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Quantum networks require flying qubits that transfer information between the nodes. This may be implemented
by means of single atoms (the nodes) that emit and absorb single photons (the flying qubits) and requires full
control of photon absorption and emission by the individual emitters. In this paper, we theoretically characterize
the wave packet of a photon emitted by a single atom undergoing a spontaneous Raman transition in a three-level
scheme. We investigate several excitation schemes that are experimentally relevant and discuss control parameters
that allow one to tailor the spectrum of the emitted photon wave packet.
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I. INTRODUCTION

Absorption and emission of photons by atoms are the
fundamental processes of light-matter interaction [1]. At the
same time they form the basic building blocks of quantum
networks [2–5] that consist of atomic nodes and photons
carrying information between them. In several protocols,
the information is transferred directly between the atoms
by controlled photon emission and absorption [2]. In other
schemes information processing is achieved by means of
projective measurements via photodetection [6–9]. Either way,
a fundamental requirement is the control of the spectral and
temporal properties of single photons that are released from
a single emitter through controlled excitation [10–15]. These
properties determine the absorption probability by a single
atom [16] as well as the interference contrast of photon-photon
(or Hong-Ou-Mandel) interference [17–19], which is utilized
to entangle remote atoms [20–22].

Raman transitions, such as the one sketched in Fig. 1 are
particularly relevant for controlled single-photon creation. The
three-level design is convenient in order to separate excitation
and emission and to terminate the dynamics after the creation
of one desired single photon. Moreover, the created single
photon may be entangled with the emitting atom [23]. A
generic situation is that incident laser light releases the single
photon. Alternatively, it may happen by single photons that
themselves are created from quantum emitters [24–27] or other
single-photon sources [28–32]. This is an interesting case of
atom-photon interface as the emitted photon allows one to
herald the absorption process [15,25,33–36].

In this paper we study theoretically the wave-packet
properties of single photons that are generated in a spontaneous
Raman-scattering process in an atomic three-level system.
We consider excitation of the atom by single photons of
various spectrotemporal properties and by laser light. We pay
particular attention to the coherence of the photon, i.e., its
time-bandwidth product. Moreover, we include the effect of
the branching ratio of the upper atomic level. With respect
to previous work as in Refs. [37–39], we determine the
single-photon spectrum produced by a generic excitation and
consider the details of the atomic level configuration, such
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as a possible decay back to the initial state of the Raman
transition. Although the spectral shape for the most efficient
absorption of a single photon has been studied before [40,41],
those studies were restricted to two-level systems. Our paper
allows us to determine the properties of the photon emitted in
a Raman transition as a function of the excitation parameters
and the atomic properties and thus to identify the perspectives
for controlling its shape in cases of experimental relevance.

This paper is organized as follows. In Sec. II we introduce
the model, which we apply in Sec. III in order to determine
the spectral properties of the emitted photon for various cases
of an exciting field driving the Raman transition. In Sec. IV
we apply our results to the description of quantum beats,
recently reported in Ref. [15]. The conclusions are drawn in
Sec. V, and the appendices provide further theoretical details
complementing the calculations in Sec. III.

II. MODEL

In this section we introduce the theoretical model and the
basic equations from which we determine the spectrum of the
emitted photon as a function of the properties of the incident
light.

A. Hamiltonian

We consider three electronic levels |1〉 , |2〉, and |e〉 of a
single atom forming a � configuration as illustrated in Fig. 1.
Each stable state |j 〉 (j = 1,2) is connected to the excited
state |e〉 by an optical dipole transition of frequency ωej .
The two corresponding radiation fields are distinguishable,
for example, by their polarizations and/or their frequencies.
We will describe a scattering process where incident light
on the transition |1〉 ↔ |e〉 excites the atom and spontaneous
decay on the transition |e〉 ↔ |2〉 creates a single-photon wave
packet.

