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Starting from the de Gennes theory of director fluctuations in nematics, we report on a model of the spatial
fluctuations in nematicon propagation. We demonstrate that, when the long-range correlation that characterizes
nematic liquid crystals is taken into account in the thermal noise, it is possible to account for the spatial oscillations
and propagation losses experienced by nematicons. Increasing the power of the nematicon, the oscillation
amplitudes increase and the propagation losses decrease. The nematicon is then more strongly confined and
deviates more, but is less scattered by the thermally induced perturbations of the refractive index. All the results
are in good agreement with the experimental observations.
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I. INTRODUCTION

Liquid crystals (LCs) are a particular phase of matter which
is between the solid and the liquid states. Their long-range
order, combined with their molecular optical anisotropy, gives
rise to a macroscopic birefringence. Moreover, their viscosity
allows the molecules to flow one over the other which
makes them very sensitive to external stimuli (mechanical,
electrical,...) [1]. For these reasons, when an optical beam
is injected into a cell filled with nematic LCs with positive
anisotropy, the LC molecules are reoriented along the optical
electric field, inducing a local increase of the refractive index.
The so-created optical waveguide can prevent the diffraction
of the beam, which propagates maintaining its transverse
intensity profile. This solitonlike propagation is termed a
nematicon, as it occurs in nematic liquid crystals [2-7].

Nematic LCs are characterized by a macroscopic mean
orientation of the LC molecules, called the director and
represented by the unitary vector 7. Thermal noise induces
local variations of the director, described by the functions
n;(r), ny(F) and whose average is zero. These fluctuations,
which cannot be too abrupt in space due to elastic restoring
forces between the molecules, are well described by the de
Gennes theory [1,8]. Starting from the Oseen-Frank continuum
theory for LCs, de Gennes theory predicts the value of
the spatial correlation of the director fluctuations. These
long-range fluctuations are responsible for optical scattering
in liquid-crystal materials. This scattering is six orders of
magnitude larger than in conventional isotropic fluids which
are dominated by the Rayleigh scattering [1] and is the main
contribution to optical propagation losses in liquid crystals [9].

From the de Gennes theory, it is possible to extract the
variance of the molecular fluctuations, which can be used to
predict nuclear spin fluctuations [10], asymmetry in electron
resonance spectra [11], and to define the order parameter
that characterizes nematic LCs [1]. The off-diagonal elements
of the covariance matrix described by de Gennes take into
account the long-range interactions of the molecules and the
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spatial correlation of the director within the LC cell. These
correlations are often neglected when considering director
fluctuations in liquid crystals.

The proper modeling of the director fluctuations is of
particular importance for the understanding of phenomena
that depend on noise, such as modulation instability [12,13],
filamentation [14], or speckle formation [15,16]. Also, the
thermally induced refractive index fluctuations are responsible
for soliton spatial fluctuations. Indeed, when the power is high
enough to induce the nematicon diameter to be of the same
order of magnitude as or smaller than the refractive index
grains, nematicon spatial fluctuations are observed [17,18].
Different ways to quench the fluctuations have been proposed,
ranging from applying an external electric field [19] to the
polymerization of the medium [20].

In this work we explicitly make use of the full correlation
matrix in our simulations to generate a model of long-range
correlated noise starting from the elastic constants of the LCs
and the thermal energy of the system. First, we consider the
linear propagation regime in order to explain the origin of
speckle formation. Then the nonlinear propagation and the
soliton formation are analyzed and our model is experimentally
verified. Our results demonstrate that consideration of the
correlation is crucial to explain the origin of the nematicon
fluctuations.

II. ANALYTIC AND NUMERICAL MODELING
A. Geometry of the system

The geometry of the LC cell is similar to previous works
[21]. It consists of two substrates with planar alignment and a
rubbing direction of 6y = 45° with respect to the z axis and
a cell gap of 75 um [Fig. 1(a)]. It is filled with a solution of
1 wt % of pyrromethene 597 dye (PM597, Sigma-Aldrich) in
E7 nematic LC (Merck). Note that for this study the presence of
the dye is not relevant since it does not absorb the cw 1064 nm
infrared light of the laser used to excite the nematicons. The
light is injected into the cell through an optical fiber slid be-
tween the two substrates, with a cladding diameter of 64.4 ym,
acore diameter of 2.9 ym, and a cut-off wavelength of 550 nm.
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FIG. 1. (a) Schematic of the nematicon injection into the LC cell
through an optical fiber. (b) Nematicon profile generated for a beam
of 3.7 mW at 23 C°; the scale bar is 500 #m. (c) Example of generated
correlated noise.

