
RAPID COMMUNICATIONS

PHYSICAL REVIEW A 96, 031601(R) (2017)

Analytical approach to the Bose-polaron problem in one dimension
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We discuss the ground-state properties of a one-dimensional bosonic system doped with an impurity (the
so-called Bose polaron problem). We introduce a formalism that allows us to calculate analytically the
thermodynamic zero-temperature properties of this system with weak and moderate boson-boson interaction
strengths for any boson-impurity interaction. Our approach is validated by comparison to exact quantum Monte
Carlo calculations. In addition, we test the method in finite-size systems using numerical results based upon the
similarity renormalization group. We argue that the introduced approach provides a simple analytical tool for
studies of strongly interacting impurity problems in one dimension.
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The weakly interacting Bose gas is a beautiful model system
[1], which is often used to study emergent many-body phenom-
ena such as superfluidity, Bose-Einstein condensation, and
topologically nontrivial many-body excitations like solitons
and vortices. The basic properties of this model are well
understood theoretically and tested experimentally (see, e.g.,
Refs. [2,3]). However, some important questions still remain
open. One of them concerns the reaction of a Bose gas to
a mobile impurity particle, which is usually referred to as
the Bose polaron problem, in analogy to the polaron studied
by Landau and Pekar [4]. Polaron problems are among the
simplest problems exhibiting nontrivial many-body effects that
shed light on the interplay of one- and many-body physics.
However, the fate of the impurity in a gas is not of only
formal interest. Properties of many systems in condensed-
matter physics can be understood by studying a single particle
interacting with a reservoir. Prominent examples are given by
a single 3He atom in liquid 4He [5] and an electron in an ionic
crystal (often described as a particle interacting with a Bose
field of ion vibrations); see Ref. [6] and references therein.
The apparent simplicity of these problems is misleading, as
to date they resist a full theoretical solution. Fortunately,
experiments with cold atomic gases, realizing the idea of a
quantum simulator [7], open up the possibility to create and
study the Bose polaron [8–15] in a laboratory. This intriguing
possibility motivated a flurry of recent theoretical works on
this problem [16–35].

One-dimensional (1D) systems are of special interest
in this context, because strongly interacting bosons in 1D
fermionize [36]. This phenomenon simplifies the analysis.
For example, if all the masses in the system are identical,
the Bose polaron problem is exactly solvable [37]. This is
also true if the impurity is infinitely heavy [30]. Therefore, a
solution of the problem for weak and moderate boson-boson
interaction is enough to complete the picture for all interaction
strengths. However, theoretical approaches face challenges
in describing these parameter regimes if the boson-impurity
interactions are strong [38]. In this case, accurate results can
be obtained only numerically using Monte Carlo methods
[30,38], and analytical calculations that can unravel underlying
physics and correlations are highly desirable. In this Rapid
Communication, we introduce a possible theoretical formalism
for performing such calculations. Our approach is well suited

for studying the energy and structural properties of the
Bose polaron problem and for investigating systems with a
finite number of particles. To illustrate this statement, we
present analytical expressions for the ground-state energy
and contact parameter in the thermodynamic limit and show
that they agree with the recent numerical results based
upon the quantum Monte Carlo method [30]. Furthermore,
we test our method for finite systems using results of a
numerical similarity renormalization group method as a
benchmark.

Formulation. We study a system that consists of an impurity
of mass m and N bosons of mass M on a ring of length L. This
system is described by the Schrödinger equation H� = ε�

with the Hamiltonian

H = − h̄2

2m

∂2

∂y2
− h̄2

2M

N∑
i=1

∂2

∂x2
i

+ Vib + V ({xi}), (1)

where y is the position of the impurity, xi is the position
of the ith boson, and the boson-boson interaction is given
by V ({xi}) = g

∑
δ(xi − xj ), where g � 0 to have a well-

defined thermodynamic limit [39]. The bosons interact with
the impurity via the potential Vib, which we write as Vib(x) =
c
∑

δ(xi − y), with c � 0. Note that the presented approach
can be generalized straightforwardly to systems with finite-
range potentials. We do not pursue this possibility here, and
only note that it will allow one to test the accuracy of the
δ-function approximation for the interaction of an atom (ion)
with a boson. For later convenience, we set h̄ = M = 1 in
what follows.

