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Topological edge modes with PT symmetry in a quasiperiodic structure
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We investigate topological features of a one-dimensional photonic quasicrystal within the context of PT
symmetry. Via the scattering characteristics, we analyze various properties of a particular mirrored structure,
which supports topological edge modes in its band gaps. These interface modes display a nontrivial dependence on
the quasiperiodic geometry, even in a passive system. Subsequently, the tailored addition of gain and loss generates
curiousPT -like features. For example, the quasicrystal high density of modes leads to complicated mode-merging
behaviors between edge and band modes, such as the symmetry recovery phenomenon. Furthermore, anisotropic
transmission resonances (connected with unidirectional invisibility) are also present, but they display richer
patterns in comparison to previously studied periodic structures. Additionally, we examine lasing effects in
detail, with numerics and a simple Fabry-Pérot model. The large variety of mode-merging behaviors opens the
way to laser resonance engineering.
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I. INTRODUCTION

Parity-time (PT ) symmetry is a blossoming field that
brings opportunities to photonics by tailoring gain and loss
[1–3]. It originates from quantum mechanics and exploits
non-Hermitian Hamiltonians, which under some conditions
may possess purely real spectra [4,5]. Implemented in optics,
PT symmetry leads to structures with a balance between
gain and loss. This balance typically means that the refractive
index satisfies a symmetry relation n(x) = n∗(−x). Therefore,
the loss is exploited as a crucial element and is not an
unwanted feature anymore [6]. One of the most interesting
characteristics is PT -symmetry breaking, a phase transition
where eigenvalues flip from purely real to complex-conjugate
pairs at what is called an exceptional point [7], marking a clear
boundary between various optical behaviors.

Parity-time symmetry has been successfully harnessed in
many photonic structures, such as directional couplers [8,9],
switching devices [10,11], plasmonic structures [12], Bragg
reflectors [13], microring resonators and microdisks [14,15],
gratings [16–18] (or even phononic grating [19]), quasicrystals
[20–22], robust transport [23,24], and others [25,26]. The field
of topology, on the other hand, examines the conservation of
mathematical or physical properties under continuous defor-
mations. It expanded towards the development and comprehen-
sion of topological insulators [27] and it opens opportunities
in many fields and in particular in photonics [28]. One of the
intriguing promises is a unidirectional waveguide that allows
light to travel through an imperfect structure without suffering
from backreflection. Topological effects are available in many
photonic systems, for example, in photonic crystals, coupled
resonators, metamaterials, and quasicrystals [29]. In particular,
one-dimensional (1D) quasiperiodic structures [30–32] with or
without a defect [33] have a proven interest as a topological
playground [34].

Parity-time symmetry has been employed to obtain a topo-
logical state [35–37] or to tailor such states [38,39] within a

*nicolas.rivolta@umons.ac.be

1D structure. Here we associatePT symmetry and topology in
a 1D quasicrystal device to observe their intriguing combined
characteristics. With the capabilities ofPT symmetry to act on
band gaps, we examine how gain and loss affect edge modes
that are lying inside the gaps. With the extended gain-loss
features, possibilities are suggested for engineering the lasing
spectrum (gain-frequency relation at threshold).

We consider as a model system a quasicrystal consisting
of two abutted Fibonacci sequences presenting topological
edge modes, recently introduced for the passive regime [40,41]
and within a polaritonic framework (even though [40] hinges
on Fabry-Pérot models, we work here entirely with the
more popular ordinary wave Fresnel reflection and we briefly
discuss the differences for the passive system). We present the
curious mode-merging behaviors displayed by the different
types of modes in this quasicrystal when PT symmetry is
added. Among other typical PT phenomena, for example,
the symmetry-recovery effect [42] appears. In addition, as in
other 1D PT structures, we detect anisotropic transmission
resonances [43], or single-sided reflections, but in a much more
complex pattern than previously noticed in periodic structures.
Furthermore, due to the presence of gain, we get a family of
lasing resonances, which we are able to describe with a simple
Fabry-Pérot model.

