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The traditional approach to the quantum Zeno effect (QZE) and quantum anti-Zeno effect (QAZE) in open
quantum systems (implicitly) assumes that the bath (environment) state returns to its original state after each
instantaneous projective measurement on the system and thus ignores the cross-correlations of the bath operators
between different Zeno intervals. However, this assumption is not generally true, especially for a bath with
a considerably nonnegligible memory effect and for a system repeatedly projected into an initial general
superposition state. We find that, in stark contrast to the result of a constant value found in the traditional
approach, the scaled average decay rate in unit Zeno interval of the survival probability is generally time
dependent or shows an oscillatory behavior. In the case of a strong bath correlation, the transition between
the QZE and the QAZE depends sensitively on the number of measurements N . For a fixed N , a QZE region
predicted by the traditional approach may in fact already be in the QAZE region. We illustrate our findings using
an exactly solvable open qubit system model with a Lorentzian bath spectral density, which is directly related to
realistic circuit cavity quantum electrodynamics systems. Thus the results and dynamics presented here can be
verified with current superconducting circuit technology.
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I. INTRODUCTION

With the development of quantum information and com-
putation, the quantum Zeno effect (QZE) [1–4] has attracted
much attention as one of the means to prolong the quantum
coherence of an open quantum system against the influence of
its surrounding environment (bath) [5–7]. Another significant
effect in open quantum systems, the quantum anti-Zeno effect
(QAZE)—i.e., if the repeated measurements are not rapid
enough, the measurements may actually enhance the quantum
transitions—was revealed by Kofman and Kurizki [8–10].
Each of the repeated measurements on the system of interest in
most studies is considered as an ideal, instantaneous, projective
measurement. Even so, the traditional Kofman and Kurizki
approach (KKA) to the QZE and QAZE for open quantum
systems (implicitly) assumes that the bath state returns to its
original state after each instantaneous projective measurement
on the system [11–22]. Consequently, the survival probability
(SP) PKKA(t) that the system is still in its initial state |ψS〉 after
N repeated measurements with equal time interval τ is written
as

PKKA(t) = [PKKA(τ )]N

= {TrS⊗B[PSU (τ )ρtot(0)U †(τ )PS]}N, (1)

where time t = Nτ , PKKA(τ ) is the SP in the initial state right
after a single measurement is performed (N = 1) [23], PS =
|ψS〉〈ψS | is the system state projector, ρtot(0) = PS ⊗ ρB(0)
is the initial system-bath state, U (τ ) is the evolution operator
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of the total system-bath Hamiltonian, and TrS⊗B denotes a
trace taken over the degrees of freedoms of the system and
bath. However, this assumption of the KKA is not always
valid.

For a general case, the bath state changes throughout the
process. The SP in a general approach (GA) should be

P (t) = TrS⊗B{[PSU (τ )]Nρtot(0)[U †(τ )PS]N }, (2)

i.e., the trace over the system and bath variables is performed
at the end of the measurements rather than after each mea-
surement as in the KKA. In other words, the SP PKKA(t) in the
KKA is just the N th power of the SP PKKA(τ ) and thus neglects
the cross-correlation of the bath operators between different
Zeno intervals [11–22]. This yields significantly quantitatively
and qualitatively different predictions in QZE and QAZE
behaviors between the KKA and the GA, especially when
the repeated measurements project the system into an initial
general superposition state (not just in an initial single excited
eigenstate) and when the bath has a considerably nonnegligible
memory effect. It is the aim of this paper to unveil these
important differences. The key qualitative differences we find
are as follows. The average decay rate in each Zeno interval
is constant in the KKA, while it is time dependent in the
GA. In the regime of very small Zeno intervals, the SP shows
exponential-decay behavior in the KKA, but the SP in the GA
can exhibit nonexponential decay. The total average decay
rate depends only on the Zeno interval τ in the KKA, while
it also depends on the number of repeated measurement N

in the GA. Thus previous studies on QZE-QAZE transitions
[11–13] for non-Markovian open quantum systems using
the properties of the total average decay rates need to be
reexamined.
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II. MODEL AND DYNAMICS

We illustrate our results through a qubit system interacting
with a bath that has a nonnegligible bath correlation (mem-
ory) time [24,25]. The total Hamiltonian without making
the rotating-wave (RW) approximation in the system-bath
coupling reads

Htot = �

2
σz +

∑
k

ωkb
†
kbk + gσx

∑
k

μk(bk + b
†
k), (3)

where σx,z are the Pauli operators, bk (b†k) is the bath
annihilation (creation) operator for bath mode k, and � and
g are the qubit frequency and coupling constant, respectively.
We choose the bath spectral density in a Lorentzian form,

J (ω) =
∑

k

|μk|2δ(ωk − ω) (4)

= 	

π

1

(ω − ω0)2 + 	2
, (5)

with width 	, central frequency ω0, and normalization condi-
tion

∑
k μ2

k = 1. This not only relates our model directly to a
realistic circuit cavity quantum electrodynamics (QED) system
[18,19,26–31], but also allows a well-defined bath correlation
time 1/	 to characterize the memory effect of the bath.
Besides, we choose the initial density matrix for the bath as
ρB(0) = |0B〉〈0B | with bath vacuum |0B〉. The Lorentzian bath
initially in the vacuum state |0B〉 at zero temperature makes
the spin-boson model with any bilinear form of qubit-bath
coupling (with or without the RW approximation) exactly
solvable [32–34].