We are interested in the ground-state properties of the
Hamiltonian H , and in particular, in the quantity ε = εgr (c) −
εgr (c = 0), to which we will refer as the energy of the impurity.
Since the Schrödinger equation is analytically solvable for
c = 0 [40], the knowledge of ε gives us directly εgr (c). To find
ε, we use the equation

−1

2

N∑
i=1

∂2�

∂z2
i

− 1

2m

(
N∑

i=1

∂

∂zi

)2

� + V ({zi})� = εgr�, (2)
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for the function �(z1, . . . ,zN ) assuming that zi ∈ (0,L). The
boundary conditions are taken as

∂�

∂zi

∣∣∣∣
zi=0+

zi=L−
= 2cκ�|zi=0, �|zi=0 = �|zi=L, (3)

where κ = m/(1 + m) is the reduced mass of the impurity
and a boson. The notation zi = p± means that the derivative
is taken at the point zi = p ± o with o > 0 and the limit
o → 0 is taken afterward. The function � can be used to solve
the original problem if for every ordering of particles, e.g.,
0 < y < x1 < · · · < xN < L, the following prescription is
applied: zi = Lθ (y − xi) + (xi − y), where θ is the Heavyside
step function, i.e., θ (x > 1) = 1 and zero otherwise (see the
Appendix). Therefore, Eq. (2) is the Schrödinger equation
(with zero center-of-mass motion) in which all distances
are measured with respect to the impurity. Its second term
contains information about the kinetic energy of the impurity.
In its spirit, the transformation from the original Schrödinger
equation to Eq. (2) is similar to the Lee-Low-Pines transfor-
mation in momentum space [41]. In our case, the effective
boson-boson interaction is hidden in the mixed derivatives in
the second term of Eq. (2).

We look for the real ground-state solution � that sat-
isfies the bosonic symmetry, i.e., �(. . . ,zi, . . . ,zj , . . . ) =
�(. . . ,zj , . . . ,zi, . . . ). The bosons are weakly interacting;
therefore, we use the product ansatz � = ∏N

i=1 ψ(zi) that gives
an approximative solution. We insert this ansatz into Eq. (2)
and minimize the energy with respect to ψ . This procedure
leads to the real Gross-Pitaevski equation (GPE) [42] for the
function ψ :

− 1

2κ

d2ψ(x)

dx2
+ g(N − 1)ψ(x)3 = μψ(x), (4)

supplemented by certain boundary conditions at x = 0 and
x = L [see Eq. (6) below], where μ is the chemical potential.
We write the factor N − 1 instead of the usual N in front
of the ψ3 term as then the equation can be used to obtain
an upper bound to the ground-state energy also for a small
number of particles. Since we derive the GPE in the rest frame
of the impurity, the Bose polaron in our picture is a coherent
superposition of the impurity and the condensate that changes
dynamically in the vicinity of the impurity. As we show below,
this viewpoint allows us to perform nonperturbative (in c)
calculations analytically.

Equation (4) can be solved using the Jacobi elliptic
functions (see, e.g., Refs. [43,44]). The nodeless (in the bulk)
real solution we are after reads

ψ(x̃) =
√

4K(p)2p

κgL2δ2(N − 1)
sn

(
2K(p)

[
x̃

δL
+ 1

2

]∣∣∣∣p
)

, (5)

where x̃ = x − L/2, K(p) is the complete elliptic integral
of the first kind, and sn(x|p) is the Jacobi elliptic function
[45]. The parameters p ∈ [0,1) and δ are determined by the
boundary conditions and normalization,∫ L/2

0
ψ2dx = 1

2
,

dψ

dx

∣∣∣∣
x=+0

= cκψ(0), (6)

where we have used that ψ(x̃) = ψ(−x̃). The corresponding
chemical potential and the energy of the impurity are

μ = 2
p + 1

κδ2L2
K(p)2,

ε =
[
μ− g(N − 1)

2L

]
N − gN (N − 1)

∫ L/2

0
ψ4(x)dx. (7)

Equations (5), (6), and (7) determine the ground state prop-
erties of the system within the mean field approximation for
bosons.

Thermodynamic limit. We now use these equations to study
the system in the thermodynamic limit, i.e., N (L) → ∞ with
N/L = ρ, where ρ is the density of the bosons without the
impurity. To this end, we note that the parameter p is close to
one since K(p) =

√
μκL2δ2/2 � 1, and, thus, the function

ψ for x ∈ [0,L/2] can be written in a much simpler form:

ψ(x̃) �
√

μ

g(N − 1)
tanh

(√
μκLδ

[
x̃

δL
+ 1

2

])
. (8)

The corresponding parameters δ, μ, and ε are

δ � 1 + 2d√
γ κN

, d = 1

2
asinh

(
2ρ

c

√
γ

κ

)
, (9)