We start with the Hamiltonian H of atom and light
fields, treating the dipolar emission pattern as a single spatial
mode. We use the bosonic operators bj (ω) and b+

j (ω) for
the fields coupling to the transitions |j 〉 ↔ |e〉 to denote the
annihilation and creation of a photon with frequency ω and
wave-number k = ω/c whereby [bj (ω),b+

j ′ (ω′)] = δjj ′δ(ω −
ω′). We decompose H into the free part H0 and the atom-field
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FIG. 1. An atom with a �-shaped level configuration is prepared
in state |1〉 and excited to state |e〉 by incident light. A single photon
may be emitted along the transition |e〉 → |2〉. We determine the
spectral properties of the emitted photon as a function of the atomic
parameters and of the properties of the incident light.

interaction part W ,

H = H0 + W. (1)

In detail,

H0 = −
2∑

j=1

h̄ωej |j 〉〈j | + h̄

∫ ∞

0
dω ωb+

j (ω)bj (ω), (2)

whereby the first and second terms represent the energy of
the atomic states and of the radiation field, respectively, and
the energy of the excited state |e〉 has been set to zero. The
atom-photon interaction W = W1 + W2 is composed of the
terms W1 and W2 that describe the coupling to the fields b1(ω)
and b2(ω), respectively, in electric dipole approximation,

Wj = h̄

∫ ∞

0
dω

√
�j

2π
|e〉〈j | bj (ω) + H.c. (3)

Treating the dipolar wave pattern as a single mode allows
us to express the atom-photon coupling constant in Eq. (3)
directly through the Einstein A coefficients �j of the two
transitions |e〉 → |j 〉 in the Weisskopf-Wigner approximation.
Here, � = �1 + �2 is the spontaneous decay rate of the excited
state.

B. Scattering amplitude

The spectral properties of the emitted photon are calculated
by determining the transition amplitude Uf i(ω2,t) from the
initial-state |i〉 = |�(0)〉 = |1; ϕ〉, i.e., atom in state |1〉 and
field in state |ϕ〉, into the target state,

|f 〉 = b+
2 (ω2) |2; vac〉 , (4)

that corresponds to the atom in state |2〉 and a photon in the
mode at frequency ω2. (We will also consider other target states
when discussing the effect of the finite branching ratio on the
spectral-temporal properties of the emitted photon.) Under
coherent time evolution with Hamiltonian H , the transition
amplitude (for t > 0) is given by

Uf i(ω2,t) = 〈f | U (t) |�(0)〉

= 1

2πi

∫
C+

dz e−(izt/h̄) 〈f | G(z) |�(0)〉 , (5)

whereby

G(z) = 1

z − H
(6)

is the analytic extension of the propagator to the complex
plane and C+ is the contour for z = E + iη with energy E

varying from +∞ to −∞ and η → 0+. We calculate the matrix
elements by means of the Wigner-Weisskopf approximation
and determine the probability density that a single photon at
time t and frequency ω2 is generated

P(ω2,t) = |Uf i(ω2,t)|2. (7)

From this quantity we extract the area-normalized power
spectrum of the emitted photon,

S(ω2,t) = 1

N (t)
P(ω2,t), (8)

and the probability that a photon is emitted along the transition
|e〉 → |2〉,

N (t) =
∫ ∞

0
P(ω2,t)dω2. (9)

We interpret N (t) as the accumulated success probability for
the creation of a photon of any frequency during the interaction
time t .

The spectral properties depend on the state of the input field
|ϕ〉. For a single photon this takes the generic form

|ϕ〉 =
∫ ∞

0
dω ψ(ω)b+

1 (ω) |vac〉 , (10)

where |vac〉 is the vacuum state of the electromagnetic field
and ψ(ω) is the probability amplitude distribution in frequency
with

∫ ∞
0 dω|ψ(ω)|2 = 1. For a single-mode cw laser, |ϕ〉 is a

coherent state; we will discuss this case in Sec. III B. In the
single-photon case, we write the final expression for P(ω2,t)
as

P(ω2,t) =
∣∣∣∣
∫ ∞

0
dω ψ(ω)u(t,ω,ω2)

∣∣∣∣
2

, (11)

where u(t,ω,ω2) = 〈2,vac|b2(ω2)U (t)b+
1 (ω)|1,vac〉 is calcu-

lated according to Eqs. (5) and (6). The quantity u(t,ω,ω2) is
thus the probability amplitude that a monochromatic photon
of frequency ω is absorbed from field 1 and a photon of
frequency ω2 is emitted into field 2. Equation (11) shows that
this matrix element is the building block needed for calculating
the spectrum S(ω2,t) Eq. (8). Using resolvent theory and the
Wigner-Weisskopf approximation [1], we find

u(t,�1,�2) =
√

�1�2

2π

[
e−i �2t(

�2 + i �
2

)
(�2 − �1)