We portray the passive structure in Sec. II, with a calculation
of its transmittance and an interpretation of its intrinsic
topological properties. Subsequently, we add gain and loss
in Sec. III, in order to investigate the global (Sec. III A)
or local (Sec. III B) interplay between PT - and topology-
related characteristics, before discussing the lasing spectra in
Sec. III C and summarizing in Sec. IV.

II. TOPOLOGICAL FIBONACCI SEQUENCE

We study the scattering properties of an open 1D photonic
quasicrystal structure composed of two parts stitched together.
In this section we examine only the passive properties (no
gain or loss). The two parts are Fibonacci sequences, which
are quasiperiodic and composed of an alternation of two letters
A and B, representing two different materials [Fig. 1(a)].
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FIG. 1. (a) Geometry of the Fibonacci sequences
←−
X N,φ and

−→
X N,φ

with their implementations into a photonic quasicrystal. (b) Geometry
of the structure PN,φ with the convention for the right and left
transmission and reflection.

The traditional mechanism to generate a Fibonacci se-
quence is by using an inflation and substitution algorithm
σ . Here σ applies to A and B according to σ (A) = AB and
σ (B) = A and its application to more than one letter obeys
the relation σ (YZ) = σ (Y )σ (Z) [e.g., σ (AB) = σ (A)σ (B) =
ABA]. Consecutive applications of σ give rise to a Fibonacci
sequence Sj = σ j (B) (with j ∈ N), whose length is the
Fibonacci number Fj>1 = Fj−1 + Fj−2 (with F0 = F1 = 1).
When j → ∞ the ratio Fj+1/Fj → τ , with τ = (1 + √

5)/2
the golden ratio [44]. The infinite chain S∞ ≡ limj→∞ Sj is
quasiperiodic and self-similar under the substitution process
[45]. This sequence can be roughly compared to a periodic
succession of A’s and B’s with pseudorandomly added A

letters [see S5 in Fig. 1(a)].
A convenient way to describe Sj is to use the two-valued

function χn,φ , whose values ±1 are identified as A (+1) and
B (−1):

χn,φ = sgn[cos(2πn/τ + φ) − cos(π/τ )], (1)

with n ∈ N0 and a degree of freedom φ that is 2π periodic.
In this paper we will use this second construction method to
define a more general parametrized structure. This angular
degree of freedom φ is irrelevant for the infinite chain, but
relevant for a finite segment

−→
X N,φ = [χ1,φχ2,φ · · · χN,φ] of−→

X ∞,φ . One can show that the finite segment Sj = σ j (B) is

the same as
−→
X N,φ , if φ = π/τ and N = Fj . However, in

general in this paper φ 	= π/τ and the two constructions are

FIG. 2. Transmission of
−→
X 2N,φ (dotted blue) and PN,φ (solid red)

with N = 50 and φ = 3 rad. The black arrows on top denote the
positions of the band gaps given by Eq. (2) with the corresponding m

values. The four dashed black arrows below indicate the k0 values of
the profiles in Fig. 3.

not equivalent. The irrationality of τ ensures that
−→
X N,φ is

quasiperiodic [20].
Finally, there is also a geometrical construction of

−→
X N,φ

possible via the cut-and-project method. This visualization
principle links to one of the computational methods for
calculating the spectrum and eigenstates of a quasicrystal, by
solving Maxwell’s equations in higher dimensions (i.e., the
superspace method) [44].

Our structure PN,φ , which we call a twinned inverted
Fibonacci sequence (TIFS), is composed of two symmetric
abutted segments, the reversed

←−
X N,φ = [χN,φχN−1,φ · · · χ1,φ]

and
−→
X N,φ [see Fig. 1(b)], with the aim to disrupt the spectral

properties of the Fibonacci sequence and thus to induce
defect modes. For photonic implementation, A and B (or
±1) correspond to two different material layers with the same
length L = 1 μm and refractive indices nA = 3 and nB = 2,
respectively. The outside refractive index is n0 = 2.

