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Topological phases and edge states in a non-Hermitian trimerized optical lattice
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Topologically engineered optical materials support robust light transport. Herein, the investigated non-
Hermitian lattice is trimerized and inhomogeneously coupled using uniform intracell coupling. The topological
properties of the coupled waveguide lattice are evaluated and we find that the PT -symmetric phase of a
PT -symmetric lattice can have different topologies; the edge states depend on the lattice size, boundary
configuration, and competition between the coupling and degree of non-Hermiticity. The topologically nontrivial
region is extended in the presence of periodic gain and loss. The nonzero geometric phases accumulated by
the Bloch bands indicate the existence of topologically protected edge states between the band gaps. The
unidirectional amplification and attenuation zero modes appear above a threshold degree of non-Hermiticity,
which facilitates the development of a robust optical diode.
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I. INTRODUCTION

Topological insulators are novel states of solid-state mate-
rials that have an insulating bulk band gap and a conducting
edge or surface [1]. The edge or surface states are symmetry
protected against local disorder and valuable for quantum
transport and computation in quantum (anomalous) Hall
insulators and quantum spin Hall insulators [2]. The optical
realization of topological systems has stimulated the field
of topological photonics, which enables the experimental
studies of topological systems that are difficult to realize in
condensed-matter physics. The photons in coupled waveguides
and optical lattices are manipulated in a manner similar to
the electrons in solids, providing intriguing opportunities
for novel optical devices [3–5]. The topologically protected
unidirectional interface state propagates robustly against local
impurities. This was experimentally demonstrated in coupled
waveguide ring resonators [6]. Synthesizing artificial gauge
fields for ultracold atoms in optical lattices enables the
construction of a two-dimensional topological system [7]. The
Su-Schrieffer-Heeger (SSH) model [8] is the simplest system
that has topologically nontrivial edge states [9–20]; this model
has been realized for a dimerized optical superlattice, wherein
the topological properties of Bloch bands were experimentally
measured [21].

As progress on topological photonics has advanced, tremen-
dous interest has also been paid to parity-time (PT ) sym-
metric non-Hermitian systems in coupled optical waveguides
[22–25], resonators [26–32], atoms, and atomic lattices
[33,34]. PT -symmetric systems can have an entirely real
spectrum, although they are non-Hermitian [35–43]. Intrigu-
ing phenomena have been revealed including fast evolution
[44–47], power oscillation [48], and unidirectional reflection-
less [49] and coherent absorption [50–52]. ThePT -symmetric
properties of an SSH chain with a pair of PT -symmetric
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potentials at boundaries have been studied [53–55]; the PT
transition threshold has a power-law decay with the SSH
chain size [54]; the Hilbert space inner product has been
constructed in the framework of pseudo-Hermitian quantum
mechanics, which provides deep insight into and novel physics
on the non-Hermitian topological systems [55]. Moreover, the
edge states are unaffected by the gain and loss when zero
probabilities are located at the edges [56,57].

Because extensive progress has been made in topological
photonics and PT -symmetric optics, the optical analysis
of topological systems has been extended to non-Hermitian
systems [58–61]. The topological interface states in non-
Hermitian systems have been systematically discussed [62].
Topologically protected PT -symmetric interface states were
demonstrated in coupled resonators [63]. Robust light interface
states were discovered at the interface between SSH chains
with distinct non-Hermiticity [64]. Topological properties
are characterized using the generalized winding number in
non-Hermitian systems [65]. PT -symmetric non-Hermitian
Aubry-André systems [66,67] and Kitaev models [68,69] were
theoretically investigated. Evidence reveals that universal non-
Hermiticity may alter topological regions [70], but topological
properties are robust against local non-Hermiticity.