A. Bath representation

We describe next how to obtain an exact evolution equation
for the spin-boson model with a Lorentzian spectral density
and any bilinear form of qubit-bath coupling. First, we discuss
how a bath (with many or infinite degrees of freedom) having
a Lorentzian spectral density can be represented as a single
bosonic mode coupling with an interacting Hamiltonian in
an RW form to a fictitious white reservoir [34,35]. We
show that this representation or decomposition is not an
approximation of the original bath model but rather is exact
for a bath state initially in the vacuum state |0B〉 at zero
temperature. Consider the qubit-bath (spin-boson) model of
Eq. (3) in which no RW approximation is made onto the
qubit-bath coupling Hamiltonian. Suppose we express the bath
Hamiltonian, consisting of a collection of an infinite number
of harmonic oscillators, as∑

k

ωkb
†
kbk = ω0a

†a +
∑

q

�qd
†
qdq + a†

∑
q

γqdq

+ a
∑

q

γ ∗
q d†

q, (6)

where a is the annihilation operator of a single bosonic mode
with characterized frequency ω0, dq is the annihilation operator
of a reservoir mode q with frequency �q , and γq is the coupling
strength between the single mode and the reservoir mode q.
We may regard the original bath operators bk as the normal
modes of the right-hand-side quadratic RW coupling model.

To make this decomposition clearer, let us rewrite the bath
Hamiltonian, Eq. (6), considering the continuous spectrum
of excitations in the bath. Making use of the transformation
between the discrete boson operators dq and the continuous
ones d�,

dq = √
D(�q)

∫
1/D(�q )

d� d�, (7)

and a similar transformation between the discrete operators
bk and continuous ones bω, where D(�q)d�q is the number
of modes in the reservoir with frequencies between �q and
�q + d�q , and

∫
1/D(�q ) d� represents an integration in a band

of width 1/D(�q) around �q [35], one obtains∫
ωb†ωbωdω = ω0a

†a +
∫

�d
†
�d�d�

+ a†
∫

ν�d�d� + a

∫
ν∗

�d
†
�d�, (8)

where ν� = √
D(�)γ�, γ� denotes the corresponding quantity

of γq in the continuous spectrum representation, and the
integral

∫
d� = ∑

q

∫
1/D(�q ) d� covers the whole spectrum

of excitations of the reservoir [35]. It has been shown in
Ref. [35] that the Hamiltonian on the right-hand side of
Eq. (8) can be diagonalized and the normal modes bω satisfying
[bω,b

†
ω′ ] = δ(ω − ω′) can be expressed as

bω = ξωa +
∫

ηω,�d�d�, (9)

where ξω and ηω,� satisfy the following equations:

|ξω|2 = |νω|2
[ω − ω0 − F (ω)]2 + [π |νω|2]2

, (10)

ηω,� =
[

P
1

ω − �
+ ω − ω0 − F (ω)

|νω|2 δ(ω − �)

]
ν�ξω,

(11)

where P denotes the principal part in the integral, and

F (ω) = P
∫ |ν�|2

ω − �
d�. (12)

Furthermore, the single mode a can be reexpressed by the
normal modes as

a =
∫

fωbωdω. (13)

The coefficient fω can be determined as follows. Substi-
tuting Eq. (13) for a into the commutator [a,b†ω], one obtains
[a,b†ω] = fω; then substituting Eq. (9) for bω into the same
commutator, one obtains [a,b†ω] = ξ ∗

ω. Thus one concludes
that the coefficient fω = ξ ∗

ω. The above equations for the
diagonalization are all exact and independent of the expression
or form of the spectral density of the reservoir d�. Now,
suppose the reservoir is white, i.e., the spectral density

G(�) = |ν�|2

≡
∑

q

∣∣γq

∣∣2
δ(� − �q)

= 	/π ; (14)
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then one can easily obtain from Eqs. (12) and (10) that F (ω) =
0 and thus

|ξω|2 = 	

π

1

(ω − ω0)2 + 	2
, (15)

which is the same Lorentzian form as the spectral density
J (ω) of Eq. (5) of the original bath. Consequently, one can, by
making use of Eq. (13) with the relation fω = ξ ∗

ω and Eqs. (4)
and (5), rewrite the single mode in terms of the normal modes
in the discrete form as

a =
∑

k

μkbk, (16)

where bk and μk are the original bath annihilation operator
and qubit-bath coupling strength, respectively. Furthermore,
the commutation relation [

∑
k μkbk,

∑
k μkb

†
k] = ∑

k μ2
k = 1

confirms once again the relation of Eq. (16). Expressing the
original bath modes in the total Hamiltonian, (3), in terms
of the single mode a and the white reservoir modes dq , one
obtains

Htot = �

2
σz + gσx(a + a†) + ω0a

†a +
∑

q

�qd
†
qdq

+ a†
∑

q

γqdq + a
∑

q

γqd
†
q, (17)

where the spectral density of the white reservoir is given by
Eq. (14). Thus treating the original Lorentzian bath as a single
mode coupled to a flat white reservoir (flat continuum) in an
RW form is an exact result.

B. Exact master equation

The correlation function of the white-reservoir operators
reads

α(t,s) =
∑

q

∣∣γq

∣∣2
e−i�q (t−s)

=
∫

G(�)e−i�(t−s)d�

= 	δ(t − s), (18)

that is, the white reservoir correlation time τR → 0 is treated
as the shortest time scale in the problem. So the degrees of
freedom of the white reservoir can be traced out first regardless
of the repeated projections of the system or the form of the
system-bath interaction.