We investigate the properties of the TIFS structure PN,φ

through numerical simulations (with CAMFR [46]) of the
transmission T = |t2

L| = |t2
R|, with tL and tR the left and

right transmission amplitudes, respectively, and the left and
right reflection RL,R = |r2

L,R|, with rL,R the left and right

reflection amplitudes [see Fig. 1(b) for conventions]. For
←−
X N,φ

and
−→
X N,φ we use the same conventions for transmission or

reflection with an extra left or right arrow [e.g., −→
r L for

the left reflection amplitude of
−→
X N,φ ; see Fig. 1(a)]. The

transmission is the same regardless of the input side because of
reciprocity.

Figure 2 shows the transmission of PN,φ and the related

nonmirrored segment
−→
X 2N,φ (2N in order to have the same

number of layers as PN,φ) as a function of k0 = 2π/λ0, with
λ0 the vacuum wavelength of an incident perpendicular plane
wave. Similar to a periodic crystal, quasiperiodicity opens a
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FIG. 3. Field profiles of the band modes of the TIFS structure
PN,φ as a function of the position z with N = 50 and φ = 5 rad.
The modes at k0 ≈ 0.52 and 0.36 rad/μm are located in the middle
of a band. The modes at k0 ≈ 0.58 and 0.42 rad/μm are located at
the edge of a band. These k0 are indicated by dashed black arrows
in Fig. 2.

series of band gaps for both structures in the same ranges of
k0.

We can locate the theoretical positions of these band gaps
via the gap-labeling theorem [29,45,47,48]

kgap = [n + mod(m/τ,1)](2π/Dnav), (2)

with m ∈ Z, n ∈ N, D = 2L the basic pair thickness of our
system, and nav the average refractive index. We mark the
band gaps using this equation with black arrows and the
corresponding m number on top in Fig. 2.

If we compare these quasiperiodic spectra to the band
diagram of a periodic succession of A and B (not shown), the
gap around k0 ≈ 1.2 rad/μm (m = 0) appears in both periodic
and quasiperiodic structures: It corresponds to the natural first
band gap (with n = 1) of the periodic structure and to the
smallest physical distance for a constructive round-trip. All
the other gaps of the quasiperiodic structure thus open in a
passband of the periodic structure (e.g., the first pass band
n = 0 of the periodic structure is for k0 < 1.2 rad/μm).

It is interesting to note that an infinite quasiperiodic
sequence opens an infinite number of band gaps and the
transmission spectrum becomes fractal [45,48]. Here for a
finite sequence, we observe only the larger band gaps with
smaller |m|.

Each transmission peak inside and outside the band gaps
indicates a mode of the structure. Turning to the TIFS PN,φ

(solid red curve in Fig. 2), we observe some additional peaks
of transmission inside the band gaps in comparison to the
transmission of

−→
X 2N,φ (dotted blue curve). As PN,φ is not

an exact Fibonacci sequence but is the result of stitching
two sequences, this configuration creates an interface in the
structure at the mirror plane. This interface allows for one or
more additional modes to appear in the band gaps.
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FIG. 4. Electrical (E) field profiles of the interface mode as a
function of the position z [see Fig. 1(b)] for varying φ. The structure
is between z = 0 and 100 μm; the symmetry plane is indicated by
the black line. The interface mode is located in the band gap around
k0 ≈ 0.45 rad/μm and m = −1 in Fig. 2.

We show in Fig. 3 the profiles of four band modes of PN,φ

around the band gap with m = −1. They display different
shapes but are all symmetric with respect to the central mirror
plane of PN,φ (at z = 50 μm). The two modes with k0 ≈ 0.58
and 0.42 rad/μm possess fewer modulations nodes than the
others and thus can be considered as more fundamental (more
details in Sec. III A). All these profiles are also spatially
extended over the whole structure.