In this paper, we investigate a coupled waveguide lattice
that has a trimerized unit cell and in which gain and loss
are balanced and separated by a passive waveguide. The
lattice has universal non-Hermiticity. The intracell coupling
g1 is uniform and differs from the intercell coupling g2.
The nontrivial topology of the lattice implies that it has a
conducting edge or surface. Under the periodic boundary
condition, the geometric phases accumulated are π when
the upper and lower bands circle one loop in the Brillouin
zone in the topologically nontrivial region; corresponding
edge states exist between the band gaps under an open
boundary condition. In PT -symmetric configurations, the
PT -symmetric regions possess different topologies depending
on the coupling configuration and universal non-Hermiticity.
In particular, we discover a non-Hermitian threshold above
which there exist unidirectional amplified and damped edge
states, which are located at opposite boundaries with identical
resonant frequency. The topologically nontrivial regions with
edge states are widened because of the non-Hermitian periodic
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FIG. 1. Energy bands for (a)–(c) PT -symmetric and (d)–(f) non-
PT -symmetric configurations for (a) and (d) N = 90, (b) and (e)
N = 89, and (c) and (f) N = 88. Lattice configurations are displayed
above energy bands. Here � = 1/2.

gain and loss. The threshold corresponds to a bifurcation point
in the imaginary part of the spectrum. The topological region
expands when the lattice has substantial non-Hermiticity.

The reminder of the paper is organized as follows. In
Sec. II we discuss the topological properties of a Hermitian
trimerized lattice. In Secs. III and IV we investigate the lattice’s
PT -symmetric non-Hermitian extension based on coupled
waveguides. The band structure, PT -symmetric phases, and
edge states are investigated. The results are summarized in
Sec. V.

II. THE TRIMERIZED LATTICE

We focus on the topological properties of a trimerized
lattice, which has more edge states than a dimerized SSH
chain [53–55]. The topologically protected edge states are
related to the lattice structure and are determined by the
boundary [71,72]. The trimerized lattice investigated herein
comprises three groups, which are indicated by lattice number
N = 3n, 3n − 1, and 3n − 2; when considering the coupling
configurations, the lattice is divided into three groups by
their inhomogeneous couplings at the boundary: g1-g1-g2-,
g2-g1-g1-, and g1-g2-g1-. The lattice has only six topologically
distinct configurations because of its reflection symmetry.
These configurations are illustrated above their spectra pre-
sented in Fig. 1, where each site represents a waveguide. The
three configurations in Figs. 1(a)–1(c) are PT symmetric,
whereas those in Figs. 1(d)–1(f) are not. The differences in the
configuration of the trimerized lattice result in more edge states
in the topologically nontrivial phase. The trimerized lattice
that we consider can be modeled using a one-dimensional off-
diagonal Aubry-André-Harper (AAH) Hamiltonian HAAH =∑

j [1 + λ cos(2πβj + φλ)]a†
j aj+1 + H.c., where a

†
j (aj ) is

the creation (annihilation) operator for bosonic particles. A
rational number of β = 1/3 leads to a trimerized lattice with
three bands. The amplitude λ and phase factor φλ control the
modulation of coupling strength. At φλ = 2mπ/3 (where m is
an integer), the three repeated couplings are {g1,g1,g2} with
g1 = 1 − λ/2 and g2 = 1 + λ.

(a) )c()b(

FIG. 2. Three types of edge states for configurations in
(a) Fig. 1(a) at θ = π , (b) Fig. 1(e) at θ = π , and (c) Fig. 1(e) at
θ = 0. The edge states in Fig. 1(c) at θ = 0 are depicted in (a), those
in Fig. 1(d) at θ = 0 are depicted in (b), and those in Fig. 1(f) at
θ = π are depicted in (c). Here � = 1/2.

To investigate the topological properties of the trimerized
lattice, we set the intracell coupling g1 to unity and force the
intercell coupling to change periodically as

g2 = 1 − � cos θ. (1)