The master equation for the reduced density matrix of a
single bosonic mode (or a harmonic oscillator) coupled to a
reservoir (bath) through an RW-type coupling Hamiltonian can
be obtained exactly for an arbitrary bath spectral density (or
bath correlation function) and for an initial zero-temperature
equilibrium reservoir vacuum state [36] or an initial finite-
temperature thermal equilibrium reservoir state [37]. We
consider the original bath state to be initially in the zero-
temperature vacuum state |0B〉, which translates directly to the
no-excitation initial state of |0A〉 ⊗ |0W 〉 for the single bosonic
mode and the fictitious white reservoir [38], where |0A〉 and
|0W 〉 are, respectively, the vacuum states of the single mode
and the fictitious white reservoir. The exact master equation
of Eq. (45) in Ref. [36] was derived using only the condition

that the reservoir is initially in the zero-temperature vacuum
state, from which the reservoir’s subsequent evolution to states
different from the initial vacuum state can be determined, and
finally, the degrees of freedom of the reservoir are averaged
over without any approximation to yield the exact master
equation.

It was also shown in Ref. [36] that if the reservoir
correlation function denoted as αCF(t − s) is replaced by a
δ function, αCF(t − s) = ∑

λ |gλ|2e−iωλ(t−s) = γ δ(t − s), with
some constant γ , then the exact master equation, (36) or (45),
presented in Ref. [36] becomes Lindblad’s master equation in
the standard Markov limit. In our case here, the fictitious white
reservoir starts with a reservoir vacuum state |0W 〉 and has a
correlation function delta correlated in time as in Eq. (18). The
constant γ used in the correlation function in Ref. [36] equals
twice the width 	 here, i.e., γ → 2	. As a result, we obtain
the exact master equation for the qubit and the single mode
here as

dρ̃

dt
(t) = 1

i
[HRabi,ρ̃(t)] − 	[a†aρ̃(t) + ρ̃(t)a†a−2aρ̃(t)a†].

(19)

Here the qubit–single-mode coupling Hamiltonian

HRabi = �

2
σz + ω0a

†a + gσx(a + a†), (20)

without the RW approximation, is the single-mode version of
the spin-boson Hamiltonian Htot of Eq. (3).

The presence of the Zeno measurements, considered as a
series of repeated projections on the qubit system, does not
affect the derived form of the master equation, (19), when the
degrees of freedom of the fictitious white reservoir are traced
out or averaged over [36]. In fact, expressing the projector
PS = e−μ(I−PS ) with identity operator I and parameter μ →
+∞ [39], we can combine the dissipative evolution with
the projective measurement process as a whole nonunitary
dynamics by adding an extra anticommutator bracket term of
−μC(t){1 − PS,ρ}, where C(t) = ∑∞

n=0 δ(t − nτ ) represents
a Dirac-comb function. In this representation of Eq. (19),
the dissipative single (cavity) mode plays the role of the
original bath with a memory time of about 1/	, and the initial
system-bath state changes from the original bath state |0B〉
of ρtot(0) = PS ⊗ |0B〉〈0B | to the single-mode state |0A〉 of
ρ̃(0) = PS ⊗ |0A〉〈0A|.

We emphasize again that we, by no means, make the
RW approximation on the qubit-bath coupling Hamiltonian
in obtaining Eq. (19), even though the exact decomposition of
the original bath involves the RW coupling form of a single
mode to a white reservoir [34]. Furthermore, the exact master
equation uses only the condition that the original bath with
a Lorentzian bath spectral density is initially in the zero-
temperature vacuum state or, equivalently, the fictitious white
reservoir with the δ-correlated-in-time correlation function
is initially in its zero-temperature equilibrium state, i.e., its
vacuum state |0W 〉. Lindblad’s master equation (19), which has
the same form as a second-order Markovian master equation,
is an exact consequence of the model considered here, rather
than a second-order Markovian approximation that assumes
the reservoir correlation time is very short (but not exactly 0,
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i.e., the correlation function is not really delta correlated in
time) compared to the other time scales.

As a result, the evolution within a Zeno interval, (n − 1)τ <

t < nτ , is then determined by Eq. (19), and at t = nτ the
evolution is described by the projective measurement on the
system,

ρ̃(t+) = PSρ̃(t−)PS

= PS ⊗ 〈ψS |ρ̃(t−)|ψS〉. (21)

Equation (21) then serves as the initial state of Eq. (19)
for the evolution of the next Zeno interval. This treatment
of the dynamics presented here is exact and only the initial
condition ρtot(0) = PS ⊗ |0B〉〈0B | is used to derive the exact
master equation, even though the Zeno projections violently
change the total state from time to time. That the density
matrix of the original bath will evolve away from the initial
vacuum state |0B〉〈0B | implies that the density matrix of the
single mode will evolve away from its initial vacuum state
|0A〉〈0A|. In addition, the density matrix for the single mode
〈ψS |ρ̃(t−)|ψS〉 will in general not return to its initial vacuum
state |0A〉〈0A| after each measurement. The SP at the final time
t is given by P (t) = TrS⊗Aρ̃(t). In other words, the trace over
the bath degrees of freedom (represented here by the degrees of
freedom of the single mode) is performed at the end of the final
time t . Our treatment reflects the bath memory across different
Zeno intervals and leads to interesting dynamical effects.

III. COMPARISON TO PREVIOUS STUDIES

A. Coupling Hamiltonian in the RW approximation

For the population decay model with the coupling Hamilto-
nian in the RW approximation [25,40,41], if the measurement
in action is to determine the SP of the excited state |e〉 when
the initial state is chosen as |e〉 ⊗ |0B〉 [8,9], we show next that
in this case our master equation gives the same results for the
SP as the exact analytical solutions given in Ref. [9].