The injected mode is thus almost Gaussian with a radius of
3.7 um. The phase front is assumed to be planar at the exit of
the fiber.

B. Analytic and numerical model

We consider a monochromatic optical beam with a slowly
varying envelope A(F) propagating in the medium with
the wave vector k parallel to the z axis in the paraxial
approximation. We also assume the light to be polarized along
the x axis (scalar approximation). With these assumptions the
propagation equation reads [4,17]

)
2z'k0nr8it = AL A+ [k As(sin® 0 — sin® 6p)] A
Z
oA
+ 2ikon, tan 5(0)3—, )
X

where § = 6(F) is the angle between k and the director
ng, Ae =g, —¢, is the dielectric anisotropy at optical
frequencies, n, = /&1 + Ag sin2 () is the refractive index
for input light (where the molecules are at 0 = 6)), A, is
the transverse Laplacian operator, and kg = 27/ is the wave
number in vacuum. The last term of Eq. (1) takes into account
the effect of the walk-off angle §(0) arising from the anisotropy
of the medium and defined as [2,5]

Ae sinf cos 6

tand(0) = ——.
an (9) &1 + Age cos2 0

2
The nonlinear response of the LC can be described by the
Euler-Lagrange theory in the one-constant approximation [2]

KA L6+ 1esin{2[0 — 8(0)]}Ae|A* = 0, (3)

where K is the elastic constant of the LC.

The system of coupled equations (1) and (3) is solved
as follows. Discretizing in the z direction, at step N, the
equilibrium distribution 6(x,y,zy) of the molecules is found
by integrating Eq. (3) for the field .A(x,y,zy). Equation (1)
is then solved with this molecular distribution to compute the
field distribution at step N + 1. Equation (1) is integrated using
a beam propagation method (BPM) along z, while Eq. (3) is
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solved with the Newton-Raphson method [22]. Both Egs. (1)
and (3) are discretized with a Crank-Nicolson method, in order
to conserve the energy of the propagating beam [22].

Finally, note that a coordinate transformation is used which
effectively tilts the frame of reference by an angle §(6)) with
respect to z in order to decrease the numerical errors [23]. This
change of coordinates x’ = x + z tan§(6y), ¥ = y,and 7’ = z
decreases the amplitude of the walk-off term, without affecting
the term A, A or changing the orientation of the electric field
polarization.

C. Correlated noise

Experimentally, it has been observed that high power
nematicons show fluctuations in their spatial trajectory
[Fig. 1(b)]. This has been explained as being due to a deflection
of the soliton direction with refractive index perturbations
when the soliton diameter becomes comparable to the typical
size of the refractive index perturbations [17,18,20].

In the modeling presented above, the noise is not yet taken
into account. As the refractive index perturbations originate
from the thermal noise, the model of Eqs. (1) and (3) cannot
be used directly to account for the soliton fluctuations.

The fluctuation theory for nematics was originally de-
veloped by de Gennes [1,8,24]. In his work, starting from
the Oseen-Frank continuum theory for LCs, he expressed
the free-energy contribution due to the director fluctuations
(nz,ny) in the frame of reference (£,$,2), where the axis
2 lies along the director 79. Then he evaluated the average
of these fluctuations using the equipartition theorem from
statistical mechanics. The expression for the correlation of
ne (@ = £,9) between two points 7| and 7, separated by R,
when a low-frequency external electric field Ecx is applied
along Z, is given by the expression

kgT /qm“ exp(iq - R) .
0

(na(FOna (71 + R)) = Ky sre2di @

where (-) denotes the thermal average from the equipartition
theorem, the components of g are g = 27/ with 8 = X,3,2,
and & = K /(g9 Ae|Eex|?) is the so-called coherence length.
The integral is limited between zero and gma.x = 27 /a, where
a is the smallest size below which the continuum theory is no
longer valid. de Gennes showed that, in the limit ||§|| > a,
Eq. (4) simplifies to

kgT
47 KR

(ne(F)ng (1 4+ R)) = exp(—R/$§). (5)
This equation shows the truly long-range (o< 1/R) correlation
in nematic LCs, which is exponentially damped in the presence
of an electric field.