The energy bands are plotted as a function of θ in Fig. 1.
The single line indicates the intracell coupling g1 and the
double lines indicate the intercell coupling g2. Edge states
with energies ±1 exist between the upper and lower band
gaps and are symmetrically arranged about zero energy. In
Fig. 1(a), four edge states (twofold degenerate) are present
in the regions −π < θ < −π/2 and π/2 < θ < π . The four
edge states are displayed in Fig. 2(a), wherein the upper
panel shows two degenerate edge states of energy +1 that
are localized on the left and right boundaries, respectively.
The amplitudes are approximately {1,1,0} for every three
sites from the boundaries. The lower panel shows the two
edge states with energy −1; the corresponding amplitudes
are approximately {1,−1,0} for every three sites from the
boundaries. In Fig. 1(b), the couplings at the left and right chain
boundaries are the intercell coupling g2 and there is no edge
state in any region of θ . In Fig. 1(c), four edge states (twofold
degenerate) exist in the region −π/2 < θ < π/2. In Fig. 1(d),
there are two edge states localized on the left boundary in
the region −π/2 < θ < π/2, as shown in Fig. 2(b), but no
edge states are localized on the right boundary. In Fig. 1(e),
there are also two edge states, in the region −π/2 < θ < π/2,
and they are both localized on the right boundary [Fig. 2(c)].
In other regions (−π < θ < −π/2 and π/2 < θ < π ), the
edge states are localized on the left boundary [Fig. 2(b)]. In
Fig. 1(f), two edge states exist in the regions −π < θ < −π/2
and π/2 < θ < π , localized on the right boundary.

The existence of edge states is related to the lattice
configuration. Edge states exist when the coupling g1 is
experienced at the lattice boundary. The configuration with
g1-g2-g1- at the boundary results in two edge states of energy
±1 in the region −π/2 < θ < π/2, whereas the configuration
with g1-g1-g2- results in two edge states of energy ±1 in the
regions −π < θ < −π/2 and π/2 < θ < π . When the lattice
has reflection symmetry, there are four edge states (twofold
degenerate). The edge states disappear in the configuration
with g2-g1-g1- at the boundary. The edges states appear at three
cases. The edge states plotted in Fig. 2(a) are for the lattice
with reflection symmetry [Fig. 1(a)]. Twofold degenerate edge
states are located at the left and right boundaries, respectively.
In Figs. 2(b) and 2(c), the edge states for the configuration
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presented in Fig. 1(e) are plotted; in this situation, one pair
of edge states with energy ±1 is located on one boundary.
The edge state amplitude is approximately {1,±1,0} for every
three sites from the boundary. The amplitude decays according
to (g1/g2)p in the regions −π < θ < −π/2 and π/2 < θ < π

and according to (g2/g1)p in the region −π/2 < θ < π/2 from
the lattice boundary (where p is the unit cell index). Inside the
unit cell, the nonzero amplitudes of edge states are symmetric
(upper panel in Fig. 2) and antisymmetric (lower panel in
Fig. 2). For edge state with energy +1, the corresponding
amplitude has overall phase difference eiπ between neighbor
unit cells; for the edge state with energy −1, the amplitude has
no such phase difference, as illustrated in Fig. 2.

III. THE PT -SYMMETRIC NON-HERMITIAN LATTICE

In this section, we investigate a one-dimensional trimerized
lattice of evanescently coupled optical waveguides. The lattice
has three sublattices A, B, and C and this spatial arrangement
induces inhomogeneous couplings. The spacing between
waveguides A and B is equal to that between B and C in a
unit cell, which differs from the spacing between waveguides
A and its nearest neighbor C. This spatial arrangement
induces a periodic modulation in every the third coupling.
The amplitudes of the waveguides in a unit cell are denoted
by ψm,A, ψm,B , and ψm,C , where m labels the unit cell index.
In coupled-mode theory, the single-mode-coupled waveguide
lattice is modeled by a tight-binding system as follows:

iψ̇m,A = −iγAψm,A + g2ψm−1,C + g1ψm,B, (2)

iψ̇m,B = −iγBψm,B + g1ψm,A + g1ψm,C, (3)

iψ̇m,C = −iγCψm,C + g1ψm,B + g2ψm+1,A, (4)

where g1 is the intracell coupling and g2 is the intercell
coupling. The waveguides losses are denoted by γA, γB ,
and γC for sublattices A, B, and C, respectively. Under the
condition γB − γA = γC − γB ≡ γ , the system reduces to a
PT -symmetric lattice with on-site potentials {iγ,0, − iγ } in
a three-site unit cell after the removal of a common loss rate γB .
The trimerized lattice chain is described by a PT -symmetric
off-diagonal AAH Hamiltonian with non-Hermitian on-site
potentials, i.e., H = HAAH + (−2iγ /

√
3)