The total Hamiltonian in the RW approximation reads

HRW = �

2
σz +

∑
k

ωkb
†
kbk + g

∑
k

μk(σ+bk + σ−b
†
k), (22)

where σ± is the qubit creation or annihilation operator, respec-
tively. Suppose the bath is initially in the vacuum state |0B〉,
then since the total excitation number N = σ+σ− + ∑

k b
†
kbk

of the RW Hamiltonian, Eq. (22), is an invariant quantity [25],
the total state at time t for the case of determining the SP in the
excited state |e〉 is within the one-excitation sector and takes
the form

|�tot(t)〉 = α(t)|e0B〉 +
∑

k

ck(t)|g1k〉 (23)

with initial conditions α(0) = 1 and ck(0) = 0, where |1k〉 =
b
†
k|0B〉 denotes a state with one bath boson (photon) in mode

k. The exact solution of the time-dependent coefficient α(t) is
given by Eq. (9) in Ref. [9] and reads

α(t) = 1
2e(i�−iω0−	)t/2(A+eDt + A−e−Dt ), (24)

with A± = 1 ± (	 − i� + iω0)/2D and D =√
1
4 (	 − i� + iω0)2 − g2. So after a Zeno interval τ ,

the selective measurement to the qubit excited state projects
the total state, Eq. (23), to∣∣�M

tot(τ
+)

〉 = |e〉〈e|�tot(τ
−)〉 = α(τ )|e0B〉, (25)

where the superscript M denotes that the state to which it
is attached is the state right after the measurement, and τ±
denote the times immediately after or before the projective
measurement at time τ , respectively. In other words, the
(unnormalized) total state returns to its initial form |e0B〉
with additional coefficient α(τ ), i.e., with survival probability
PRW(τ ) = |α(τ )|2. The projective measurement removes the
system-bath correlation (entanglement) and the resultant bath
state comes back exactly to its initial state |0B〉 after each
projective measurement to the qubit excited state |e〉. Thus
after n Zeno intervals and n projective measurements to the
qubit excited state, one simply gets the (unnormalized) total
state |�M

tot(nτ+)〉 = α(nτ )|e0B〉 with

α(nτ ) = [α(τ )]n. (26)

Besides, the survival probability for the qubit to be in the
excited state at t = nτ+ is

PRW(nτ ) = ∣∣〈e∣∣�M
tot(nτ+)

〉∣∣2

= |α(nτ )|2
= [PRW(τ )]n. (27)

A comparison of the survival probability PRW(t) between
the above exact analytical solutions [9] and our numerical
simulation results using the master equation, Eq. (19), with
HRabi → HJC = �

2 σz + ω0a
†a + g(σ+a + σ−a†) for the RW

coupling Hamiltonian, is presented in Fig. 1. One can see
that they all coincide with each other for different values
of the coupling constant g and the spectral density width
	 (the strong-coupling case of g > 0.6ω0 is also verified,
although not shown). In other words, our numerical treatment
reproduces exactly the analytical theory of Ref. [9], regardless
of how large the qubit-bath coupling strength and the bath
correlation time are. This fact demonstrates that our master
equation is exact (even though the white-noise dissipative
terms look like a standard second-order Markovian Lindblad
equation), and thus our master equation approach is a correct
and valid tool to study the qubit-bath dynamics in the quantum
Zeno process.

Actually only in the above case of determining the SP in the
excited state |e〉 is the result for the SP in the GA the same as
that in the KKA [9]. However, if the repeated measurements
project the qubit system into an initial general superposition
state of |ψS〉 = α|e〉 + β|g〉 (not just into the initial excited
state |ψS〉 = |e〉), where |g〉 is the qubit ground state, the bath
state after each projective measurement is different. Within the
first Zeno interval 0 < t < τ , the total state can be written as

|�tot(t)〉 = α(t)|e0B〉 + β(t)|g0B〉 +
∑

k

ck(t)|g1k〉, (28)

with the initial condition α(0) = α, β(0) = β, and ck(0) = 0.
The time-dependent coefficients can still be exactly obtained
within the first Zeno interval, with α(t) given by Eq. (24) and
β(t) = β. Then the projection of the selective measurement at
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FIG. 1. Survival probabilities as functions of time for |ψS〉 = |e〉 and ω0 = �, with the analytical solution from Ref. [9] and the numerical
solution from our master equation. (a) g/ω0 = 0.3, 	/ω0 = 0.1, (b) g/ω0 = 0.3, 	/ω0 = 0.3, (c) g/ω0 = 0.6, 	/ω0 = 0.1, and (d) g/ω0 = 0.6,
	/ω0 = 0.3.

time τ makes the (unnormalized) bath state∣∣ψM
B (τ+)

〉 = 〈ψS |�tot(τ )〉
= [α∗α(τ ) + |β|2]|0B〉 + β∗ ∑

k

ck(τ )|1k〉. (29)

One clearly sees that this bath state does not return to the initial
bath vacuum state |0B〉. The SP after the first measurement can
be calculated exactly as

PRW(τ ) = 〈
ψM

B (τ+)|ψM
B (τ+)

〉
= ∣∣α∗α(τ ) + |β|2∣∣2 + |β|2

∑
k

|ck(τ )|2

= |α∗α(τ ) + |β|2|2 + |β|2(|α|2 − |α(τ )|2). (30)