Equation (4) describes the covariance matrix, where the
diagonal elements, obtained for R — 0, correspond to the
variance of the fluctuations around the director

2y kBT _l
<na>—2n2K<qmax %), (©6)

which can be used to evaluate the order parameter of the
system [10,25]. As gmax = 27 /a, the proper choice of a is
crucial in order to evaluate the amplitude of the fluctuations
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and it is usually taken to be of the order of magnitude of
the intermolecular [1,11] or intermicellar [10] distance, values
below which the continuum theory of LCs is no longer valid.
The values of R in Eq. (4) are limited to the points on
the discretization grid. Since this grid (Ax = Ay = 355 nm,
Az = 900 nm) is much larger than the intermolecular distance
(a few nanometers) due to computing memory limitations, the
correlation is greatly decreased over the grid length scales Ax,
Ay, and Az, and the diagonal elements of the matrix calculated
with Eq. (6) would be much larger than the off-axis elements
described by Eq. (5). Such an almost-diagonal matrix would
then describe a largely uncorrelated system, and we would
lose the benefit of our approach, as will be shown later. For
this reason we take as diagonal elements the average A of the
correlation function over one grid unit size, i.e., along x:

AllnaFng (71 + R))
Ax max
_ kgT / /" exp(iq - R)d dR. (7)
KQ2m)? Ax (G2 +E&72)

Taking, in our case, the grid size as the limit of the continuum
theory (¢gmax = 27/Ax) and introducing the definition of the
sine integral Si(x) = f * SII”d t, we obtain

Al(na(F)na (7 + R))]

e /ZH/AX . Si(q Ax)d (8)
= —_— —_—D1 s
2K72 Ax J, (@2 + -2 4o

which constitutes the value on the diagonal elements of the
covariance matrix.

Using Eq. (8) and Eq. (5), respectively, for the diagonal and
off-diagonal elements, it is possible to generate the correlation
matrix C. An uncorrelated random variable Nypcorr normally
distributed is generated and the correlation is forced through
the relation Ncorr =U Nuncorr, where NCOrr is the correlated
noise and U is the upper triangular form of the Cholesky
decomposition of the correlation matrix [26].

Due to the large volume covered by the soliton propagation
and the finite availability of computational memory, it is not
possible to write the complete three-dimensional correlation
matrix, as it scales with the square of the number of points.
Given the geometry of the system (BPM and one-constant
approximation), we generate the correlated noise in planes xy
orthogonal to the propagation.

Since the variable that describes the LC molecules is 6, we
choose one of the two fluctuation components, n;, to be in
the plane xz. In this way, the angular variation d6 can easily
be calculated with d6 = arctan(n;) and added to 0 after the
integration of Eq. (3). A typical noise pattern obtained by
this method is shown in Fig. 1(c), where the slowly varying
oscillations of the angle 6 can clearly be seen.

The xy-correlated noise is not generated at every step, since
it would mean a completely uncorrelated noise along z, but
every 10 um, which is the same order of magnitude as the
grains in the correlated noise pattern. The noise is then linearly
interpolated along z, in order to have a noise profile slowly
varying along z, with an appropriate level of correlation in
this direction. Finally, since we do not apply a homogeneous
electric field to the cell and since the peak of the optical electric
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FIG. 2. Transmission of visible (532 nm) light through a 50-um-
thick cell for the case of uncorrelated (a) and correlated (b) thermal
noise.

field is too small to induce a significant quenching of the
director fluctuations [27], in the simulations we consider Eey;
null and hence £ infinite.

III. RESULTS AND DISCUSSION
A. Linear propagation

We will start analyzing the light propagation for powers
low enough to avoid any nonlinear effects. We thus expect to
reproduce by numerical simulations the observed so-called
speckle pattern produced when a laser beam propagates
through a liquid-crystal device. In order to compare the results
with the literature [15,16], we simulate the propagation of
visible light (532 nm) through a planar aligned 50-um cell
filled with E7. The parameters used for E7 are K = 12 pN
and g = 2.9204, &, = 2.2681 [28]. The effect of the spatial
correlations will be highlighted by comparing the propagation
with noise which is uncorrelated [Fig. 2(a)] and noise which
is correlated [Fig. 2(b)].