∑
j cos(2πj/3 +

π/6)a†
j aj . The Hamiltonian H can be rewritten in a matrix

form. Examples of the SSH models are listed in Ref. [55].
Figure 3(a) schematically plots the PT -symmetric lattice

under the periodic boundary condition. For N = 3n and taking
the Fourier transformation of Bloch waves, the waveguide
lattice matrix is expressed as H = ∑

k Hk , where the wave
vector k = 2πm/n (m = 1,2, . . . ,n) and

Hk =
⎛
⎝

iγ g1 g2e
ik

g1 0 g1

g2e
−ik g1 −iγ

⎞
⎠. (5)

Notably, Hk is PT symmetric [PT Hk(PT )−1 = Hk] and
includes three energy bands. Here P is defined as the parity
operator and satisfies PAkP−1 = Ck , PBkP−1 = Bk , and
PCkP−1 = Ak (where Ak , Bk , and Ck are the corresponding
sublattices in Bloch wave-vector space); T is defined as the

I

II

A B C

m=0 1+=m1−=m

(b)

(a)

III

FIG. 3. (a) One-dimensional trimerized PT -symmetric lattice.
The unit cell has balanced gain and loss {iγ,0, − iγ } in the
dashed rectangles. Gain and loss are represented by green and red,
respectively. The passive lattice is displayed in cyan. (b) Phase
diagram in the γ -g2 space. Region II is the broken-PT -symmetry
phase; region I (III) is the exact PT -symmetric phase in the
topologically trivial (nontrivial) region.

time-reversal operator, which satisfies T iT −1= − i. The band
gaps are closed at the boundaries of the Brillouin zone: k = 0
and π . The PT transition occurs at (γ 2 − 2g2

1 − g2
2)3/33 +

(2g2
1g2 cos k)2/22 = 0. The phase diagram is depicted in

Fig. 3(b). Region II (white) represents the region in which PT
symmetry is broken. Regions I and III are the regions of exact
PT symmetry. Inhomogeneity is necessary for the existence
of an exact PT -symmetric phase and monotonically increases
with the degree of non-Hermiticity.

The lattice topology is identified by the Zak phases
of the energy bands [73,74], which are defined as θ =
i
∫ π

−π
dk〈ψR,k|dψL,k/dk〉 in a non-Hermitian system, where

ψL,k and ψR,k are the left and right eigenstates of Hk [15,64].
The geometric phases accumulated are π,0,π for g1 < g2

when each Bloch band circles one loop in the Brillouin zone
and 0,0,0 for g1 > g2. Bulk-edge correspondence means that
edge states exist in the band gaps under an open boundary
condition. The exact PT -symmetric regions I and III have
topologically distinct phases. In the PT -symmetric region I,
the geometric phases accumulated for the three bands are all
zero, which implies that region I is a topologically trivial
phase; in the PT -symmetric region III, the geometric phases
accumulated are 0 for the middle band and π for the upper and
lower bands, which reflects that region III is a topologically
nontrivial phase, and edge states exist simultaneously between
the two band gaps under an open boundary condition similar
to that shown in Fig. 1. As intercell coupling g2 is varied from
0 to 2g1, the system transitions from an exact PT -symmetric
phase with trivial topology, through the broken-PT -symmetry
phase, to an exact PT -symmetric phase with nontrivial
topology.

IV. EDGE STATES

The existence of a topologically protected edge state is an
important feature of topological systems. In Fig. 4, the real and
imaginary parts of the spectra for N = 3n, 3n − 1, and 3n − 2
at different γ are plotted. The lattice is the most sensitive to
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(a) (b)

(c) (d)

(e) (f )

FIG. 4. Energy bands of PT -symmetric configurations for
(a) and (b) N = 3n, (c) and (d) N = 3n − 1, and (e) and (f)
N = 3n − 2 for (a), (c), and (e) γ = 1/2 and (b), (d), and (f) γ = 1.
Here n = 30 and � = 1/2.

PT -symmetric gain and loss at g1 = g2 (θ = ±π/2). The
broken energy levels are raised as γ is increased and the
band gaps narrow. Edge states emerge in the bands, but their
frequency and amplifying or damping rate are independent
of the intercell coupling g2 for a lattice without defects at
the boundary (N = 3n). For N = 3n − 1, the topology is
not affected by weak non-Hermiticity and there are no edge
states [Fig. 4(c)]. However, an edge state exists at large
non-Hermiticity when γ > g2 [Fig. 4(d)] and its frequency is
resonant with that of the waveguide; the amplifying (damping)
rate is g2 dependent and increases with γ . We calculate the
edge states’ resonant frequency and estimate the threshold
gain and loss rate as follows.