However, the (unnormalized) initial total qubit-bath state for
the second Zeno interval reads∣∣�M

tot(τ
+)

〉 = |ψS〉 ⊗ ∣∣ψM
B (τ+)

〉
= |ψS〉 ⊗ [α∗α(τ ) + |β|2]|0B〉

+|β|2
∑

k

ck(τ )|g〉 ⊗ |1k〉

+ β∗α
∑

k

ck(τ )|e〉 ⊗ |1k〉, (31)

which contains a two-excitation state |e1k〉 that goes out the
zero-excitation and one-excitation Hilbert space that we set
initially for the total-state evolution in the first Zeno interval.
Continuing the analysis, one finds that the initial total state for

the evolution of the nth Zeno interval contains n excitations,
which is too complex to solve analytically. Thus, we have
PRW(nτ ) �= [PRW(τ )]n for a general initial qubit state even with
the qubit-bath coupling Hamiltonian in the RW approximation.
In the following, we still compare the SP in this case between
the approximated analytical result PRW(nτ ) ≈ [PRW(τ )]n,
which assumes that the bath state returns to its initial state
after each projective measurement, and that of our master
equation in Fig. 2. For the weak-coupling case g = 0.06
shown in Figs. 2(a) and 2(b), the approximated results of the
KKA [9] agree very well with our exact numerical results,
while they deviate from each other in the strong-coupling
case g = 0.6 as shown in Figs. 2(c) and 2(d). The deviation
certainly comes from the changes in the bath state. Therefore,
our calculated results demonstrate that the bath state indeed
changes in the Zeno projection process in the strong-coupling
regime.

B. Coupling Hamiltonian without the RW approximation

For the original spin-boson model without the RW approx-
imation, one cannot obtain an exact solution in the total wave
function approach even for the first Zeno interval. References
[20,21] are studies of spin or qubit underrepeated nonselective
quantum nondemolition (QND) measurements in this model
using a perturbation theory for the system-bath coupling
strength and assumed the bath to be an immutable entity.
The effect of nonselective, nonintrusive QND measurements
is to erase the qubit-bath correlation, transforming their joint
density matrix into an approximated factorized form. Then
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FIG. 2. Survival probabilities as functions of time, with the approximated analytical result and the numerical solution of our master equation,
in which the Zeno interval �τ = 0.1, ω0 = �, and |ψS〉 = 0.8|e〉 + 0.6|g〉. (a) g/ω0 = 0.06, 	/ω0 = 0.1, (b) g/ω0 = 0.06, 	/ω0 = 0.3, (c)
g/ω0 = 0.6, 	/ω0 = 0.1, and (d) g/ω0 = 0.6, 	/ω0 = 0.3.

the reduced density matrix of the qubit remains diagonal
throughout the considered evolution and can always be written
in Gibbs form, ρS(t) = Z−1e−β(t)HS , where β(t) is the time-
dependent effective inverse temperature that characterizes
“heating” and “cooling” (cited from Secs. 2.1 and 2.2 in
Ref. [21]).

Despite the existing key differences in the measurement
scenario and in the measurement effect on the subsequent
qubit dynamics, we make comparisons and clarify the validity
between the master (rate) equation used in Refs. [20,21] and
that used in our work. Taking the zero-temperature system-bath
product state |g0B〉 as the initial state (which is the same
as that in Fig. 1 in Ref. [20]), where |0B〉 represents the
bath vacuum state, we calculate the excited-state population
ρee by our master equation following the dynamical rules in
Ref. [20]. References [20,21] provided equations of motion of
the elements of the reduced density matrix,

d

dt
ρee = − d

dt
ρgg = −Reρee + Rgρgg, (32)

with Re(t) = 2
∫

G0(ω) sin (ω−�)t
ω−�

dω and Rg(t) = 2
∫

G0(ω)
sin (ω+�)t

ω+�
dω. Taking the Lorentzian spectrum to be

G0(ω) = g2 1

π

	

(ω − ω0)2 + 	2
, (33)

we present in Fig. 3 the excited-state population as a function
of time given by the two master (rate) equations, namely,
Eqs. (19) and (32). One can see that in the weak-coupling
regime [Figs. 3(a) and 3(b)], the results obtained by the
two master (rate) equations agree well with each other. This
demonstrates that our master equation can reproduce the

heating-up behaviors studied in Ref. [20]. However, in cases
of moderate coupling [Figs. 3(c) and 3(d)], the results with the
two master equations are significantly different in the long-
time regime, in which the excited-state population (shown by
dashed red lines) given by the master (rate) equation in Refs.
[20,21] even falls below 0. This nonphysical result, which is
more evident in the strong-coupling regime, indicates that the
master (rate) equation in Refs. [20,21] becomes improper to
use in these cases, while our exact master equation is still
suitable even in the strong-coupling regime.

We note here that in the text of and Supplementary
Information to Ref. [20], the postmeasurement bath state and
the system-bath correlations are described both analytically
and numerically, and in the Supplementary Information to
Ref. [21], the small deviation of the bath state from the original
Gibbs form is discussed in the weak-coupling perturbation
theory, whereas Ref. [22] shows that the bath change is
drastic if only a few modes in the bath play a role. These
studies [20–22] recognized changes in the bath state, but
the effects were argued not to be substantial, due mainly
to the fact that many or an infinite number of bath modes
were considered and the investigations were conducted within
the weak-coupling perturbation theory [20,21]. Using our
approach of representing the infinite number of modes of
the original Lorentzian bath as a single mode coupled to a
fictitious white reservoir of an infinite number of modes, after
the infinite number of modes of the white reservoir are traced
out, the resultant master equation describes a qubit interacting
with effectively a dissipative single mode. When only one bath
mode plays a significant role, the results in Refs. [20,21] will
also apply to this case of bath changes.