For the case of noise which is uncorrelated, the noise
is randomly generated at every step along the propagation.
The resulting output is an almost unperturbed beam profile
[Fig. 2(a)]. As the noise grain size equals the simulation grid,
which is smaller than the wavelength, the light cannot be
locally focused. It therefore follows a homogeneous output
profile without any speckle pattern. Also, the noise-induced
diffraction is averaged along z; since the director fluctuation
is generated at every simulation step, this effectively removes
any correlated-like pattern along the propagation.

For the case of noise which is correlated, the smooth varia-
tion of the director distribution (and therefore of the refractive
index) causes a local (random) focusing and defocusing of the
light as it propagates and the characteristic speckle pattern is
therefore generated [Fig. 2(b)]. We have thus shown that the
spatial correlation of the LC director is essential to account for
the characteristic speckle generation in LCs.

B. Experimental nematicon propagation

Experimental observations of the spatial fluctuations of a
soliton propagating in the sample described in Sec. I A are
undertaken. The IR soliton is injected in the plane of the cell
as described in Sec. IT A and it propagates a few millimeters.
The acquired intensity profiles are similar to the one shown
in Fig. 1(b) for the case of 3.7 mW, with noise-induced
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FIG. 3. (a) Experimental soliton trajectory for an input power of
3.7 mW. (b) Position of the beam after 2.7 mm of propagation as
a function of time for a soliton of 1.1 mW (stars) and of 3.7 mW
(empty circles). (c) Oscillation amplitudes (blue triangles, right axis)
and losses (red circles, left axis) as a function of the power.

fluctuations. We estimate the soliton trajectory along the
propagation distance by interpolating, at different position z,
the measured intensity profile along x by a Gaussian function.
The soliton propagation paths for three different acquisitions
are shown in Fig. 3(a).

Since the LC molecules fluctuate due to thermal noise, the
refractive index profile and therefore the soliton path vary in
time. Plotting the soliton position as a function of time after
2.7 mm of propagation for two different powers [Fig. 3(b)]
shows that the soliton oscillates around a mean value and that
the largest oscillations appear at the highest power. In Fig. 3(c)
(blue triangles) we plot the amplitude of the oscillations as a
function of the power. The oscillations increase by almost a
factor of 3 between 1.1 and 3.7 mW. This can be explained by
the fact that increasing the power, the nematicon undergoes a
transition to a breathing propagation regime, where the beam
becomes overfocused periodically [29,30]. Indeed, when the
soliton diameter becomes smaller than the director fluctuation
grain size, the nematicon, instead of being diffracted and
destroyed, is rather refracted [31] and hence its propagation
path deviates.

From the Gaussian fit to the measured intensity profile
along x it is also possible to compute the integral of the
intensity profile, in order to obtain the evolution of the energy
as a function of z. The exponential decay is fitted with a
function o< exp(—az), where o represents the loss coefficient.
The evolution of « as a function of the power is also shown in
Fig. 3(c) (red circles). Increasing the power, and therefore the
focusing of the soliton, we also observe a decrease of the loss
coefficient as the photons are less scattered. This is consistent
with the fact that the soliton is refracted (leading to propagation
path deviation), rather than scattered, by the refractive index
perturbations.

C. Numerical nematicon propagation

We performed 50 simulations of the propagation of solitons
for input powers ranging from 1.1 to 3.7 mW. For every
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FIG. 4. (a) Density plot of the intensity for one of the simulations
of a3.7-mW soliton. (b) Numerical simulation of the soliton trajectory
for three different simulations with a soliton power of 3.7 mW. (c)
Position of the beam after 2.7 mm of propagation for 50 generations
of the noise for a soliton of 1.1 mW (stars), 3.7 mW (empty circles),
and 3.7 mW for the case of uncorrelated noise (full circles). (d)
Oscillation amplitudes (blue triangles, right axis) and losses (left
axis) as a function of the power. The losses are plotted for the case of
correlated (circles) and uncorrelated (stars) noise.

simulation a different correlated director noise pattern is
generated every 10 um, as described in Sec. I C. In Fig. 4(a) we
show one soliton intensity profile for 3.7 mW, while examples
of soliton trajectories at the same power are shown in Fig. 4(b).
Even if abrupt changes in the path direction are not present,
the spatial oscillations obtained in the numerical simulations
are in good agreement with the experimental results.