Three PT -symmetric configurations are illustrated in
Figs. 1(a)–1(c). Topologically protected edge states exist in the
configurations in Figs. 1(a) and 1(c) in the absence of gain
and loss when the system is Hermitian. Notably, the system
topology is robust against the non-Hermiticity. In the presence
of gain and loss, the Hamiltonian still commutes with the
PT operator. Consequently, the eigenvalues become real or
conjugate pairs. The edge state on one side switches to the
other side of the lattice chain after thePT operation; therefore,
the edge state is not the eigenstate of the PT operator and PT
symmetry breaks. The edge states appear in conjugate pairs,
which are robust amplification or attenuation modes. In the
topological non-Hermitian optical lattice, the coexistence of
topology and non-Hermiticity enables the lattice to function
as a robust optical diode.

The Schrödinger equations for the edge states localized
on the right side satisfy ψN−2 = 0, EψN−1 = g1ψN , and
(E + iγ )ψN = g1ψN−1, from which we obtain the edge state
eigenvalues

E−,± = (−iγ ±
√

4g2
1 − γ 2

)
/2, (6)

which are damped modes because of the −iγ /2 term in E−,±.
Indeed, the damping is because the edge state probability is
mainly distributed on the lossy sites. The amplitude of the
edge states decays as (g1/g2)p from the unit cell on the right
boundary. The wave-function amplitude is {0,σ+,±,1} in each
unit cell, where σ+,± = (iγ ±

√
4g2

1 − γ 2)/2g1 indicates the
wave-function distribution. The edge states can be expressed
as

ψr = [0,(g1/g2)m−1σ+,±,(g1/g2)m−1, . . . ,0,σ+,±,1]T (7)

for the system N = 3m. For edge states localized on the left
side, the eigenvalues are

E+,± = (+iγ ±
√

4g2
1 − γ 2

)
/2. (8)

These two edge states are amplified modes. The wave-function
distribution is

ψl = [1,σ−,±,0, . . . ,(g1/g2)m−1,(g1/g2)m−1σ−,±,0]T . (9)

The decay factor is g1/g2 and the amplitude in the unit cell
is {1,σ−,±,0}, where σ−,± = (−iγ ±

√
4g2

1 − γ 2)/2g1. The
edge states are depicted in Fig. 2(a) for γ = 0. When the gain
and loss are introduced, the twofold degenerate edge states in
each band gap become one amplified and one damped pair,
with the edge state damping or amplifying rate given by γ .
The frequencies of the edge states are reduced from ±g1 to
±

√
g2

1 − γ 2/4 in the upper and lower band gaps separated by√
4g2

1 − γ 2. The first ± in the subscript of E±,± indicates that
the edge states are damped or amplified; the second ± in the
subscript of E±,± indicates that the edge states are in the upper
or lower band gap.

The edge states for γ = 0 are depicted in Figs. 2(b)
and 2(c). When γ �= 0, the right-side edge states are expressed
as

ψr = [0,(g2/g1)m−1σ−,±,(g2/g1)m−1, . . . ,0,σ−,±,1]T (10)

and the left-side edge states are expressed as

ψl = [1,σ+,±,0, . . . ,(g2/g1)m−1,(g2/g1)m−1σ+,±,0]T . (11)

The decay factor is g2/g1. Here E±,+ (E±,−) corresponds to
the edge states in the upper (lower) band gap. When g2 is on
the boundary, two edge states do not exist. If the lattice has
a different boundary of g1-g2-g1- and g1-g1-g2- on the edge,
the system has either right or left edge states, except when
g1 = g2.