032101-6



QUANTUM ZENO AND ANTI-ZENO EFFECTS IN OPEN . . . PHYSICAL REVIEW A 96, 032101 (2017)

0 2 4 6 8 10 12

Δt/π

0

3

6

9

ρ
ee

×10-4

(a) 

Our method
Refs. [20-21]

0 2 4 6 8 10 12

Δt/π

0

0.01

0.02

0.03

ρ
ee

(b) 

Our method
Refs. [20-21]

0 2 4 6 8 10 12

Δt/π

-0.05

0

0.05

0.1

ρ
ee

(c) 

Our method
Refs. [20-21]

0 2 4 6 8 10 12

Δt/π

-0.2

0

0.2

0.4

ρ
ee

(d) 

Our method
Refs. [20-21]

FIG. 3. Excited-level populations given by our master equation (solid blue lines) and the master (rate) equation used in Refs. [20,21] (dashed
red lines). The dynamic from �t = 0 to �t = 8π corresponds to natural relaxation, and for �t > 8π it experiences nonselective measurements
with interval �τ = π/2. Parameters are ω0 = �, 	/� = 0.03. (a) g/� = 0.01, (b) g/� = 0.05, (c) g/� = 0.01, and (d) g/� = 0.03.

IV. EFFECTS OF BATH STATE CHANGES AND BATH
CORRELATION TIME ON QZE

Next we analyze the properties of the average decay rate in
each Zeno interval defined by λn = 1

τ
ln [P (nτ )/P (nτ + τ )].

As stated, the bath state after a projective measurement for
general situations and models is different from the bath state
after its previous measurement (i.e., the initial state at the
beginning of each Zeno-interval evolution is different), and
thus the average decay rates in different Zeno intervals do
not equal each other and display rich effects and phenomena.
To characterize the changing decay rates between different
Zeno intervals, we investigate the behavior of the average
decay rate in each interval λn. In the KKA (or in the
RW-approximated model with projection measurement into
|ψS〉 = |e〉 in Refs. [8,9], only the total average decay rate
�N (τ ) = − ln P (Nτ )/Nτ is used due to the assumption (fact)
that the bath state does not change from its initial state and the
average decay rates in different Zeno intervals are the same
(i.e., the total average decay rate equals the average decay
rate in a single Zeno interval). Furthermore, the QZE (λn → 0
as τ → 0) indicates λn ∝ τ for small τ , so it is natural to
define their ratio wn = λn/τ as a meaningful and significant
physical quantity to characterize the general QZE. We call
wn the scaled decay rate in unit Zeno interval. In the limiting
case of continuous Zeno measurements in which τ → 0, the
ratio wn is actually finite and the discrete series wn becomes a
continuous function of time, namely,

lim
τ→0,nτ→t

(λn/τ ) = w(t),

and the SP takes the form of

P (t) = exp

[
−τ

∫ t

0
w(t ′)dt ′

]
. (34)

When w(t) is a constant, the decay is exponential. But if
w(t) varies explicitly with time, the decay is nonexponential.
w(t) in the KKA is always a constant. Thus in the Zeno limit
τ → 0, the SP always shows exponential-decay behavior in the
KKA, but the SP in the GA can still exhibit nonexponential
decay. We can derive an analytical expression for the SP in
the τ → 0 limit, which can not only provide us with an un-
derstanding of the SP in the very-short-τ regime but also give
a verification of the numerical master equation approach. To
obtain the explicit analytical expression of w(t) in the τ → 0
limit, we first directly calculate the total state |�tot(t)〉 after
n measurements by |�tot(t)〉 = (PSe

−iHtotτ )
n|ψS0B〉. Then

obtaining the SP P (t) = 〈�tot(t)|PS |�tot(t)〉 to the dominant
order in τ and expressing it in the form of Eq. (34), we obtain

w(t) = 〈
H 2

Sη(t)
〉 − 〈HSη(t)〉2 + g2(1 − 〈σx〉2), (35)

where HSη(t) = �σz/2 + gσx[η(t) + η∗(t)], and real function

η(t) = g〈σx〉[e−(	+iω0)t − 1]/(ω0 − i	). (36)

This analytical expression of Eqs. (34) and (35), provides a
good check for the SP in the small-τ regime calculated by the
numerical method of Eqs. (19) and (21).

In Fig. 4, the numerical results of wn along with the
analytical result w(t) are presented for repeated projections
to a general initial system state but different τ , g, and 	. The
series {λn = wnτ }, which shows an oscillatory behavior as a
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FIG. 4. Scaled decay rates per Zeno interval wn = λn/τ as functions of time t with Zeno interval τ = 1/� (dotted blue lines), τ = 0.5/�

(dash-dotted red lines), and τ = 0.1/� (dashed yellow lines) for different values of 	 and g by the numerical solutions. Solid black lines are
the analytical results in the continuous limit τ → 0 from Eq. (35). (a, b) 	/� = 0.1; (c, d) 	/� = 0.3. (a, c) g/� = 0.1; (b, d) g/� = 0.8.
The initial state is |ψS〉 = 3/5|e〉 + 4/5|g〉, where |e〉 and |g〉 are the ground and excited states of the qubit, and the parameter ω0/� = 1. (a)
g/� = 0.1, 	/� = 0.1, (b) g/� = 0.3, 	/� = 0.1, (c) g/� = 0.1, 	/� = 0.3, and (d) g/� = 0.3, 	/� = 0.3.

function of n (t = nτ for a fixed τ ), refers to the variation of
the average decay rate across different Zeno intervals, which
is significantly different from the oscillatory behavior of the
SP (not in the average decay rate) over time t obtained by
the KKA or presented in Refs. [8,9], in which the average
decay rate in each Zeno interval is a constant. The numerical
results for short τ = 0.1/� (dashed yellow lines) agree quite
well with the analytical ones (solid black lines). Besides, w(t)
exhibits a damped oscillation with time, indicating that the
scaled average decay rate in unit τ for a general initial state is
qualitatively different from the constant average decay rate of
the traditional QZE.