The latter is in contrast with the field profiles of the TIFS in-
terface modes; we show these modes for the gap with m = −1
in Fig. 4 for different values of φ. An interface mode is confined
to the central mirror plane for every value of φ and this property
is general for all band-gap modes. The interface mode profiles
also present a symmetry (e.g., for φ = 0.5 and 6 rad in Fig. 4)
or an antisymmetry (φ = 1.5 and 3 rad); more details will be
provided below. Finally, larger band gaps lead to more confined
interface modes (not shown) with narrower bandwidths.

We focus on the transmission around two of the lower-
frequency band gaps [k0 ≈ 0.45 rad/μm and m = −1 in
Fig. 5(a) and k0 ≈ 1.2 rad/μm and m = 0 in Fig. 5(b)], varying
φ and k0. We do not examine the larger band gap with m = 1,
as it encounters the same topological properties as for m = −1.
Moreover, in a larger band gap the interface mode is narrower,
so a finer grid of k0 (higher computational cost) is needed. The
interface mode in the band gaps describes one [Fig. 5(b)] or
two [Fig. 5(a)] cycles as a function of φ, respectively. Along
these cycles the interface mode performs some spectral jumps
for definite values of φ. These jumps are the consequence of
a letter switch in the sequence

−→
X N,φ (and symmetrically in←−

X N,φ), when φ varies [see Fig. 5(c)].

More in detail, each letter of
−→
X N,φ flips from B to A [red

crosses in Fig. 5(c)] at a different value of φ [see Eq. (1)].
In addition, at this value of φ, the next letter in the sequence
(except for the first one) also does a reverse flip from A to
B [blue circles in Fig. 5(c)]. As

←−
X N,φ mirrors

−→
X N,φ , these
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(c) Closest to interface

FIG. 5. (a) and (b) Transmission (log10 scale) of the TIFS
structure PN,φ as a function of k0 and φ with N = 50. The red
triangles on the left axis indicate the values of φ where at least

one of the first (last) letters of
−→
X N,φ (

←−
X N,φ) flips, leading to a

spectral (horizontal) jump of the interface mode. The AS and S
zones stand for the φ regions where the interface mode profiles are
antisymmetric or symmetric, respectively. (c) The φ values where
a letter flips as a function of the letter position n in the sequence−→
X N,φ (or symmetrically at the position N − n + 1 in

←−
X N,φ). The red

crosses show the flips from B to A and vice versa for the blue circles.

conclusions are also valid for the inverse sequence. As the
interface mode is confined to the center of the TIFS structure
PN,φ , the flipping of the first letters of

−→
X N,φ (or the last ones

of
←−
X N,φ) induce a larger jump than those at the extremities of

the chain PN,φ (with negligible field amplitude). We indicate
with red triangles in Fig. 5 the φ values where one of the five
first (last) letters of

−→
X N,φ (

←−
X N,φ) flips, indeed leading to a

significant spectral jump of the interface mode.
Furthermore, we indicate that the red crosses and blue

circles are situated along lines [black dashed lines in Fig. 5(c)].
In addition, the φ separation [vertical distance in Fig. 5(c)]
between the same kind of flip (A to B or B to A) of two
successive letters is always equal to 2.4 rad [so the vertical
distance between two red crosses or between two blue circles
in Fig. 5(c)]. The incommensurability between this flip period
and the φ period prevents these flips from ever occurring two
times at the exact same value of φ.