The nematicon position after 2.7 mm of propagation is
shown in Fig. 4(c) for 1.1 and 3.7 mW. Since our model
does not describe the temporal behavior of the system, every
simulation is independent of the previous one. For this reason,
when we represent the oscillation amplitudes at different times
(referred to as frames here), we do not observe a continuous
evolution as in the experiments. However, comparing the
maximum deviation of the soliton from the straight path, we
observe larger oscillations for increasing powers, consistent
with the experimental observations.

Importantly, comparing models of the soliton oscillations at
high power for cases where the modeled noise is correlated and
uncorrelated [Fig. 4(c)], we observe a drop in the nematicon
oscillation amplitudes from ~120 gm to ~15 um in the
latter case. Without the spatial correlation of the director
fluctuations, the length scale of the refractive index variations
is much smaller than the soliton diameter. In practice the length
scale of these variations is then defined by the discretization
grid used for the simulations. In that limit, the soliton only
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slightly deviates during propagation even at high powers. The
spatial correlation of the director fluctuations is therefore an
important consideration for the proper modeling of the spatial
fluctuations of soliton propagation in LCs.

The correlated noise in the numerical modeling causes
a power-dependent behavior of the oscillation amplitudes
[Fig. 4(d), blue triangles] that is in good agreement with
the experimentally observed behavior. The difference between
the experimental results and the simulations with correlated
noise can be explained by the fact that in practice, when
the fiber is slid into the LC cell, it causes a perturbation
in the LC director profile that is not taken into account in
our model. This perturbation extends over a distance that is
multiple times the thickness of the cell and therefore causes
a delay in the formation of the soliton equilibrium profile
[32]. For this reason, in the experiment, the nematicon does
not oscillate from the beginning of its propagation [Fig. 3(a)].
We therefore measure the oscillation amplitudes at a distance
that is effectively shorter than 2.7 mm. The amplitudes
experimentally measured are therefore smaller than the ones
obtained from the simulations, where the soliton starts to
oscillate close to the injection. Also, in our one-constant
approximation, we assume the correlation to be isotropic.
However, along the z axis, a dominant bend-splay deformation
takes place, which may be associated with a larger elastic
constant (K3 = 19.5 pN, [5]). Since the correlation is inversely
proportional to the elastic constant K, we are overestimating
the correlation and therefore the scattering as the nematicon
propagates.

In Fig. 4(d) (red circles), we show the loss coefficient « as
a function of the input power for the case of correlated noise.
The values and the power-dependent behavior of o, ranging
from 6.3 to 3.8 cm™! over our range of powers, are in good
agreement with the experiments. The factor 2 of difference
may be due to the overestimation of the scattering in the one-
constant approximation. The same order of magnitude can be
found in the literature [2,33], even if no dependence on the
nematicon power is reported there. On the same graph, as a
comparison, we also show the losses obtained for the case
of uncorrelated noise, for which almost no dependence on
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the nematicon power is observed. The losses are substantially
less (~1.5 cm™!) when the director fluctuation noise is
uncorrelated since the soliton does not experience the effects
of speckle formation (as observed in Fig. 2) and there is
consequently no loss of energy in the central part of the beam.
The losses are also almost independent of the nematicon power,
showing once again how taking into account the correlation
in director fluctuations improves the description of soliton
propagation in liquid-crystalline systems.

IV. CONCLUSIONS

We have demonstrated a method to properly include the
thermal fluctuations of the director in LCs when modeling
nematicon propagation, starting from the common parameters
of LCs. In such systems, the long-range interaction among
the molecules must be taken into account when generating the
thermal noise, through the spatial correlation of the director
fluctuations. The computed correlated noise allows us to
explain the experimentally observed spatial fluctuations of
nematicons at high powers. Further improvements could be
added to our model, for example through the introduction
of full modeling of the correlation along the z direction or
the temporal evolution of the director orientation, the power
dependence of the loss coefficient, and the introduction of the
three elastic constants. However, the oscillation amplitudes
obtained with our model are in good agreement with the values
experimentally measured. We believe that this method will also
help the modeling of both linear phenomena involving speckle
generation and more complex nonlinear behavior in LCs, such
as modulation instabilities or filamentation.
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