+ e−(�/2)t(
�1 + i �

2

)(
�2 + i �

2

)
+ e−i �1t(

�1 + i �
2

)
(�1 − �2)

]
, (12)

where �1 = ω1 − ωe1 and �2 = ω2 − ωe2 are the photon
frequencies shifted by the value of the corresponding transition
frequency. The shift of the excited state due to virtual photon
processes is absorbed in the definition of its energy.
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III. SPECTRUM OF THE EMITTED PHOTON

In this section we determine and discuss the spectral form of
the emitted photon by spontaneous emission on the transition
|e〉 → |2〉, triggered by (i) a single incident photon that excites
the transition |1〉 ↔ |e〉 or (ii) by a laser continuously driving
the transition |1〉 ↔ |e〉.

We note that all the expressions of interest and, in particular,
the spectrum of the emitted photon depend on the observation
time-interval t . Although the full time dependence may be
derived with our method, we will restrict ourselves to the limit
t → ∞. This means we look at the spectrum of the emitted
photon in the asymptote of the emission process.

A. Excitation by a single photon

1. Rectangular wave packet

A relevant realistic photonic state is a rectangular pulse
with a monochromatic carrier. For a pulse duration T the wave
packet is described by

ψ̃(t) = e−iω1t

√
T

�(t − τ )�(τ + T − t),

where τ denotes the initial temporal distance from the atom
such that the front of the wave packet is at distance x = cτ

from the scatterer’s position. The amplitude spectrum reads

ψ(ω) = ei(ω−ω1)[τ+(T/2)]

√
2π

T
δ(T/2)(ω − ω1), (13)

where we used the diffraction function,

δ(t)(x) = sin xt

πx
, (14)

which converges towards the Dirac-δ distribution δ(x) for t →
∞.

The spectral shape of the emitted photon follows by
inserting Eq. (13) into Eq. (8) and subsequently taking the
limit t → ∞. This yields (for τ,T > 0)

S(�2) = 2π�1�2

N�
L(�2)

2π

T
[δ(T/2)(�2 − �1)]2,

which is the product of the sinc-shaped spectral amplitude
of the incident photon, with center frequency �2 = �1 and
spectral linewidth �ω1 = 2

√
3/T , and the atomic Lorentzian

L(�2) of linewidth �,

L(�) =
�

2π

�2 + (
�
2

)2 . (15)

The power spectrum of the emitted photon is plotted in
Fig. 2 (gray curves) for different values of �1 and �ω1. To
quantify its linewidth, we use an effective value,

�ω2 = δS

π
=

(∫
dω2S(ω2)

)2

π

∫
dω2S2(ω2)

(16)

expressed through the Süßmann measure δS [42]. Its depen-
dence on the incident linewidth is shown in Fig. 3(a) (as a
gray curve) for resonant excitation �1 = 0. One sees that
�ω2 depends on the total atomic linewidth � but not on
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FIG. 2. Area-normalized power spectral density S(�2) of the
emitted photon after excitation by a single photon of sinc (light gray),
Gaussian (gray), or Lorentzian (black) spectra. The spectra are given
for three different linewidths �ω1 and for resonant excitation in (a),
(c), and (e), and off-resonant excitation in (b), (d), and (f).

the branching fractions �1 and �2 individually (at least for
t → ∞). Figure 3(b) shows the success probability for creating
a single photon as a function of the linewidth of the incident
photon.

2. Gaussian wave packet

As another example for a photonic wave packet we consider
the normalized Gaussian spectrum,

ψ(ω) = 4

√
2

π�ω2
exp

[
− (ω − ω1)2

�ω2
1

]
ei(ω−ω1)τ , (17)

with central frequency ω1, linewidth �ω1, and initial temporal
distance τ from the atom. Note that this Gaussian does not
represent an incoherently broadened photon but rather a pure
(i.e., Fourier-limited) state [43]. The spectral shape of the
emitted photon follows again by multiplying Eq. (12) with
the wave packet Eq. (17). Hence, in the limit t → ∞ and for
long distances τ 	 1

�ω1
, the power spectrum is the product of

the atomic Lorentzian and a Gaussian function of width �ω1

centered at �2 = �1,

S(�2) = 2π�1�2

N�
L(�2)

√
2

π �ω2
1

exp

[
−2(�2 − �1)2

�ω2
1

]
.

The spectral shape, the effective linewidth, and the success
probability of the emitted photon are displayed (as light-gray
curves) in Figs. 2 and 3, respectively.