Three types of PT -symmetric configurations are schemat-
ically illustrated in the PT -symmetric lattice in Fig. 5. In
all configurations, the repeated unit cells are identical; the
lattice numbers are distinct. The balanced gain and loss in
the unit cell are {−iγ,0,iγ }. In Figs. 5(b) and 5(c), the unit
cells are defective at the edges. This leads to the existence
of different edge states in the corresponding configurations.
In particular, edge states exist in conjugate pairs as the
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(d) (e) (f)

(a)

(b)
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zero

nonzerotrivial trivialnonzero

zero

trivial

zero

FIG. 5. PT -symmetric lattices with (a) integer unit cells (N = 3n), (b) a single additional site at each boundary (N = 3n − 1), and
(c) two additional sites at each boundary (N = 3n − 2). The threshold gain (loss) rate γc,e for the real part of the edge state eigenvalues
vanishes, as depicted for (d) N = 3n, (e) N = 3n − 1, and (f) N = 3n − 2. Red circles (blue squares) display numerical calculations for the
lattice with n = 30 (n = 300); black lines present the analytical results for infinite systems n → ∞. Trivial (yellow area), zero (white area),
and nonzero (cyan area) in (d)–(f) indicate the topologically trivial and nontrivial regions with the real part of the edge state eigenvalues being
zero and nonzero, respectively.

degree of non-Hermiticity increases, and the real parts of their
eigenvalues are zero.

The broken-PT -symmetry edge states with real eigenval-
ues equal to zero have been demonstrated in honeycomb and
square lattices [65]. In the configuration illustrated in Fig. 1(b),
the chain number is N = 3n − 1 and no edge state exists in the
Hermitian system (at γ = 0). Affected by the universal gain
and loss, the edge states exist when γ > g2. The Schrödinger
equations for the edge state wave functions satisfy ψN−2 =
0, (E + iγ )ψN−1 = g2ψN , and (E − iγ )ψN = g2ψN−1. The
eigenvalues of the edge states are E = ±i

√
γ 2 − g2

2, implying
that the large non-Hermiticity induces a pair of amplified
and damped edge states with their frequency shifted to the
waveguide resonant frequency. Correspondingly, the amplified
edge state with energy E = i

√
γ 2 − g2

2 is

ψr = [. . . ,0,ρ2
−,ρ−,0,ρ−,1]T ; (12)

this state is located on the right boundary with decay factor
ρ− = −i(γ −

√
γ 2 − g2

2)/g2. Conversely, the damped edge
state with energy E = −i

√
γ 2 − g2

2 is

ψl = [1,ρ+,0,ρ+,ρ2
+,0, . . .]T ; (13)

this state is located on the left boundary with decay factor
ρ+ = +i(γ −

√
γ 2 − g2

2)/g2. The amplitude of the unit cell
decays as ρ

p
± from the lattice boundary.

The edge states are localized at the lattice boundary and
decay exponentially; therefore, we analytically obtain the
confinements for the three configurations as the system size
approaches infinity (N → ∞). Detailed calculations of the
edge states are presented in the Appendix. For a system
composed of integer unit cells (N = 3n), the edge states exist
when g2 > g1 or the gain and loss satisfy

γ > γc,e = g2 + g2
1/g2, (14)

when g2 � g1. The lattice with N = 3n − 1 has two defects
in the unit cell at each boundary. Edge states exist when the
gain and loss rates are larger than the coupling g2,

γ > γc,e = g2, (15)

and for a system with N = 3n − 2, which is a lattice with one
missing site at each boundary of the unit cell, the edge states

exist when g1 > g2 or the gain and loss satisfy

γ > γc,e = g2 + g2
1/g2, (16)

when g1 � g2. The threshold γc,e is depicted in Fig. 5 for the
three PT -symmetric configurations. As shown in Figs. 5(a)
and 5(c), the γc,e for finite systems of n = 30 (red circles)
is slightly larger than that predicted for infinite systems
(black lines), whereas the γc,e for a finite system of n = 300
(blue squares) approaches that predicted for infinite systems.
Notably, γc,e in Fig. 5(b) is system-size independent; in this
case, there is one pair of eigenstates E2 = g2

2 − γ 2 and the
amplitudes at the passive sites (without gain or loss) vanish.
Therefore, the wave functions are zero for every other pair
of sites. The eigenvalues are real and the eigenstates are PT
symmetric when γ � g2; however, when γ > g2, this pair of
eigenstates become a pair of edge states with purely imaginary
eigenvalues. The edge states in the three PT -symmetric
configurations for g1 = 1, g2 = 1.5, and γ = 2.5 are plotted in
Fig. 6. The edge state located on the left boundary in Fig. 6(a)