μ � γρ2 N − 1

N

(
1 − 2

tanh(d) − 1√
γ κN

)
, (10)

ε � ρ2

3

√
γ

κ
[4 + [−4 + sech2(d)]tanh(d)]. (11)

where tanh(x),asinh(x), and sech(x) are standard hyperbolic
functions, and γ ≡ g/ρ. Let us discuss the energy ε in
more detail. At small values of the impurity-boson coupling
c, it reads ε � cρ. This result is simply the first-order
perturbative correction, which follows for any γ from the
original Hamiltonian H if Vib is treated as a perturbation.
Therefore, this expression is applicable as long as c sets the
smallest energy scale of the problem. In the opposite limit,
i.e., at large values of c, we obtain ε � ρ2√16γ /(9κ). This
functional dependence follows from the boundary energy of
the Lieb-Liniger model [46], which is reproduced in our case
for κ = 1 (infinitely heavy impurity), and the observation that
in our equations ε/ρ2 is determined solely by

√
γ /κ and

c/ρ. Note that this formula overestimates the energy for large
values of γ . In particular, it predicts that ε → ∞ for γ → ∞.
This prediction is clearly a shortcoming of the mean-field
approximation, since we know that for large γ the system
fermionizes [36] and ε is determined by the chemical potential
of a Fermi gas with the same density.

To find the region of applicability of our results, we can
either estimate effects beyond the GPE or use some numerical
results as a reference point. We leave the former approach for
a future discussion and focus on the latter. To this end, we
show in Figs. 1 and 2 the quantity ε/ρ2 from Eq. (11) together
with the recent numerical calculations of Ref. [30]. Note that
here only the data points without error bars are included.
First, we note that our findings agree well with the results
of Ref. [30] for all cases presented. The overall agreement is
better for an infinitely heavy impurity, 1/m = 0 (cf. Fig. 1),
than for the equal mass case, m = 1 (cf. Fig. 2). In the former
case, the results start to deviate noticeably only for γ = 4 at
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FIG. 1. The solid lines show the energy of the impurity ε/ρ2 from
Eq. (11) as a function of c/ρ for κ = 1 (an infinitely heavy impurity),
γ = 0.02,0.2 and 4 (from the bottom to the top). The points are the
corresponding results of Ref. [30].

c/ρ � 4. As discussed above, this deviation is a shortcoming
of the mean-field approximation, which overestimates ε in this
region. For m = 1, the results also agree; however, since the
relevant interaction parameter within our scheme is γ /κ the
results start to deviate for smaller values of γ . For this reason
we do not plot here the γ = 4 results presented in Ref. [30].
The comparison to the quantum Monte Carlo calculations
suggests that our approach can be used to calculate the energy
and structural properties (see below) of these systems for
γ /κ � 1. For these interactions, our analytical expressions
for 1/2 < κ < 1 fill in the gap between the numerical results
of Ref. [30].

Besides the energy, Eqs. (8)–(11) provide also the wave
function, which in principle allows one to calculate any
observable of interest. As an example, we have found the
density of bosons around the impurity, ρ tanh2(

√
γ κρx + d),

which shows that far from the impurity the bosons are not

FIG. 2. The solid lines show the energy of the impurity ε/ρ2 from
Eq. (11) as a function of c/ρ for κ = 1/2 (m = M), γ = 0.02, and
0.2 (from the bottom to the top). The points are the corresponding
results of Ref. [30]. The solid lines in the inset present the contact
parameter C defined in Eq. (12) as a function of c/ρ for m = M and
γ = 2 (the upper curve) and γ = 0.02 (the lower curve). The dots
are the numerical results of Ref. [30].

affected by the impurity and have density ρ. We also calculate
the contact C [47,48], which is the density of bosons at the
impurity position, x = 0:

C ≡ lim
L(N)→∞

Nψ2(x = 0)

ρ
= tanh2(d), (12)

where d is defined in Eq. (9). The parameter C is equal to the
derivative of the energy in Eq. (11) with respect to c (recall
that c = −2/a1D , where a1D is the one-dimensional scattering
length). We plot C in the inset of Fig. 2 together with the
numerical results of Ref. [30]. We see that C decreases from
one to zero as c increases from zero to infinity. The vanishing
of the contact at 1/c = 0 implies that the boson density at the
position of the impurity is zero. This is a trivial consequence
of the boundary condition (3) for finite-energy solutions. At
1/c = 0, the density profile of the bosons, ρ tanh2(

√
γ κρx),

resembles a dark stationary soliton which dresses the impurity.
This behavior is already known for a heavy impurity [43], but
here we show that systems with mobile impurities act similarly.
The characteristic length of this soliton is 1/(ρ

√
γ κ). This

length becomes larger for smaller values γ , which imply a
higher compressibility of the gas. Therefore, the polaron in
the strongly interacting regime consists of the impurity and a
soliton in the Bose gas. It will be interesting to investigate this
correspondence in the future within the presented model for
finite interaction strengths in a time-dependent problem.