023861-3



MÜLLER, TENTRUP, BIENERT, MORIGI, AND ESCHNER PHYSICAL REVIEW A 96, 023861 (2017)

0 1 2 3 4 5
0

1
4

1
2

3
4

1
asymptote

Linewidth Δω1 of incident photon (units of Γ)

L
in

ew
id

th
Δ

ω
2

(u
n
it

s
o
f
Γ
)

sinc

Gauss

Lorentz

(a)

0 1 2 3 4 5
0

4Γ1Γ2
Γ2

Linewidth Δω1 of incident photon (units of Γ)

S
u
cc

es
s

p
ro

b
.
N

(b)

FIG. 3. (a) Effective linewidth �ω2 and (b) success probability
N of the emitted single photon versus the linewidth of the incident
photon. Shown are the three cases of excitation with a single photon
of sinc- (light gray), Gaussian- (gray), or Lorentzian-shaped (black)
spectra at resonance (�1 = 0) and interaction time t → ∞. For all
cases, the asymptote is �ω2 = � corresponding to the bare atomic
Lorentzian.

3. Lorentzian wave packet

Another relevant example is a Lorentzian wave packet of
linewidth �ω1, for example, when the photon is released from
a cavity or from a single atom [12,13]. Then,

ψ(ω) =
√

�ω1

2π

1

(ω − ω1) + i �ω1
2

ei(ω−ω1)τ ,

and the spectrum that follows from Eq. (8) reads (again for
τ > 0 and t → ∞)

S(�2) = 2π�1�2

N�
L(�2)

�ω1
2π

(�2 − �1)2 + (
�ω1

2

)2 .

It is the product of two Lorentzians of widths � and �ω1,
centered at �2 = 0 and �2 = �1, respectively. Examples are
displayed in Fig. 2 (as black curves).

In this case, the success probability according to Eq. (9),

N = �1�2

�

� + �ω1

�2
1 + (

�+�ω1
2

)2

is maximal for resonant excitation (�1 = 0) by a narrow-
band photon (�ω1 → 0), and it reaches unity (in our one-
dimensional model) for the case of equal branching fractions
�1 = �2 = �

2 . The spectral width and the success probability
behave similarly as in the case of Gaussian excitation, see
Fig. 3.

|1〉

|e〉

|2〉

N = 0

|1〉

|e〉

|2〉

N = 1

|1〉

|e〉

|2〉

N = 2

FIG. 4. Three cases of laser-induced generation of a single
photon on the transition |e〉 → |2〉 with N = 0, 1, or 2 additional
spontaneously emitted photons on the transition |1〉 ↔ |e〉.

We note that a time-reversed Lorentzian photon, i.e., one
with an exponentially rising temporal envelope [44], has the
same power spectrum and thus produces the same emission
spectrum S(�2) as calculated above. In the time domain,
however, where the wave packet of the emitted photon is the
convolution of the incident wave packet and the exponential
atomic response, the two cases will lead to different results
[40,41].

B. Laser excitation

Instead of a single photon which excites the transition
|1〉 ↔ |e〉, now we consider a laser with frequency ω1 driving
this transition continuously. The laser drive is assumed to
be monochromatic and represented by a coherent state of
the corresponding mode of the electromagnetic field. In an
equivalent reference frame, |ϕ〉 = |vac〉, and the Hamiltonian
reads [1]

H ′ = H ′
0 + W1 + W2 + V, (18)

where the free Hamiltonian H ′
0 corresponds to Eq. (2) with the

eigenfrequency of the initial atomic state shifted by the laser
frequency −ωe1 → −ωe1 + ω1 = �1 and the interaction of
the laser and the atom is described by

V = h̄�

2
(|1〉〈e| + |e〉〈1|), (19)

with the on-resonance Rabi frequency �.
In contrast to the case of single-photon excitation, the final

state now includes the possibility that multiple photons have
been emitted spontaneously along the transition |e〉 → |1〉
before the photon emitted on |e〉 → |2〉 terminates the process.
This is illustrated in Fig. 4. For each case of N such additional
photons, the final state reads

|fN 〉 = b+
2 (ω2)b+

1

(
ω

(N)
1

) · · · b+
1

(
ω

(1)
1

) |2; vac〉 ,

and the spectrum of the corresponding outgoing photon is
given by

SN (ω2,t) = 1

NN

|UfNi(t)|2,

with the transition amplitude UfN i(t) = 〈fN | U (t) |�(0)〉 cal-
culated using the resolvent of H ′, thus using Eq. (18) in Eq. (5).