The number of cycles of the interface mode eigenvalues for
a 2π path of φ is determined by the winding number w(k0) of
the band gap:

w(k0) = 1

2π

∫ 2π

0

∂θcav(k0,φ)

∂φ
dφ, (3)

with θcav = −→
θ L + ←−

θ R the sum of the phases of the reflection
coefficients at the inner boundaries of

−→
X N,φ and

←−
X N,φ [see

Fig. 1(b)]. The winding number has to be evaluated at a partic-
ular k0, but one obtains the same value for any k0 in the band
gap. Note that without gain and loss

−→
θ L = ←−

θ R . The winding
number represents the number of times a closed curve [defined
by θcav(k0,φ) here] travels around a point. This number is also
connected with the gap Chern number [49], the characteristic
number that links band structure and topology [50].

If we check the interface mode field profile (Fig. 4), we
observe that it keeps an antisymmetric pattern along a cycle
in the band gap [AS region between φ ≈ 1.4 and 4.3 rad in
Fig. 5(a)]. For the second cycle [S region between φ ≈ 4.3
and 1.4 + 2π rad in Fig. 5(a)] the pattern is symmetric. The
profile symmetry of the edge mode flips from symmetric to
antisymmetric (or vice versa) when the mode begins another
cycle or spectral crossing through the band gap. If the number
of cycles is odd but at least three, the profile symmetry still flips
between consecutive cycles. However, the single-cycle mode
that crosses φ ≈ 4.3 [as in Fig. 5(b)] flips the symmetry in the
middle rather than at the start or the end regions of a cycle. For
example in Fig. 5(b), the edge mode is antisymmetric in the
AS region below φ ≈ 4.3 rad and symmetric in the S region
beyond this φ value while it is still in the same cycle. This
value of φ corresponds to a change of the very first letter of−→
X N,φ from A to B [Fig. 5(c)], i.e., a strong change at the
core of the resonant cavity-like interface region leading to the
possibility of a symmetry switch.

Compared to [40], we follow a fairly similar path as
regards all generic properties of the TIFS structure (the phase,
the interface mode, etc.). However, our approach has three
distinctive features.

First, we deal with simple interfaces of known Fresnel
reflection. This is welcome to expand the work to the optics
domain. The Supplemental Material of [40] makes good use
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FIG. 6. Sketch of the TIFS structure PN,φ with the gain and loss
factor γ . All A’s on left have gain (−γ ), all B’s on the left have loss
(+γ ), and vice versa for the right side.

of a Fabry-Pérot model, but does not give a self-contained
view of the conditions for the local reflection factor. The
actual reflection factor of a polaritonic Bloch wave in a
stub-modulated waveguide like that of [40] is not an intuitive
quantity, even if it boils down to a classical wave problem.
So the size of the gap may be more directly related to optical
realizations based on our model.

Second, we give a more explicit account of the role of the
phase φ and the letter change in Fig. 5(c).

Third, we deal with an explicit transmission experiment
and not a system bounded by hard walls. We hypothesize that
this relaxes the phase condition(s) as the mode does not always
decay quickly enough to be fully decoupled from the boundary,
e.g., when the mode is close to a band-gap edge. This is our
best clue as regards the reason why we observe a special case
where the symmetry changes in the middle [Fig. 5(b)], thus
contradicting Eq. (3) of [40]. An open optical system with
well-mastered Fresnel reflection is plausibly a good basis to
explore transmission and all the modes of these new structures.

III. PT SYMMETRY

Now we introduce gain and loss in a balanced fashion on
both sides of the mirror plane. Therefore, in

←−
X N,φ all letters

A experience gain (nA = 3 − jγ ) and all letters B experience
loss (nB = 2 + jγ ), with γ the gain-loss factor. For

−→
X N,φ

we introduce the complex conjugates (nA = 3 + jγ and nB =
2 − jγ ; see Fig. 6). In this way the whole TIFS structure PN,φ

is PT symmetric, but each part individually is not. As there
are more A’s than B’s,

←−
X N,φ presents more gain than loss

(depending on the sign of γ ) and vice versa for
−→
X N,φ .