Furthermore, Fig. 4 presents the quantitative effects of the
bath central frequency ω0, the qubit-bath coupling strength g,
and the bath memory time 1/	 on the nonexponential decay
of P (t) through the behavior of w(t). In each panel, w(t)
clearly exhibits damped oscillations because w(t) of Eq. (35)
contains both η(t) + η∗(t) and its square term, with damped
oscillation frequencies ω0 and 2ω0, respectively. Since the 2ω0

term is proportional to g4, its contribution is much less than
the ω0 term, which is proportional to g2 for low coupling
strengths. Thus the 2ω0 component visible in Fig. 4(b) is not
seen in Fig. 4(a). Moreover, as g decreases from Figs. 4(b) to
4(a) as well as from Figs. 4(d) to 4(c), the amplitudes of the

damped oscillations also decrease. This indicates that for very
weak system-bath coupling in the KKA, assuming that the
bath state does not change significantly from its original state
can be justified [20–22]. Figure 4 also shows the influence of
	 on the damping behavior of w(t). The damping rate of w(t)
is, as shown in Eq. (36), just the width 	 of the Lorentzian
spectrum, namely, the dissipation rate of the single (cavity)
mode, whose inverse value 1/	 characterizes the memory time
of the Lorentzian bath. When 	 = 0, the qubit is effectively
coupled to a single mode and exchanges information with it
periodically. As a result, w(t) oscillates without damping. For
finite values of 	, if the evolution time t is much longer than
the memory time 1/	, then w(t) will approach a constant
value just like the traditional QZE.

The analytical result of wKKA in the continuous limit τ → 0
in the KKA can be found by wKKA = 〈�tot(t)|H 2

tot|�tot(t)〉 −
〈�tot(t)|Htot|�tot(t)〉2 = (�/2)2(1 − 〈σz〉2) + g2 [8]. For finite
Zeno interval τ , we can express the SP PKKA(τ ) asso-
ciated with one measurement in the KKA as PKKA(τ ) =
|〈ψS0A|e−iHeffτ |ψS0A〉|2, where Heff = HRabi − i	a†a is the
effective non-Hermitian Hamiltonian, which takes into ac-
count the single-mode decay [34,42]. The result of wKKA for
finite τ can thus be obtained by wKKA = − 1

τ 2 ln PKKA(τ ), with
the dynamics of PKKA(τ ) solved numerically. The comparisons
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FIG. 5. Functions w(t) and constants wKKA for different initial states of |ψS〉 = α|e〉 + β|g〉, with (α,β) equal to (a) (3/5,4/5), (b)
(3/5,eiπ/84/5), (c) (4/5,3/5), and (d) (1,0). The results of w(t) for τ = 1/� (dash-dotted blue lines) are calculated numerically using Eqs. (19)
and (21), and for the continuous limit τ → 0 (solid yellow lines) the results are calculated analytically using Eq. (35). The results of wKKA for
τ = 1/� (dotted green lines) as well as τ = 0.01/� (small red circles) are calculated numerically, and for the continuous limit τ → 0 (dashed
black lines) the results are calculated analytically using the formulas in the KKA described in the text. Other parameters used are ω0/� = 1,
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between functions w(t) and constants wKKA for the same pa-
rameters but different values of τ are presented in each panel in
Fig. 5. One can see that the numerical results of wKKA for �τ =
0.01 (small red circles) agree well with the analytical results of
wKKA for τ → 0 (dashed black lines), which again verifies the
single-mode approach used in this paper. Compared to wKKA,
the function w(t), taking account of the cross-correlation of the
bath operators between different Zeno intervals and the bath
memory time, exhibits rich phenomena. The SP right after the
first Zeno measurement in the GA is always larger than or
equal to that in the KKA since P (τ ) = TrB〈ψS |ρtot(τ )|ψS〉 �
〈0B |〈ψS |ρtot(τ )|ψS〉|0B〉 = PKKA(τ ). Note, again, that in the
Zeno limit τ → 0, wKKA is a constant but w(t) shows damped
oscillation behavior for general initial states. The constant
wKKA, by means of Eq. (34), leads to the exponential-decay
SP P (t) = e−τwKKAt (w−1/2

KKA is just the Zeno time). Therefore,
the fact that the SP of a general initial qubit state in the
regime of very small Zeno intervals shows exponential-decay
behavior in the KKA, but shows nonexponential decay in
our GA, is also an important major difference between these
two approaches, even though at large Zeno time intervals
the different approaches may all show damped oscillatory
behaviors in the SP. Depending on the initial states and the
value of τ , w(t) can then, as shown in Fig. 5, be greater or less
than wKKA.