The full spectrum of the emitted photon is given by the
incoherent sum over all possible cases of N additional photon
emissions, including the integration over their frequencies (this
reflects, in practical terms, the assumption that all information
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about the additional photons is discarded) and weighted by the
corresponding probability NN ,

S(ω2,t) =
∞∑

N=0

NNSN (ω2,t), (20)

where ∑
N

NN = 1. (21)

The first three processes of the sum for N = 0, 1, and 2 are
shown in Fig. 4. For all three cases we obtain as detailed in
Appendix A,

lim
t→∞ SN (ω2,t) = S0(�2)

=
|�|2

4
�

2π∣∣(�2−�1−�S+i κ
2

)(
�2 + �S + i �−κ

2

)∣∣2 ,

(22)

which is a product of two Lorentzian functions centered at
�2 = �1 + �S and �2 = −�S , and with widths

κ = �
�S

�1 + 2�S

and � − κ , respectively. Therein, �S is the ac Stark shift due
to the laser field,

�S = −�1

2
+ sgn �1

2
√

2

√√√√
�̃2−�2

4
+

√(
�̃2 − �2

4

)2

+�2
1�

2,

with the effective Rabi frequency �̃ =
√
|�|2 + �2

1. The shape
of the spectrum according to Eq. (22) is plotted in Fig. 5. It
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FIG. 5. Area-normalized power spectral density S0(�2) Eq. (22)
of the emitted single photon after excitation by a laser for various
values of Rabi frequency � and laser detuning �1.

exhibits the well-known feature of Autler-Townes splitting at
sufficiently high Rabi frequency � > �

2 .
The corresponding success probabilities are N0 =

�2
�

, N1 = �2
�

�1
�

, and N2 = �2
�

(�1
�

)
2
. We conclude that

SN (�2) = S0(�2) for all values of N and NN = �2
�

(�1
�

)
N

.
Using Eq. (20), the full spectrum results to be

S(�2) = S0(�2). (23)

The important conclusion is that the unknown number of
previously scattered photons on the other transition is not
observed as spectral broadening. Nevertheless, it is obvious
that the incoherent summation of the various scattering
processes weighted with their probabilities Eq. (20) will
degrade the purity of the photonic state (see footnote [43]),
i.e., the final photon will not be Fourier limited. This impurity
is therefore solely due to the temporal broadening of the
photonic wave packet through repeated decay back to the
initial state and reexcitation before the final photon is emitted
(see Appendix B). This temporal broadening, and thereby the
impurity, increases with the branching ratio �1:�2.

IV. QUANTUM BEATS

The methods and results presented so far are extendable
to more complex systems. As an example, we describe their
application to an atomic level configuration that exhibits
quantum beats in single-photon scattering [15]. Figure 6 shows
the level scheme with the relevant transitions. The atom is
initially prepared in a superposition state of |g1〉 and |g2〉, and
both transitions |g1〉 ↔ |e〉 and |g2〉 ↔ |e〉 are driven by the
incident light. We are interested in the spectrum S(ω3) of the
photon emitted on the |e〉 → |g3〉 transition. As before, we
focus on the fully completed emission process, i.e., we set the
interaction time t → ∞.

To be specific, we consider the 40Ca+ ion as in Ref. [15]
whereby |g1〉 and |g2〉 are two Zeeman-split sublevels of
the D5/2 manifold, |e〉 is the P3/2 state, and |g3〉 is the S1/2

ground state. Correspondingly, we use the branching fractions
�1/� = �2/� = 0.03 and �3/� = 0.94 [45]. The frequency
splitting between |g1〉 and |g2〉 is denoted as δ.

|g1〉
|g2〉

|g3〉

|e〉
c1

c2

δ

incident light
outgoing photon

FIG. 6. Atomic level configuration that leads to quantum beats.
The atom is initially in a superposition of states |g1〉 and |g2〉. A single
photon is emitted on |e〉 → |g3〉 after excitation by incident light.

