 2. The ratio (	 − γD)/	p(γD = 0) is
plotted versus γD for a rather strong system-bath coupling
γz = 0.2/(4π ) at five temperatures, i.e., kBT = 0.01� (red
crosses), 0.05� (green squares), 0.2� (blue squares), 0.5�

(magenta squares), and � (orange squares). Data for the
two temperatures kBT = 0.01� and 0.05� coincide, which
thus represents the low-temperature limit. Additionally, data
are shown for a weak system-bath coupling γz = 0.01/(4π )
at three temperatures, i.e., kBT = 0.2� (blue circles), 0.5�

(magenta circles), and � (orange circles). Perturbative results
following Eq. (7) are given as lines. Since we restricted
the perturbative calculation to lowest order the ratio (	 −
γD)/	p(γD = 0) (with 	 determined by RESPET) does not
depend on the system-bath coupling γz. The QUAPI data show
small deviations between γz = 0.01/(4π ) and γz = 0.2/(4π )
for temperatures kBT = 0.2� and � but not for kBT = 0.5�

(within the accuracy of the data). This lack of γz dependence
points towards a lowest-order effect in the system-bath
coupling as determined by the extended RESPET. Surprisingly,
however, QUAPI results differ substantially from the RESPET

results except for very small dephasing γD . Furthermore,
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FIG. 3. The difference of decoherence rate and γD normalized by
	p(γD = 0) is plotted versus dephasing rate γD for two temperatures
and an extended γD range (upper graph) and for three temperatures
with a focus on small γD (lower graph).

RESPET shows with increasing γD at first a suppression of
decoherence and then an increase. The minimum shifts towards
larger γD with increasing temperature and, thus, is only visible
for kBT = 0.2� in Fig. 2. In contrast, the correct behavior as
determined by QUAPI shows at first a decrease of decoherence
which seems to level off for larger γD .

To investigate this further Fig. 3 (upper graph) plots the data
for γz = 0.01/(4π ) and kBT = 0.2� and kBT = 0.5� for an
extended range of γD . Therein, the γD dependence is very
weak for γD � 2�. The kBT = 0.2� data exhibit a shallow
minimum but the kBT = 0.5� simply levels off.

In total, we find that a perturbative approach, which is
standard to treat weak system-bath coupling successfully, fails
when the system dynamics is not Hamiltonian but follows a
Liouvillian dynamics. In detail, we studied a quantum two-
level system with phenomenological dephasing. One might
argue heuristically that a large dephasing rate γD is the result
of strong environmental noise and further that such a strongly
coupled environment even invalidates a perturbative treatment
of an additional independent noise source even when this
noise is weak, i.e., its system-bath coupling is small, i.e.,
γz � 1. Then, discrepancy between QUAPI and RESPET should

occur only for large γD . Figure 3 (lower graph) plots the
data for γz = 0.01/(4π ) and kBT = 0.2�, 0.5�, and � with
a focus on small dephasing rate γD . As expected RESPET

and QUAPI results agree for vanishing phenomenological
dephasing. Sizeable differences, however, already occur for
γD � 0.1� with stronger deviations at lower temperatures.

V. CONCLUSIONS

We have developed an effective treatment to determine the
nonequilibrium dynamics of a dephasing quantum system sub-
jected to additional environmental fluctuations. The dynamics
of the dephasing quantum system is described by a phe-
nomenological Liouville–von Neumann equation and the cou-
pling to the additional environment is treated within a system-
bath approach. To treat this system-bath coupling we have
extended the quasiadiabatic path-integral scheme to allow the
(numerically) exact treatment of a system-bath problem when
the system dynamics is determined by a Liouville–von Neu-
mann equation rather than a Hamiltonian. We have then studied
the dynamics of the dephasing quantum two-level system.

We observe a suppression of the contribution from
the environment to the decoherence rate with increasing
dephasing. Thus, dephasing suppresses the effects of
additional environmental fluctuations. We then additionally
determined the dynamics treating the system-bath coupling
perturbatively. Surprisingly, we find strong quantitative
and qualitative deviations between the perturbative and
the (numerically) exact results for the environmental
influences even for system-bath couplings which are normally
considered to justify a perturbative treatment. This shows that
the interplay of dephasing and additional environmental noise
gives rise to peculiar nonperturbative effects.

These results are important to evaluate the dynamics,
for example, of qubits, of photosynthetic complexes, and
also of quantum transport experiments. In all these cases
multiple noise sources influence the quantum system of
interest. In charge and also flux qubits pure dephasing noise
is notoriously difficult to characterize and, thus, is typically
treated phenomenologically whereas the other noise sources
are most often perturbatively treated. Our results show that
these perturbative evaluations should be used with utmost care.
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