Note that the relatively large γ values (|γ | ∈ [0,0.5]) that
we explore are connected to the large index contrast nB − nA

and the limited N = 50 of our simulations. More realistic
|γ | < 0.005 could result from a combination of weaker index
contrast |nB − nA| ∼ 0.1 and larger N > 50.

A. Global properties

An interesting global transmission pattern arises as the gain-
loss value increases. We show T of PN,φ as a function of k0

and φ for various γ in Fig. 7. As we increase γ from Fig. 7(a)
to Fig. 7(d), saturated transmission peaks [in yellow (light
gray)] appear. However, for even larger γ they subsequently
tend to disappear. This pattern indicates the typical merging

FIG. 7. Transmission T (saturated to 2 for clarity) of PN,φ as a
function of k0 and φ with N = 50 and varying γ . The interface modes
are less visible than in Figs. 5(a) and 5(b) due to the linear scale used
here.

of two modes at an exceptional point under the action of PT
symmetry. Beyond the exceptional points, the transmission
peaks disappear as the modes become complex (leading to
dark blue zones).

Furthermore, we observe a characteristic feature of PT
symmetry: In general, more fundamental modes merge at
smaller γ than higher-order modes, because they are easier to
break (see also [8]). Indeed, modes at the band edges (the more
fundamental ones) are the first to merge [higher transmission
zones at band edges in Figs. 7(a) and 7(b)]. Afterward, the pass-
band centers (the less fundamental modes) begin to merge at
greater γ [Figs. 7(c) and 7(d)]. To illustrate, we show the fields
of two band edge modes (k0 ≈ 0.58 and 0.42 rad/μm in Fig. 3)
and two band center modes (k0 ≈ 0.52 and 0.36 rad/μm).
The band center modes present more modulation nodes than
the edge modes, demonstrating a less fundamental pattern.
Finally, at ever higher γ the transmission picture will have
fewer features and becomes largely blue: Almost all modes
are broken, leading to negligible transmission.

Besides this general pattern, the behavior of the gap defect
modes is more erratic: Some modes merge at small γ , while
others remain in the band gap at high γ . We discuss these
modes in detail in the next section.

B. Local properties

After this general PT behavior of the TIFS structure for
varying φ, we focus on a few specific geometries (specific φ)
to distinguish more precise features. We show T , RL, and RR

as a function of k0 and γ in Fig. 8 for specific φ values. In
these figures, left and right incidence corresponds to γ > 0 and
γ < 0, respectively (the upper and lower halves of the graphs).
Two band gaps are displayed, indicated by the two horizontal
black arrows in Fig. 8(a). For certain values of φ, an interface
mode appears in these band gaps [denoted by the red arrows
in Fig. 8(a) around k0 ≈ 0.425 and 0.56 rad/μm at γ = 0].
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FIG. 8. (a)–(c) Reflection and (d)–(f) transmission for PN,φ (N = 50) as a function of γ and k0 and saturated to 2. (a) and (d) are with
φ = 0.6, (b) and (e) with φ = 1.2, and (c) and (f) with φ = 4.2. Here γ > 0 (γ < 0) is for left (right) incidence. The two black double arrows
in (a) indicate the band gaps. The two red arrows in (a) and (c) show the interfaces modes in these band gaps. The green arrow in (d) shows the
merging of a band mode and an interface mode; in (f) it indicates two band modes merging. The red lines represent ATRs.

Most of the time RL > RR [more yellow (light gray) in
upper half] due to the presence of more gain on the left
side (

←−
X N,φ) than on the right side (a consequence of the

construction). We also note that, as usual inPT symmetry, two
modes tend to merge with one another at so-called exceptional
points: Their eigenvalues become complex conjugates and
they no longer lead to a transmission peak and only provide
reflection afterward. Band modes merge with one another
in each φ configuration [e.g., at the green arrow around
k0 ≈ 0.4 rad/μm in Fig. 8(f)]. However, band-gap interface
modes tend to merge with modes in the closest band [e.g.,
at the green arrow around k0 ≈ 0.4 rad/μm in Fig. 8(d)]
or they merge with spectrally distant modes at large values
of γ [e.g., the interfaces modes that begin their trips at the
red arrows around k0 ≈ 0.49 and 0.57 rad/μm at γ = 0 in
Fig. 8(c)]. Note that we can expect that the system becomes
unstable due to the large gain before the latter two modes
merge.