023861-5



MÜLLER, TENTRUP, BIENERT, MORIGI, AND ESCHNER PHYSICAL REVIEW A 96, 023861 (2017)

−2 0 2 −2 0 2

(a) Δω1 = 2 Γ, δ = Γ (b) Δω1 = 2 Γ, δ = 2 Γ

(c) Δω1 = Γ, δ = Γ (d) Δω1 = Γ, δ = 2 Γ

(e) Δω1 = Γ
5
, δ = Γ (f) Δω1 = Γ

5
, δ = 2 Γ

0

0

0

P
ow

er
sp

ec
tr

a
l
d
en

si
ty

(l
in

ea
r

sc
a
le

)

Frequency (units of Γ)

FIG. 7. Area-normalized power spectral density S(�3) for exci-
tation of an initial superposition state by a single photon tuned to the
center of the two transitions (�1 = − δ

2 ). The incident wave packet is
Lorentzian with width �ω1 as indicated; the splitting δ is � in (a), (c),
and (e) and 2 � in (b), (d), and (f). The gray levels indicate the phase
between the two transitions: black for c1 = c2 and gray for c1 = −c2.

A. Excitation by a single photon

First, we assume excitation by a single photon with spectral
amplitude ψ(ω1). The initial state is

|�(0)〉 = (c1 |g1〉 + c2 |g2〉) ⊗
∫ ∞

0
dω1ψ(ω)b+

1 (ω1) |vac〉 ,

with |c1|2 + |c2|2 = 1. The final state after single-photon
emission at frequency ω3 is |f 〉 = b+

3 (ω3) |g3; vac〉. Since the
absorption amplitudes of the two � configurations add up
coherently, the spectrum according to Eq. (8) is

S(�3) = 1

N |c1Uf i(�1,�3) + c2Uf i(�1 + δ,�3)|2. (24)

The individual contributions Uf i are calculated as before using
Eqs. (11) and (12) for t → ∞ and the spectral amplitude
ψ(ω1). The emission spectrum for excitation by a Lorentzian
photon is shown in Fig. 7. To highlight the case of equal
transition strengths, we set |c1| = |c2| and the detuning to
�1 = − δ

2 , i.e., to the center between the two transitions. If the
combined linewidth of the atomic response and input spectrum
is smaller than the splitting of the two initial states, one
observes two interfering spectral components, i.e., quantum
beats, see Figs. 7(d)–7(f).
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FIG. 8. Partial spectra SN (�3) for excitation by a laser tuned to
the center of the two transitions (�1 = − δ

2 ). The Rabi frequency is
� = �. The splitting δ is � in (a) and (c) and 2 � in (b) and (d). Gray
levels indicate the number N of intermediate photons: dark, medium,
and light gray for N = 0, 1, and 2, respectively, and black for the sum.

B. Laser excitation

For excitation by a laser with frequency ω1, the fractions
SN (�3) of the spectral density corresponding to N intermedi-
ately scattered photons (i.e., back to |g1,2〉) are calculated as
before (Sec. III B) but taking into account the coherent sum
of Eq. (24). Notably, in this case the partial spectra are not
identical in shape. Examples are plotted in Fig. 8 for various
splittings δ and phases between c1 and c2.

The presence of two peaks in the spectrum indicates quan-
tum beats in the emitted photon with their difference frequency.
In the case of laser excitation, the beat frequency contains a
contribution from the ac Stark shift that becomes visible when
the Rabi frequency approaches the atomic linewidth. The phase
difference between the two transitions arg c1 − arg c2 also
affects their interference, leading to pronounced maxima or
minima between the two peaks. The corresponding changes in
the temporal shape of the emitted photon have been reported
in Ref. [15].

V. CONCLUSIONS

We have presented a detailed analysis of the spectra of
single photons that are generated by a Raman-scattering
process from a single quantum emitter, such as a trapped single
ion or atom. Starting from basic principles we have calculated
such spectra for various cases of excitation, in particular, by
single incoming photons and by laser light. Our results back up
previous experimental demonstrations where single photons
of a controlled temporal structure have been generated by
laser excitation of a trapped ion [10,13], a trapped neutral
atom [11,14,41], or where controlled single-photon Raman
scattering has been utilized to implement a bi-directional
atom-photon quantum interface [36].

In general, our calculations show that the spectrum of an
emitted photon is obtained as the product of the spectra of
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incoming light and atomic response. This includes the possible
formation of dressed states in the atom if the excitation power
approaches or exceeds saturation. In the temporal regime,
the response of the atom and the incoming wave packet are
convoluted to yield the outgoing wave packet. An important
finding is that variation of the branching fractions of the
excited atomic state, i.e., possible decay back to the initial state
before the single Raman photon is released, does not affect the
spectrum of the emitted photon. Only its temporal shape will
be stretched, and hence the purity of the quantum state will
degrade by a factor proportional to the average number of
additional photons scattered on the excited transition.