Moreover, the relative phase between the basis states of
|e〉 and |g〉 of the initial qubit state |ψS〉 = α|e〉 + β|g〉 has
[compare Fig. 5(a) with Fig. 5(b)] an important effect on w(t).
In contrast, the KKA results near the continuous limit do not
depend on the relative phase in the initial state, for the initial
phase is not explicitly contained in the expression of wKKA.
In fact, in the model investigated, wKKA in the continuous
limit depends only on 1 − 〈σz〉2, so wKKA is the same for the
particularly chosen different initial states in Figs. 5(a)–5(c).
In Fig. 5(d), the scaled decay rates w(t) in the continuous
limit τ → 0 (solid yellow line) is a constant and equals wKKA

(dashed black line), i.e., w(t) = wKKA = g2. This is because
the initial state |ψS〉 = |e〉 makes 〈σx〉 = 0 and thus according
to Eq. (36) the amplitudes of the oscillation parts of w(t) are
0. But for finite Zeno interval τ , wn still oscillates with time
(dash-dotted blue line), attributed to the higher-order effect of
the finite value of τ .

V. TRANSITION BETWEEN THE QZE AND THE QAZE

Next we discuss the transition between the QZE and the
QAZE. It is known that a longer Zeno interval may lead
to the QAZE. In the KKA, the total average decay rate
λKKA(τ ) = − ln P (t)/t = − ln P (τ )/τ depends only on τ and
is independent of the number of measurements N . One may
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FIG. 6. Total average decay rate �N as a function of the Zeno interval τ for various numbers of measurements N . (a–c) The width is
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define d
dτ

λKKA(τ ) > 0 as the QZE and d
dτ

λKKA(τ ) < 0 as
the QAZE, with the QZE-QAZE transition point called the
transition time τ c [8,14–17]. As we have seen, the decay rate
per Zeno interval λn or scaled decay rate wn varies also with the
number of measurements. Thus the QZE-AZE transition point
should depend also on the number of measurements N [16].
The total average decay rate, �N (τ ), for N measurements
is defined as �N (τ ) = − ln P (Nτ )/Nτ = 1

N

∑N−1
n=0 λn. For

each given N , we define d
dτ

�N (τ ) > 0 as the QZE and
d
dτ

�N (τ ) < 0 as the QAZE, with the transition time τ c
N given

by the transition points. This definition for the transition
between QZE and QAZE is a straightforward extension of
the traditional definition, i.e., for N = 1, it goes back to the
traditional definition.

The total average decay rates �N (τ ) as functions of τ

with initial state |ψS〉 = |e〉 for various N ’s presented in
Fig. 6 are different from each other, and for each N there
is a corresponding transition time τ c

N . This is qualitatively
different from the traditional QZE-QAZE transition. As N

increases, the transition time τ c
N becomes smaller. This may

lead to an interesting result. For example, in Fig. 6(b), the
transition point for N = 1 (black line) is near τ = 3/�, while
those for N = 8 and 16 (green and blue lines, respectively)
are close to τ = 2/�. If the Zeno interval is set to be
fixed at τ = 2.5/�, then the KKA (N = 1) would predict
a QZE, while the general approach predicts a qualitatively
different QAZE for large-N measurements. Besides, the
blue curves in Figs. 6(b) and 6(c) show multiple transition

points, which might be regarded as multiple QZE-QAZE
transitions [16].

The parameters 	 and g also have significant effects on the
transition between the QZE and the QAZE. In Figs. 6(a)–6(c),
with a small width, 	/� = 0.1, the curves for various N ’s
separate from one another, while in Figs. 6(d)–6(f), with
a larger width, 	/� = 0.3, the curves almost overlap one
another. One can also observe that the curves of various
N ’s deviate from one another in the strong-coupling regime
[Figs. 6(c) and 6(f)] but are close to one another in the
weak-coupling regime [Figs. 6(a) and 6(d)]. In the regime
of large 	 (short bath correlation time) and small g (weak
coupling), as in Fig. 6(d), all the curves for different N ’s tend
to overlap one another, and the QZE and QAZE behaviors
approach those of the KKA.

VI. CONCLUSION

In summary, we have investigated the influence of the bath
memory effect on the QZE and QAZE. The assumption that
the bath state resets to its original state after each instantaneous
projective measurement on the system in the traditional
approach ignores equivalently the cross-correlations of the
bath operators at different Zeno intervals. For measurements
projected to a general initial system state and for a bath with
a considerable memory effect, the assumption is not valid.
To solve the dynamics, we derive an exact master equation
for a Lorentzian bath which is suitable for the case where the
qubit system undergoes time-dependent nonunitary operations
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such as Zeno projections, and we compare it with former
methods for verification. Based on the exact result we find
that, in stark contrast to the behaviors found in the KKA, the
scaled average decay rates in unit Zeno interval wn in our GA
display an oscillatory behavior, enabling, even in the regime
of very small Zeno intervals, a nonexponential decay behavior
in the SP, and the total average decay rate depends not only
on τ but also on the number of repeated measurements N .
For a fixed N , some values of τ for which the traditional
approach predicts a QZE region may in fact already be in the
QAZE region. Overall, the width 	 characterizes the damping
rate of the memory and the system-bath coupling strength
g characterizes the memory depth of the bath. So small 	

and large g make the cross-correlation between different Zeno
intervals substantially nonnegligible, resulting in significant
quantitative as well as qualitative differences between the GA
and the KKA. Our results provide an essential step toward

a further in-depth and comprehensive understanding of the
complex problems of the QZE and QAZE in open quantum
systems. It will be interesting to see whether our predictions
can be verified experimentally in realistic systems such as
superconducting circuit QED systems.
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