During the merging process, the field profiles of the modes
slowly become similar; see an example of an edge mode and
a band mode combination in Fig. 9. The band mode (dotted
red curve, middle), which is initially distributed along the
structure, becomes more and more confined at the center (solid
blue curve, bottom), similar to an edge mode profile. The edge
mode evolves in the opposite way (dotted red and solid blue
upper curves). In general, a band and edge mode merge at
larger γ than two band modes, because their profiles are quite
different, and one needs more gain and loss to distort them.
Conversely, two merging band modes are in general close

(spectrally and with similar profiles), making them easier to
match and merge at smaller γ .

Similar to other 1D PT structures, we can observe
anisotropic transmission resonances (ATRs) [43] or one-sided

z[μm]
0 20 40 60 80 100

|E
|(

ar
b.

un
it

s)

γ = 0.0
0.25

edge mode

band mode

FIG. 9. Field profiles of an edge mode (two upper curves) and
a band mode (two lower curves) that merge together. Dotted red
curves show without gain and loss [γ = 0, around k0 ≈ 0.42 and
0.38 rad/μm, respectively, in Figs. 8(a) and 8(d)] and solid blue
curves show just before their merging (γ = 0.25, around k0 ≈ 0.405
and 0.39 rad/μm, respectively, in Figs. 8(a) and 8(d)].
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FIG. 10. (a)–(c) Reflection and (d)–(f) transmission for PN,φ (N = 50) as a function of γ and k0 and saturated to 2 for (a) and (d)
φ = 3.0, (b) and (e) φ = 0.6, and (c) and (f) φ = 6.1 rad. Here γ > 0 (γ < 0) is for left (right) incidence. The green arrow in (e) denotes a
symmetry-recovery phenomenon.

invisibility, where T = 1 [red lines in Fig. 8(e)] and one of
the reflections is equal to zero [red lines in Fig. 8(b)]. These
ATRs originate from the peaks of T = 1 in the passive system
where RL = RR = 0. Upon the common introduction of gain
and loss, the system distinguishes the left and right reflections,
so only one is equal to zero and we detect the typical ATRs.
In tight-binding approaches, e.g., with a limited number of
cavities one can obtain analytical expressions for the ATRs
[51]. Here, however, the analytics become unwieldy with
many interfaces and we resort to numerical transfer matrix
approaches, leading to fairly complex patterns of ATRs as a
function of φ (Fig. 8).

In addition, we observe more exotic merging behaviors of
the band modes [Figs. 10(a) and 10(d)] or interface modes
[Figs. 10(b) and 10(e)]. Some islands of transmission appear
in the band gap [around γ ≈ 0.32 in Figs. 10(c) and 10(f)].
Furthermore, we find the so-called symmetry-recovery phe-
nomenon [42] [denoted by the green arrow around k0 =
2.77 rad/μm in Fig. 10(e)]: With tailored coupling between
four modes, one can achieve the following sequence: two
modes merge initially as γ increases. However, when γ con-
tinues to increase, they become real again (inverse exceptional
point, around γ = 0.12) and finally merge with their original
PT partners at greater γ . The fact that this appears is not
strange, because there are many modes with many coupling
constants, but still one needs a relatively delicate coupling
balance, so it is uncommon to observe.