Beyond addressing a fundamental question in matter-light
interaction, our analysis finds highly relevant applications in
quantum communication technologies where single photons
serve as carriers of quantum information. In this context their
spectra determine, for example, the efficiency with which
this information is transferred to atomic memories or the
(in)distinguishability of two interfering photons. For the latter
question, the purity of a photon’s quantum state, i.e., how close
its temporal and spectral representations are to the Fourier
transforms of each other, is an important figure of merit.
Our analysis shows how this purity depends on the atomic
properties and the excitation parameters.

Finally, we have extended our analysis to the case where
the atom is initially in a superposition state for which quantum

beats are observed and confirmed the findings of a recent
experiment [15].
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APPENDIX A: LASER EXCITATION

In the case of laser excitation, the matrix element of
the time-evolution operator Eq. (5) has to be calculated
individually for each case of N additionally scattered photons.
The matrix element of the resolvent Gf i(z) shows resonances
at each involved state, thus UfN i(t) is a sum of just as
many terms. Here, due to the interaction V [see Eq. (19)],
|1〉 and |e〉 are replaced by dressed states with the complex
eigenfrequencies,

ω± = 1

2

(
�1 − i

�

2

)
± 1

2

√
|�|2 +

(
�1 + i

�

2

)2

.

For N = 0, there are three involved states with eigenfre-
quencies ω+, ω−, and �2, leading to

Uf0i(t) = �

2
gω2e

iω1t

[
e−i �2t

(�2 − ω+)(�2 − ω−)
+ e−iω+t

(ω− − ω+)(�2 − ω+)
+ e−iω−t

(ω+ − ω−)(�2 − ω−)

]
. (A1)

Since Im(ω±) < 0, only the first term in Eq. (A1) remains in the limit t → ∞. It is the product of two Lorentzians centered at
Re(ω±). By introducing the frequency,

�S = −�1

2
+ sgn(�1)

2
Re(ω+ − ω−),

we get Re(ω±) = �1
2 ± sgn(�1)(�1

2 + �S) such that one Lorentzian is centered at �1 + �S and the other one is centered at
−�S . Their widths follow from Im(ω±) and are found to be κ and � − κ , respectively. The resulting spectral density reads

S0(�2) = 1

N0
|Uf0i(∞)|2 =

|�|2
4

�
2π∣∣(�2 − �1 − �S + i κ

2

)(
�2 + �S + i �−κ

2

)∣∣2 . (A2)

The success probability N0 = �2
�

confirms that the probability of immediate decay of the excited state |e〉 to state |2〉 is just the
corresponding branching fraction.

For N = 1 there are five involved states with the eigenfrequencies ω+, ω−, ω+ + �′
1, ω− + �′

1, and �2 + �′
1 (with �′

1 =
ω′

1 − ω1) leading to

Uf1i(t) = �2

4
gω′

1
gω2e

iω1t

[
e−i(�2+�′

1)t

(�2 + �′
1 − ω+)(�2 + �′

1 − ω−)(�2 − ω+)(�2 − ω−)

+ e−iω+t

(ω+ − �2 − �′
1)(ω+ − ω−)(−�′

1)(ω+ − ω− − �′
1)

+ e−iω−t

(ω− − �2 − �′
1)(ω− − ω+)(ω− − ω+ − �′

1)(−�′
1)

+ e−i(ω++�′
1)t

(ω+ − �2)�′
1(ω+ − ω− + �′

1)(ω+ − ω−)
+ e−i(ω−+�′

1)t

(ω− − �2)(ω− − ω+ + �′
1)�′

1(ω− − ω+)

]
. (A3)

As before, only the first term in Eq. (A3) remains in the limit of t → ∞, leading to the spectral density,

S1(ω2,t) = 1

N1

∫ ∞

−∞
dω′

1|Uf1i(t)|2,
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where the integration over all possible values of ω′
1 follows from the assumption that any information about the frequency of the

additional photon is discarded. For t → ∞, the integration leads to

S1(�2) = S0(�2). (A4)

The spectra without and with an intermediate photon are the same because integration over all possible frequencies of the
intermediate photon cancels out any correlation with the final one. The event N = 1 has success probability,

N1 = �1�2

�2
.