(a)

(c)

(b)

FIG. 6. Edge state probability distributions for g2 = 3/2 and γ =
2.5 for (a) N = 3n = 90 with energies ±2i, (b) N = 3n − 1 = 89
with energies ±2i, and (c) N = 3n − 2 = 88 with energies ±i/2.
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(a) (b)

(c) (d)

(e) (f)

FIG. 7. Energy bands of PT -symmetric configurations as a
function of γ for (a) and (b) N = 3n, (c) and (d) N = 3n − 1, and
(e) and (f) N = 3n − 2. The parameters are g2 = 1/2 in the left plots
and g2 = 3/2 in the right plots. In all plots, n = 30.

is the amplified mode, which is located on the right boundary
in Figs. 6(b) and 6(c). These edge states are related to the edge
state probability and gain (loss) distribution.

The spectra of PT -symmetric configurations are plotted as
a function of γ for g1 = 1 and g2 = 1/2 and 3/2 in Fig. 7.
As γ is increased, the real parts of the spectra narrow, the
band-gap widths are reduced, and amplification (attenuation)
zero-mode edge states exist when the real parts are decreased
to zero at γc,e, which is where the edge state frequencies are
resonant with the waveguide lattice and their imaginary parts
bifurcate. The thresholds γc,e in Fig. 7 are consistent with the
red circles in Fig. 5. In Fig. 7(a), g1 > g2 and thus the threshold
is dependent on the intercell coupling g2, being γc,e = 2.655;
in Fig. 7(b), g1 < g2, the threshold is 2g1, being γc,e = 2.0.
Both of these cases are for a lattice size of N = 3n = 90. The
spectra presented in Figs. 7(c) and 7(d) are those for a lattice
size N = 3n − 1 = 89, where the threshold equals g2, being
γc,e = 0.5 and 1.5, respectively. For a lattice size N = 3n − 1,
the band gaps vanish when g1 = g2. The bulk states at the
top and bottom of the middle band become edge states when
γ > γc,e and g1 > g2; the edge states are converted from the
bulk states at the bottom of the top band and the top of the
bottom band when γ > γc,e and g1 < g2. Figures 7(e) and 7(f)
display the spectra obtained for a lattice size N = 3n − 2 = 88
when γc,e = 2.0 and γc,e = 2.226, respectively. In Figs. 7(b)
and 7(e), the edge states exist at any γ , have broken PT
symmetry, and have eigenvalues that linearly depend on γ until

bifurcation occurs at γ = 2.0. Thereafter, zero-mode edge
states exist and the amplification and attenuation of edge states
depend on (γ , g1) under a square root function, as indicated
by E±,±. In Figs. 7(a), 7(c), 7(d), and 7(f), no edge state exists
when γ < γc,e and a pair of bulk states becomes a conjugate
pair of edge states when γ > γc,e. This pair of edge states is
localized on opposite edges with identical frequency and an
equal amount of amplification and attenuation.

V. SUMMARY

A topologically nontrivial non-Hermitian trimerized optical
lattice is investigated. The PT -symmetric phases, band struc-
ture, and topologically protected edge states of a trimerized
coupled waveguide lattice with universal non-Hermiticity are
demonstrated. This lattice possesses topologies that are de-
pendent on the degree of non-Hermiticity. In the topologically
nontrivial region, the edge states are related to the configu-
rations at the lattice boundary and depend on the coupling
strengths. Two conjugate edge state pairs exist in the PT -
symmetric configurations. These edge states are symmetrically
arranged about the energy zero. Above a gain (loss) threshold,
zero-mode edge states exist and these states are amplified and
damped when propagating in opposite directions. Asymmetric
transport through edge states in the photonic lattice represents
a diode effect. The amplified edge state can be excited by
dynamical creation, which is insensitive to the initial excitation
or lattice imperfections. This robust one-way behavior has
potential applications in optical manipulation, information
processing, and unidirectional lasing.
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APPENDIX: SOLUTION OF THE EDGE STATES

In the appendix we analyze the appearance of edge states
in the three PT -symmetric configurations. For N = 3n, the
Schrödinger equations of the edge states satisfy