C. Laser resonances

Focusing on the merging behavior of an interface mode,
we observe oscillations of the transmission, with peaks of

very high intensity indicating lasing effects [yellow arrows in
Figs. 11(a) and 11(b)]. These peaks are elegantly described
with a Fabry-Pérot model of a cavity centered at the mirror
plane. The phase-matching condition of a round-trip in the
cavity (4) describes the presence and evolution of the modes.
A quality factor of the cavity (5), as dictated by its inner
reflections, gives us information about the strengths of the

FIG. 11. (a) and (b) Transmission (saturated to 2) of PN,φ

(N = 50) as a function of γ and k0 via rigorous transfer matrix
calculation. (c) and (d) Fabry-Pérot model with log10 Q [Eq. (5)]
for the same structures. The red points represent constructive cavity
interference, given by Eq. (4).
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resonances (at γ 	= 0) and so the intensity

θcav = 2mπ, m ∈ Z (4)

Q = 1

1 − |←−r R||−→r L| . (5)

Equation (4) is indicated by the red dots in Figs. 11(c) and
11(d). The quality factor Q depends on the amplitudes of the
inner reflection coefficients of each part of PN,φ . We show
log10(Q) in Figs. 11(c) and 11(d). By comparing Figs. 11(a)
and 11(b) and Figs. 11(c) and 11(d) we conclude that the
modes are well described by this simple model: The alignment
of phase matching (red dots) and high Q [yellow (light gray)
zones] in Figs. 11(c) and 11(d) indeed corresponds to the lasing
resonances in Figs. 11(a) and 11(b).

By varying the crystal phase φ or by choosing different
band gaps, we can observe various merging schemes of the
interface mode. In Fig. 11(a), the variation of k0 as a function
of γ of the interface mode branch is relatively small, leading to
a succession of laser resonances closely spaced in frequency.
In contrast, in Fig. 11(b), the variation of k0 as a function
of γ along the branch is relatively large, leading to more
spectrally distant resonances. The large number of possible
merging scenarios allows us to spectrally spread or tighten
the laser resonances and thus opens the way to laser resonance
engineering. Furthermore, we can expect to take advantage of
the field profile difference between band and interface modes
in order to select which resonances will occur at smaller γ .
Indeed, if we put gain and loss only in the layers close to
the interface, we will reach the exceptional points of the
interface modes at smaller γ than for the band modes. Thus
the interface mode should lase at smaller γ and will not be
perturbed by the band modes.

IV. CONCLUSION

We studied a 1D photonic quasicrystal with topological
features in a PT -symmetry context. We used the scattering

characteristics to investigate various properties of this struc-
ture, especially the presence of interface modes in the band
gaps. The structural degree of freedom φ (i.e., the crystal phase
control variable) allows these modes to spectrally cross the
band gap. These cycles are connected with the winding number
of the band gap and the gap Chern number. Spectral jumps
occur along these cycles for specific values of φ, corresponding
to the flipping of a letter in the crystal sequence. In addition,
the symmetry of the gap modes are determined by these cycles
and spectral jumps.

By adding gain and loss in a PT -symmetric fashion, we
observed a set of complex behaviors that is not in simple
correspondence with the passive case. Mostly, mode pairs
merge at exceptional points under the action of PT symmetry.
This merging feature gives rise to high transmission peaks and
even laser resonances. When γ is beyond these exceptional
points, the modes become complex and the transmission
fades out. In a general pattern, we observe that the side
modes of a band merge together at lower γ than the less
fundamental ones at the band center. We also observed a
symmetry-recovery phenomenon, a complex merging scheme
involving four band modes. The interface modes created in
the band gaps merge with nearby band modes and present
very high transmission at laserlike resonances. The spectral
dispersion of these laser resonances can be controlled by
the various involved parameters. In addition, we observed
anisotropic transmission resonances where the transmission
is unity and one of the reflections is equal to zero. The mix
of order and disorder of the present system thus gives a useful
basis for exploring how a variety of PT -symmetry-related
effects are interrelated.
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