Another experimentally relevant quantity is the overlap
S ≡ |〈�(c = 0)|�(c)〉|2 = |〈ψ(c = 0)|ψ(c)〉|2N , which deter-
mines the probability to populate the interacting ground state
after quenching the boson-impurity interaction. We find in our
approach that

S = exp

(
4 ln(sechd) − 2tanhd + 2 + 4d − ln 16√

γ κ

)
. (13)

Using Eq. (9), we see that the overlap is a decaying function
of c. The largest value is at c = 0 where S = 1. The smallest
value e(2−4 ln 2)/

√
γ κ is reached at 1/c = 0.

Finite N . We have argued that Eq. (4) describes the system
well when the number of particles is large. However, this
equation can be also used to describe finite number of particles.
Note that there is no known (to the best of our knowledge)
criterion to determine whether the mean-field approximation
is applicable for a finite system; therefore, we compare our
analytical model with the numerical solution of Eq. (2). We
choose to work with the impenetrable impurity, i.e., 1/c = 0,
and m = M , since in the thermodynamic limit it is the most
challenging case for the GPE. To have a direct comparison
with the previous discussion, we fix the density and increase
N (L). This approach will not only reveal the applicability of
the presented method but also will allow us to study how the
energy approaches its thermodynamic value.

First of all, we note that the 1/c = 0 interaction simplifies
the analytical expressions. Indeed, in this case δ = 1 and
all properties are determined by the value of p alone. It is
determined from the equation

4K(p)[K(p) − E(p)]

κγN (N − 1)
= 1, (14)
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where E(p) is the complete elliptic function of the second kind
[45]. The energy of the impurity is given by

ε

ρ2
= 8K4(p)p + 2K2(p)κγN (N − 1)(p + 1)

3κ2γN2(N − 1)
−γ (N − 1)

2
.

(15)

Note that the γ = 0 case leads to ε = ρ2π2/(2Nκ), implying
that the energy of the impurity goes to zero for N → ∞. This
situation is possible due to the high compressibility of the
bosons and the absence of an external trap (cf. Ref. [49]),
which means that the impurity can displace the gas of bosons.

To investigate the Schrödinger equation numerically, we
use the flow equation method for bosonic systems presented
in detail in Ref. [50]. Here, we use it to solve Eq. (2), which
does not contain the coordinate of the impurity anymore. In this
section, we consider an impenetrable impurity. However, we
believe that the flow equations of Ref. [50] can give accurate
results also for finite values of c. In this method, the parameters
of the Hamiltonian in second quantization are assumed to
“evolve” with the flow parameter s, such that

H (s) =
∑
i,j

h
(1)
ij (s)a†

i aj + 1

2

∑
i,j,k,l

h
(2)
ijkl(s)a†

i a
†
j akal, (16)

where ai (a†
i ) is the bosonic creation (annihilation) operator

and the initial condition is H (0) = H . During the flow, the
couplings to the ground state decrease and when the parameter
s, which can be thought of as a resolution scale, is large the
ground state is decoupled and its energy is easily obtained.

The flow is described by the system of differential equations
(see, e.g., Ref. [51])

dH (s)

ds
= [η(s),H (s)], (17)

with η the antihermitian operator written as

η(s) =
∑
i,j

η
(1)
ij (s)a†

i aj + 1

2

∑
i,j,k,l

η
(2)
ijkl(s)a†

i a
†
j akal. (18)

The parameters η
(1)
ij and η

(2)
ijkl should be chosen such that the

flow eliminates the couplings of some reference state (that
ideally contains our preliminary knowledge of the ground
state) to the other states; see below. The commutator in Eq. (17)
contains also three-body operators; they must be truncated
in order for our scheme to work. To this end, we use the
basis [52] {sin(πizi/L)} to construct matrix representations of
operators and neglect the operators that excite three particles
simultaneously from our reference state

∏
sin(πzi/L). The

operator η can be chosen in various ways (see, e.g., Ref. [53]).
We construct η from the piece of H that should be eliminated,
i.e., ηijkl = h

(2)
ijklδk0δl0 etc., where δij is the Kronecker δ.