For N = 2 there are seven involved states so that the matrix element of the time-evolution operator, corresponding to Eqs. (A1)
and (A3), is a sum of seven terms, each with six factors in the denominator,

Uf2i(t) = �3

8
gω′

1
gω′′

1
gω2e

iω1t

×
[

e−i(�2+�′
1+�′′

1)t

(�2 + �′
1 + �′′

1 − ω+)(�2 + �′
1 + �′′

1 − ω−)(�2 + �′′
1 − ω+)(�2 + �′′

1 − ω−)(�2 − ω+)(�2 − ω−)

+ e−iω+t

(ω+ − �2 − �′
1 − �′′

1)(ω+ − ω−)(−�′
1)(ω+ − ω− − �′

1)(−�′
1 − �′′

1)(ω+ − ω− − �′
1 − �′′

1)

+ e−iω−t

(ω− − �2 − �′
1 − �′′

1)(ω− − ω+)(ω− − ω+ − �′
1)(−�′

1)(ω− − ω+ − �′
1 − �′′

1)(−�′
1 − �′′

1)

+ e−i(ω++�′
1)t

(ω+ − �2 − �′′
1)(�′

1)(ω+ − ω− + �′
1)(ω+ − ω−)(−�′′

1)(ω+ − ω− − �′′
1)

+ e−i(ω−+�′
1)t

(ω− − �2 − �′′
1)(ω− − ω+ + �′

1)(�′
1)(ω− − ω+)(ω− − ω+ − �′′

1)(−�′′
1)

+ e−i(ω++�′
1+�′′

1)t

(ω+ − �2)(�′
1 + �′′

1)(�′′
1)(ω+ − ω− + �′

1 + �′′
1)(ω+ − ω− + �′′

1)(ω+ − ω−)

+ e−i(ω−+�′
1+�′′

1)t

(ω− − �2)(ω− − ω+ + �′
1 + �′′

1)(�′
1 + �′′

1)(ω− − ω+ + �′′
1)(�′′

1)(ω− − ω+)

]
, (A5)

where �′′
1 = ω′′

1 − ω1. Also here, only the first term in Eq. (A5)
survives in the limit of t → ∞, leading to the spectral density,

S2(ω2,t) = 1

N2

∫ ∞

−∞
dω′

1

∫ ∞

−∞
dω′′

1 |Uf2i(t)|2

which again simplifies to

S2(�2) = S0(�2), (A6)

with

N2 = �2

�

(
�1

�

)2

.

Generalization to all values of N is obvious.

APPENDIX B: TEMPORAL STRETCHING

To quantify the temporal distribution or wave packet of
the finally emitted photon in the case of laser excitation, we
consider that, after each spontaneously emitted photon on
the transition |1〉 ↔ |e〉, the emitter is projected back into
initial state |1〉 and the excitation process starts again. For
the first emitted photon (on either transition) after such a
projection, the temporal shape of the wave packet is p1(t). As

this distribution describes the uncertain moment of emission
of the first photon, the wave packet of the second photon is
broadened, i.e., its temporal shape p2(t) is the convolution of
the temporal shape of the first photon with itself. (Note that
we trace out any possible interference between spontaneously
emitted photons.)

Consequently, the temporal shape of the N th photon is the
convolution of the previous one with p1(t),

pN (t) = (p1 ∗ pN−1)(t).

In the case of a convolution of probability distributions one
finds for the first moment,

〈t〉N =
∫

pN (t)t dt = 〈t〉N−1 + 〈t〉1,

and the second central moment,

(�t)2
N = 〈(t − 〈t〉N )2〉N = (�t)2

N−1 + (�t)2
1.

Thus, the N th photon has the mean arrival time of 〈t〉N =
N〈t〉1 and a temporal spread of (�t)N = √

N (�t)1.
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From this we finally find the mean arrival time of the Raman
photon by summing over all cases of N additionally emitted
photons weighted by their probabilities [cf. Eq. (20)],

〈t〉Raman =
∞∑

N=0

NN 〈t〉N+1 = (N̄ + 1)〈t〉1,

where N̄ + 1 = �
�2

is the mean number of spontaneously
emitted photons including the final one. By the corresponding
calculation we find that the spread of the arrival time of the
Raman photon is given by

(�t)Raman = (N̄ + 1)(�t)1.
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