(E − iγ )ψ1 = g1ψ2, (A1)

Eψ2 = g1ψ1, (A2)

0 = g1ψ2 + g2ψ4, (A3)

where ψj is the wave function at waveguide j . We obtain
E2 − iγE − g2

1 = 0. When γ � 2g1,

E± =
iγ ±

√
4g2

1 − γ 2

2
, (A4)

ψ1 = − g2

(E± − iγ )
ψ4. (A5)
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The wave-function amplitude yields |ψ1|2/|ψ4|2 = g4
2/g

2
1

and the edge states exist when g2 > g1. When γ > 2g1,

E± = i
γ ±

√
γ 2 − 4g2

1

2
, (A6)

ψ1 = 2g2

i
(
γ ∓

√
γ 2 − 4g2

1

)ψ4, (A7)

and |ψ1|2/|ψ4|2 > 1 needs 4g2
2 > (γ ∓

√
γ 2 − 4g2

1)2, that is,

2(g2
2 + g2

1) − γ 2 > ∓γ
√

γ 2 − 4g2
1. If γ 2 < 2(g2

2 + g2
1), then

the wave-function amplitude of E+ satisfies |ψ1|2/|ψ4|2 > 1;
otherwise, γ 2 > 2(g2

2 + g2
1), the left side is less than zero,

and E− satisfies |ψ1|2/|ψ4|2 > 1, which requires γ 2 − 2(g2
2 +

g2
1) < γ

√
γ 2 − 4g2

1, that is,

γ >
(
g2

2 + g2
1

)
/g2. (A8)

Notably, γ > 2g1 is already satisfied.
For N = 3n − 1, the Schrödinger equations of the edge

states satisfy

(E + iγ )ψ1 = g2ψ2, (A9)

(E − iγ )ψ2 = g2ψ1, (A10)

0 = g1ψ2 + g1ψ4. (A11)

We obtain E2 = g2
2 − γ 2, ψ1 = −g2ψ4(E + iγ ), and

|ψ1|2/|ψ4|2 = 1 when γ < g2. For γ > g2, the energy E

becomes purely imaginary

E± = ±i

√
γ 2 − g2

2, (A12)

ψ1 = − g2

iγ ± i

√
γ 2 − g2

2

ψ4, (A13)

|ψ1|2/|ψ4|2=g2
2/(γ ±

√
γ 2−g2

2)2 > 1 for E−= − i
√

γ 2−g2
2,

and the corresponding edge state localizes on the left boundary.
The edge state of zero real energy appears at γ > g2 for lattice
size N = 3n − 1.

For N = 3n − 2, the Schrödinger equations of the edge
states satisfy

Eψ1 = g1ψ2, (A14)

(E + iγ )ψ2 = g1ψ1, (A15)

0 = g2ψ2 + g1ψ4 (A16)

and we obtain E2 − iγE − g2
1 = 0. When γ � 2g1,

E± =
−iγ ±

√
4g2

1 − γ 2

2
, (A17)

ψ1 = −g2
1/g2

E±
ψ4, (A18)

|ψ1|2/|ψ4|2 = g2
1/g

2
2, and the edge states exist when g1 > g2.

When γ > 2g1,

E± = i
−γ ±

√
γ 2 − 4g2

1

2
, (A19)

ψ1 = − 2g2
1/g2

i
( − γ ±

√
γ 2 − 4g2

1

)ψ4, (A20)

and |ψ1|2/|ψ4|2 > 1 requires 4g4
1/g

2
2 > (−γ±

√
γ 2 − 4g2

1)2,
that is,

(
2g4

1/g
2
2 + 2g2

1 − γ 2) > ∓γ

√
γ 2 − 4g2

1 . (A21)

If 2g4
1/g

2
2 + 2g2

1 − γ 2 > 0, that is, γ 2 < 2g4
1/g

2
2 + 2g2

1 , then
E+ satisfies |ψ1|2/|ψ4|2 > 1; otherwise, 2g4

1/g
2
2 + 2g2

1 −
γ 2 < 0, which requires γ 2 − 2g4

1/g
2
2 − 2g2

1 < γ
√

γ 2 − 4g2
1,

that is,

γ >
(
g2

1 + g2
2

)
/g2. (A22)
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