For our problem, the operator η generates the flow that at
1/s = 0 decouples the reference state from the rest, giving
us an approximation to the ground-state energy. Because we
truncate the flow equations at the level of three-body operators
and beyond, the results are not exact. The accuracy can be
estimated using the neglected pieces; see Ref. [50]. We assess
them and plot as the error bars in Fig. 3. The accuracy worsens
when the number of particles or the boson-boson interaction
increases. However, for the most considered cases the results

FIG. 3. The energy of the impurity ε minus the thermodynamic
value ε∞ = √

16γ /(9κ) as a function of the particle number N , for
γ = 0.1 and for γ = 0, in both cases κ = 1/2 (m = M). The solid
(red) curves depict Eq. (15). The points are calculated numerically
using Eq. (17). The dashed lines are to guide the eye. The inset shows
ε as a function of γ for N = 15. The solid line is from Eq. (15);
points are the numerical results.

are essentially exact; hence they can be used to check the
validity of the analytical model.

We present our findings in Fig. 3 for γ = 0 and γ = 0.1.
We see that the energies in both cases slowly converge to
their thermodynamic values, denoted as ε∞ ≡ ρ2√16γ /(9κ),
from Eq. (11). The numerical results shown as dots agree
reasonably well with the analytical formula for all considered
cases, but there are some deviations for small particle numbers,
where the neglected few-body correlations are important.
These deviations are more pronounced at weak interaction
strengths; see the inset where we show the dependence of ε

on γ for N = 15. Finally, we note that the rate of convergence
to the thermodynamic limit is relatively slow for small values
of γ . We attribute this behavior to a high compressibility of
the bosonic gas, which, in particular, implies that to realize
the thermodynamic limit in a laboratory one needs a very
low concentration of the impurity atoms. Note that if the
boson-boson interactions were strong the dynamics would be
different—even a few majority atoms would be able to form
a many-body enviroment for the impurity (cf. Ref. [54] for
fermions).

Summary. We have presented a simple analytical model of
an impurity in a one-dimensional Bose gas. Within this model,
we have derived the ground-state energy and showed that it
agrees with numerical results for moderate and weak boson-
boson interaction strengths. The model also allowed us to get
insight into structural properties of the system, such as the
contact parameter. For the mass-balanced case, together with
the exact solution available for strongly interacting bosons,
it gives a complete analytical picture of the Bose polaron
problem in one spatial dimension, both in the thermodynamic
limit and for systems with a finite particle number. We hope that
our method will provide further insights into the Bose polaron
problem in 1D. In particular, it would be interesting to utilize
our method to study attractive boson-impurity interactions
(i.e., c < 0) to explore the Bose polaron problem in higher
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spatial dimensions and to investigate the evolution of the
system after a quench of the boson-impurity interaction on
experimentally relevant time scales. Moreover, our method
produces an accurate reference state, which can be used as a
starting point in various numerical approaches, e.g., in the flow
equation method used here [50].
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APPENDIX

In this appendix, we demonstrate that the solution
�(z1, . . . ,zN ) of Eq. (2) solves the original Schrödinger
equation; i.e., we show that(

− 1

2m

∂2

∂y2
−1

2

N∑
i=1

∂2

∂x2
i

)
�(z1, . . . ,zN ) = εgr�(z1, . . . ,zN ),

(A1)

for every ordering of the particles and that � satisfies the
boundary conditions associated with the interactions and

the geometry. To this end, we note that according to the
prescription zi = Lθ (y − xi) + (xi − y), the derivatives for
every ordering read

∂

∂y
= −

∑
i

∂

∂zi

,
∂

∂xi

= ∂

∂zi

. (A2)

Using these equations, we immediately obtain Eq. (2) from
Eq. (A1). As a consequence, � is a solution of Eq. (A1) by
construction. Let us now consider the boundary conditions
associated with the boson-impurity interaction δ(xi − y). For
an eigenstate � of the Hamiltonian (1), we write the boundary
conditions as

(
m

∂

∂xi

− ∂

∂y

)xi=y+

xi=y−
� = 2cm�(xi = y), (A3)

�(xi = y+) = �(xi = y−). (A4)

Using Eq. (A2) in Eqs. (A3) and (A4), we obtain the
conditions on � from Eq. (3), which are therefore satisfied
by construction. The validity of other boundary conditions
can be proven in a similar manner. Finally, we note that � is
also an eigenstate of the total angular momentum operator
∂
∂y

+ ∑
i

∂
∂xi

with zero eigenvalue. This implies that our
transformation singles out the manifold of zero total angular
momentum where we expect the ground state to be.
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